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Introduction

Th e identifi cation of genes responsible for medically 

important traits is a major challenge in human genetics. 

Th is is particularly so for a disease with heterogenic 

pathology, such as hearing loss (HL). Hearing impairment 

is the most common sensory defect, aff ecting approxi-

mately one in 500 newborns and 4% of people younger 

than 45  years [1], reaching 50% by age 80 [2]. It is esti-

mated that 278 million people worldwide suff er from HL 

[3,4], aff ecting child development, education, social inte-

gra tion, and the quality of life of the aff ected individual, 

with a substantial impact on public health. Th is high 

preva lence, combined with the striking genetic hetero-

geneity of deafness, has made this Mendelian disease a 

major challenge in terms of discovering its cause and 

deciphering the mechanisms underlying it. Sixty-three 

genes encoding proteins with a broad range of functions 

are known to be involved in HL. Many more are expected 

to be discovered, as over 100 loci have been mapped 

without the corresponding gene identifi ed. However, 

because of the technological limitations in clinical diag-

nostics, mainly resulting from the large size of many 

genes and the high cost of Sanger sequencing, many 

hearing-impaired individuals with familial HL do not 

know the genetic cause of their HL. Owing to the 

complexity of the auditory apparatus and the vast genetic 

heterogeneity of HL, high-throughput sequencing, also 

known as massively parallel sequencing or next-genera-

tion sequencing (NGS), is the ideal tool to address this 

challenge (Box 1).

NGS has already had an important impact on both 

research and clinical diagnosis in other diseases, such as 

breast cancer [5], intractable infl ammatory bowel disease 

[6] and Kabuki syndrome [7], as it enables screening of a 

large number of genes in one test. In addition, this 

approach does not require the collection of DNA samples 

from large aff ected families that previous linkage-based 

approaches to disease gene identifi cation did. Th e recent 

advances in molecular biology and genomics have raised 

hopes of elucidating the complex network of auditory 

genes, which is the fi rst step toward implementing a cure 

for HL. Th ese advances highlight the need for additional 

discovery and characterization of all genes involved in 

HL. Here, we focus on the impact of genomics, and in 

particular NGS, on the progress in gene discovery for 

inherited deafness.

Unraveling the genetic complexity of HL by 

high-throughput strategies

At least 60% of HL is regarded as having a genetic cause, 

as many of the environmental causes, such as ototoxic 

drugs, mumps or rubella, have been eliminated by 

modern medicine. Most environmental causes, including 

exposure to ototoxic drugs, exposure to rubella during 

gestation, trauma and excessive noise, are considered to 

have a genetic basis as well, as both the onset and severity 

of acquired hearing impairment may depend on the 

genetic background of the individual. Approximately 70% 

of all genetic HL is non-syndromic (NSHL), with half 

predicted to be monogenic. NSHL is inherited in a 

recessive mode in approximately 80% of cases, in a 

dominant mode in approximately 20%, and is either X-

linked or mitochondrial in origin in 2 to 3%.

Mutations in over 60 genes have been found to disrupt 

auditory function, resulting in similar or diff erent 

phenotypes, according to the function, location, pathway 
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or network of proteins they encode [8]. Th ese genes 

encode a variety of proteins with a broad range of func-

tions, including gap junctions (connexin 26 and connexin 

32), transcription factors (POU4F3, POU3F4, TFCP2L3 

and PAX3), ion channels (KCNQ1, KCNE1 and KCNQ4), 

molecular motors (myosin VI, myosin VIIA, SLC26A4 

and prestin), extracellular proteins (alpha-tectorin, oto-

ancorin and COL11A2) and structural proteins (otoferlin 

and diaphanous 1). Th eir expression pattern varies 

between proteins that are exclusively expressed in the 

mammalian inner ear (α-tectorin, cochlin and EYA4), to 

proteins that are expressed in several tissues (myosin VI, 

POU4F3 and whirlin), but surprisingly have mostly only 

been found to be involved in HL (reviewed in [9]). Th e 

many proteins required for proper functioning of the 

inner ear correlate with the complex structure of its six 

organs: the cochlea, responsible for hearing, and the 

saccule, utricle and the three semicircular canals, which 

control balance and spatial orientation. Th e development, 

diff erentiation and maintenance of this complex machinery 

explain the involvement of such a large number of genes 

with mutations leading to HL. Distinct proteins are 

responsible for the function of each compartment of the 

inner ear, as well as for the physiological and mechanistic 

aspects.

Th e ear itself is divided into three compartments: the 

outer, the middle and the inner ear (Figure 1; reviewed in 

[10]). Th e inner ear includes both the organ of hearing 

(cochlea) and the vestibular sense organs. Th e cochlea is 

a coiled snail-shaped organ in the temporal bone. Th e 

organ of Corti, containing hair cells and supporting cells, 

lies on the basilar membrane that separates the scala 

media from scala tympani. When sound strikes the 

tympanic membrane, the movement transferred by the 

footplate of the stapes presses it into the cochlear duct 

through the oval window, causing the fl uids to move 

through the cochlear duct, fl owing against the receptor 

cells (hair cells) of the organ of Corti. Th e hair cells in the 

organ of Corti are composed of an inner row and three 

outer rows of hair cells. Th e apical side of the hair cells 

facing the scala media contains the stereocilia, actin-rich 

projections with a typical staircase arrangement, con-

nected with lateral and tip links. On top of the hair cells 

lies the tectorial membrane, a collagen-rich extracellular 

matrix. Th e vibrations caused by sound activate mechano-

electrical transduction by triggering the hair cells via 

defl ection of the hair bundles and enabling potassium 

infl ux through the apical transduction channels that 

depolarizes the cells. A multitude of proteins are involved 

in every step of the hearing process, and a mutation in 

any one of the genes that encode these proteins can have 

dire consequences on hearing.

Th e gene most frequently involved in HL is GJB2, 

encoding the connexin 26 protein, with more than 100 

dominant or recessive deafness-causing mutations detected 

in this small gene of only one coding exon of approxi-

mately 1  kb. Other frequently mutated genes include 

SLC26A4, MYO15A, OTOF, CDH23 and TMC1, with 

over 20 mutations reported to be involved in HL for each 

of these genes. A comprehensive list of genes implicated 

in HL can be found at the deafness variation database 

[11]. Th e number of mutations in the other ‘deafness’ 

genes is lower and most of them have been reported in 

consanguineous families [12]. However, unlike GJB2, 

many of these genes are large, with dozens of exons, such 

as MYO15A and CDH23, which have 65 and 68 exons, 

respectively. Th e number of genes and mutations found 

are most likely underestimated as a result of the pre-NGS 

era strategies used for gene identifi cation. For example, 

large genes are not routinely completely analyzed using 

Sanger sequencing, as it is too time- and cost-consuming 

to be performed as part of routine clinical genetic 

diagnosis. Even for research purposes, the number of 

large genes involved in HL has made complete sequen-

cing on a regular basis impractical, unless there were 

strong reasons to expect a mutation because of shared 

ethnic origin or phenotype. For the same practical reasons, 

the methods used for detection of known mutations 

(mutation-specifi c assays) have also led to an 

Box 1

The development of Sanger sequencing in 1977 [55] marked 

a turning point in the molecular genetics revolution, and this 

was followed by the implementation of the polymerase chain 

reaction 6 years later [56]. These landmarks paved the way for 

the Human Genome Project, completed in 2001 [57]. The fi eld 

of genomics and its technological capacity have evolved at an 

extremely rapid pace since, leading to the development of high-

throughput methods, including next-generation sequencing 

(NGS), also called massively parallel sequencing or deep 

sequencing. These advanced technologies, besides enhancing 

the ability to identify human disease mutations, have yielded 

a fl ood of genomic data. The increased wealth of genomic 

information has accelerated our understanding of complex 

biological processes and has provided broad clinical implications, 

but it has also required the development of advanced 

bioinformatics tools to deal with these massive amounts of 

data. NGS can produce over 10,000 times more data than the 

Sanger sequencing method. Whereas Sanger sequencing yields 

a 24-hour output of 120,000 bp for the cost of $4,000 per Mb 

sequenced [23], the output of a single NGS machine is larger 

than 30 Gb in 24 hours and costs less than $2 per Mb. The 3.2 Gb 

in a single human genome can therefore be sequenced in 1 day 

at a fairly low cost relative to what it would take with Sanger 

sequencing - up to 73 years at a cost of $200,000 [58]. We are 

rapidly reaching the long-held dream of the $1,000 genome in 

less than a day, although the subsequent bioinformatic analysis 

is becoming the new bottleneck for rapid genome-based 

diagnosis.
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underestimation of the numbers of mutations in preva-

lent deafness genes, such as GJB2 and SLC26A4. In 

addition, some genes have been found to be associated 

with deafness in a particular population or one family, 

discouraging others from searching for mutations in 

these genes (if mutations in a particular gene were only 

found infrequently, scientists were less inclined to want 

to screen for mutations in this gene).

Although families with HL with diff erent modes of 

inheritance are found all over the world, the majority of 

families reported with recessive deafness come from 

countries where consanguineous families are common, 

including North Africa, through the Middle East to India 

and Pakistan. Th e deafness loci for these consanguineous 

families were easily mapped by linkage analysis and 

homozygosity mapping, allowing locus identifi cation 

using only a large single family. Dominant HL, in con-

trast, was mainly identifi ed in families originating in 

Europe, North America and Australia [12].

Before the high-throughput technology era, disease 

locus identifi cation was performed mainly by genome-

wide linkage analysis using genetic markers, such as 

Figure 1. Schematic diagram of the human ear. (a) The ear is composed of three major parts, the outer, middle and inner ear. Mutations in genes 

encoded by proteins functioning primarily in the cochlear of the inner ear are known to lead to sensorineural hearing loss. Mutations in these 

genes often are associated with balance defects because of their expression in the vestibule of the inner ear. (b) The scala media, scala tympani and 

scala vestibule are visible in a cross-section of the cochlear duct. TM, tympanic membrane. (c) The organ of Corti is contained within the cochlear 

duct, and includes sensory hair cells and supporting cells. (d) An outer hair cell showing the staircase pattern of the stereocilia bundle on its apical 

surface. Reproduced with permission from [47].
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micro satellites or single nucleotide polymorphisms, 

commonly known as SNPs. Th e genetic linkage data 

obtained could be analyzed by various methods, such as 

parametric multipoint linkage analysis and, when rele-

vant, homozygosity mapping, used to detect disease loci 

for autosomal recessive disorders, particularly in 

consanguineous pedigrees [13]. Even though this approach 

led to the identifi cation of many deafness genes, parti cu-

larly in populations with social preference for endo-

gamous or consanguineous marriage and large family 

size [14], it has signifi cant limitations, including that it is 

suitable only for families with recessive diseases and 

needs at least two aff ected off spring, preferably with 

related parents. Th e limitations of linkage methods, the 

long time required and high cost of gene identifi cation 

left many cases unsolved and the list of unresolved 

human loci linked with HL remained longer than the list 

of cloned genes [8]. However, the linkage methods identi-

fi ed only one gene in each experiment and thus, in many 

of these cases, mutations were found in only one family, 

and in many other cases the causative gene has remained 

unknown.

To overcome this obstacle, eff orts for large-scale screen-

ing of deafness genes have emerged, for example, by 

genotyping 198 mutations with a primer extension across 

eight prevalent genes (GJB2, GJB6, GJB3, GJA1, SLC26A4, 

SLC26A5, MTRNR1 and MTTS1) in a single test [15]. 

Chromosomal imbalances have been identifi ed by array 

comparative genomic hybridization (array CGH). For 

example, an inverted genomic duplication of the TJP2 

gene was identifi ed as the cause of progressive NSHL at 

the DFNA51 locus using this method [16]. However, this 

technique can detect only large deletions or duplications, 

and was used after failing to detect standard mutations 

by other methods. Moreover, a systematic study of un-

solved deafness cases has not been undertaken using 

array CGH, so it is not known what proportion of deaf-

ness is caused by large duplications or deletions. Clearly, 

there has been a need to develop techniques for large-

scale screening of a larger number of genes in a reason-

able amount of time and more cost-eff ective manner that 

can detect all types of mutations underlying deafness.

An example demonstrating the underestimated numbers 

of deafness genes in a given population is found in the 

Jewish Israeli population before the NGS era. In this 

population, the number of NSHL genes was estimated to 

be up to 22 across the Jewish ethnic groups [17]. Before 

using high-throughput methods, nine NSHL genes were 

found over a period of 15  years [18]. Th is number 

dramatically increased to 14, in a single experiment of 

targeted genomic capture followed by NGS, conducted 

on only fi ve unrelated deaf individuals [19], promising a 

much larger number if all unsolved deaf probands were 

to be enrolled in this type of experiment.

Deep sequencing for hearing loss - a milestone on 

the road to unraveling the auditory complex

Th ree commercial NGS technologies have been developed 

in recent years, each with its own advantages and dis-

advantages. Th ese include pyrosequencing with the 454 

sequencer (Roche Life Sciences) [20], cyclic reversible 

termination technology using the Illumina platform 

(Illumina) [21], and sequence-by-ligation technology using 

the SOLiD platform (Applied Biosystems) [22] (for a 

comprehensive review, see [23,24]). Th ese platforms have 

addressed the main problem of detecting causative 

mutations for heterogenic diseases, including those with 

dozens of genes involved, as is the case for deafness. Two 

of these platforms were compared in a targeted genomic 

capture and NGS experiment, in an eff ort to determine 

the most effi  cient method for identifying deafness genes 

for screening towards clinical diagnosis [25]. Although 

both the SureSelect-Illumina and NimbleGen-454 plat-

forms provided high specifi city and sensitivity, the 

authors [25] concluded that the former platform was 

preferable with regard to scale, sensitivity and cost under 

their conditions. Th is combined approach, targeted 

capture and sequencing, seems to be the ideal tool to 

address the challenges of deciphering the genetics under-

lying HL: it enables the detection of all types of muta-

tions; it allows the screening of large genes that have 

previously been largely untested; it can include all known 

deafness genes in a single test; and it can be used in cases 

of isolated deafness.

Several studies have used a combination of targeted 

capture and NGS technology to identify deafness genes. 

Th e fi rst study was used to isolate the HL-associated gene 

at the DFNB79 locus [26]. Targeted genomic capture was 

performed on the linked region identifi ed previously by 

genetic analysis, leading to the identifi cation of a muta-

tion in the TPRN gene, encoding taperin. Subsequent 

capture and NGS experiments for both non-syndromic 

and syndromic HL were undertaken and are listed in 

Table 1. Both specifi c genomic regions and whole exomes 

were captured, leading to the successful identifi cation of 

the molecular basis of several forms of HL. Th e 

comparative NGS study described above also developed 

OtoSCOPE, a platform for providing a clinical test for 57 

known deafness genes [25]. Another clinical assay, testing 

84 human genes involved in both syndromic HL and 

NSHL, is also available from Otogenetics (reviewed in 

[27]).

In a further eff ort to develop clinical diagnosis plat-

forms for identifying multiple mutations, a combined 

targeted genomic capture and NGS of 246 genes was 

conducted on a cohort of Middle Eastern hearing-im-

paired probands [19]. In this study, screening additional 

families for alleles fi rst identifi ed by NGS in fi ve probands 

led to the identifi cation of causative alleles for deafness in 
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25 families. In addition, orthologs of mouse deafness 

genes were included on the platform, based on the 

premise that mutations in these genes may lead to human 

HL, because many of the human HL genes also cause HL 

in mice. Th is approach exploits the high-throughput 

nature of targeted NGS to make a single fully compre-

hensive test for all known deafness genes and has the 

advantage of producing a signifi cantly reduced amount of 

data compared with exome sequencing or whole genome 

sequencing. Nevertheless, the data obtained from 

sequen cing of the exons of approximately 250 genes, with 

an additional 40 nucleotides on each end into the introns, 

required extensive bioinformatics analysis and fi ltering 

out of thousands of non-damaging variants. A schematic 

diagram of the strategy for generating such an experi-

mental and computational pipeline can be seen in Figure 2. 

A summary of the strategy used for data analysis and for 

eliminating all irrelevant variants by evaluation of 

putative causative mutations for validation is shown in 

Figure 3.

On a larger scale, whole exome sequencing is extremely 

promising, as it screens the exons of all genes in the 

human genome, enabling the discovery of novel deafness 

genes. It is estimated that approximately 60% of genes for 

Mendelian disease could be discovered using this 

technology [28]. Th e data analysis is rather complicated 

and strategies are being used to ease this. One conducts 

homozygosity mapping for recessive families to narrow 

down the regions to analyze. Th is was done, in parallel to 

exome sequencing, leading to the identifi cation of a 

GPSM2 mutation as the cause of HL associated with the 

DFNB82 locus [29] and a GIPC3 mutation in a family 

with consanguineous parents [30].

In addition to clinical diagnostics, a major goal of gene 

discovery is to decipher the mechanisms involved in 

deafness. Exome sequencing, through the initial fi ndings 

Table 1. The contribution of targeted capture and next-generation sequencing to hearing research

   Whole exome
Locus and Individuals Targeted region analyzed Novel 
inheritance sequenced regions by bioinformatics discoveries Reference

DFNB79 One 2.9 Mb, chromosome 9q34.3 TPRN Rehman et al. [26]

DFNB82 One Whole exome 3.1 Mb, 1p13.3 GPSM2 Walsh et al. [29]

Syndromic 

(Perrault syndrome)

One Whole exome HSD17B4/DBP Pierce et al. [40]

Syndromic 

(3MC)

One Whole exome 1.81 Mb, 3q27 MASP1 Sirmaci et al. [41]

Dominant and 

recessive NSHL

Nine 54 known deafness genes, 

exons

Three novel mutations in 

known deafness genes

Shearer et al. [25]

DFNA4 One Whole exome 20 Mb, 19q12-13.4 CEACAM16 Zheng et al. [42]

Syndromic 

(Perrault syndrome)

One 4.142-Mb linkage region, 

chromosome 5q31

HARS2 Pierce et al. [43]

DFNX4 One X chromosome 12.9 Mb, Xp22 SMPX Schraders et al. [31]

DFNX4 Two brothers 88 genes, exons, 1 kb promoter 

regions, 17.5 Mb region, 

chromosome Xp22.12

17.5 Mb, Xp22.12 SMPX Huebner et al. [32]

Syndromic 

(HSAN1)

One Whole exome 3.4 Mb, 19p13.2 DNMT1 Klein et al. [44]

Dominant and 

recessive NSHL

11 unrelated 246 genes responsible for 

deafness in humans and mice, 

exons and 40 bp fl anking introns 

Four novel mutations in 

known deafness genes

Brownstein et al. [19]

Mitochondrial 

(OXPHOS disease)

One 1,034 nuclear genes encoding 

mitochondrial proteins, entire 

mtDNA and exons

None Calvo et al. [45]

Recessive NSHL One Whole exome 36.9 Mb, chromosomes 

8, 15, 16, 19, 21

Mutation in known 

deafness gene

Sirmaci et al. [30]

Syndromic 

(ADCA-DN)

Five Whole exome Mutation in known 

deafness gene

Winkelmann et al. [46]
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of new genes associated with deafness, has provided this 

entry point for new biological insights. For example, 

although exome sequencing indicated that SMPX is the 

most suitable candidate for progressive hearing impair-

ment in a large Dutch family, it did not seem to be an 

obvious candidate from a biological perspective, because 

the protein encoded by this gene had been implicated in 

striated muscle [31,32]. Further investigations revealed 

that SMPX is indeed expressed in the cochlea and a role 

in development and/or maintenance of the sensory hair 

cells through integrin signaling and/or the insulin-like 

growth factor-1 pathway has been suggested. Th us, the 

next-generation sequencing approach has implicated 

new genes and pathways in deafness.

Conclusion

Th ere are several remaining questions with regard to 

deep sequencing for hereditary HL. Will this technique 

become routine for HL? Will it be adopted by clinical 

laboratories on a routine basis? What are the ethical 

considerations involved? Much of the eff ort invested in 

the fi eld of genomics aims to improve medical strategies 

in diagnostics, treatment, cure and prevention of dis-

abilities. Although most disabled people welcome the 

new technologies, others might be ambivalent or even 

antagonistic towards genetic medicine [33]. For deafness 

in particular, there has been an ongoing debate whether 

deafness is a real disability or rather a diff erent culture 

[34]. Although some communities, particularly in religious 

communities in the Middle East, consider deafness to be 

an unwanted disability, at the other extreme, there are 

deaf parents who would prefer to have deaf children and 

are ready to go as far as terminating a pregnancy if the 

fetus does not have HL [35]. Even though the majority of 

deaf couples are not interested in prenatal diagnosis for 

HL, and tend to feel that termination of pregnancy on the 

basis of hearing status (either deaf or hearing) should be 

illegal [36], many hearing parents, after the birth of a deaf 

Figure 2. Pipeline for identifi cation of pathogenic variants by targeted capture and high-throughput sequencing of deaf individuals. The 

major steps required to identify mutations responsible for deafness are outlined. The fi rst step begins with institutional review board or Helsinki 

Committee authorization to perform research on human subjects, followed by extraction of genomic DNA from blood. A series of experimental and 

computational steps follow, with variations according to the type of sequencing platform used.
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child, seek genetic counseling to prevent the reoccurrence 

of deafness in their family and some of them would 

consider termination of a hearing-impaired child [37].

From a wider point of view, HL has serious conse-

quences for public health, with major economic and 

social implications, as it is estimated that at least 20% of 

the population develop a signifi cant HL at some time 

during their lives [36]. Because of the high heterogeneity 

of deafness, most deaf people are born to hearing 

parents, and most of this population has a strong desire 

for treatment or cure. Th erefore, a major challenge is to 

discover the cause and decipher the mechanisms of 

deafness. Recent advances in genomics have made it 

possible to perform large-scale population screening, as 

well as for individualized testing. However, high-through-

put genomics in the clinical setting is still in its infancy 

and before implementing it in routine clinical use, there 

is a clear need for standard laboratory procedures and 

regu lations for quality control, data analysis and validation 

[38]. Eff orts in this direction have been initiated by the 

Centers for Disease Control and Prevention that spon-

sored a conference in 2011 on Next-Generation Sequen-

cing, Standardization of Clinical Testing [27]. In addition, 

there are controversial ethical issues regarding the 

immense amount of high-throughput data obtained and 

their applications, because these data are usually much 

broader than the specifi c topic of research. Precise rules 

for the use, storage and sharing of NGS data among 

collaborative research groups are currently lacking. In 

many cases data are required to be deposited in publicly 

accessible databases by research funding sources before 

publication [39]. All these make informed consent for 

genomics diffi  cult to defi ne.

Nevertheless, initial fi ndings of these advanced tech-

nologies for detection of deafness-causing mutations 

promise to solve the major portion of genetic deafness in 

the next few years, which will lead to improved genetic 

counseling and much more effi  cient treatment, as 

phenotypes could be predicted by the solved genotypes. 

Characterization of the proteins encoded by these genes 

Figure 3. Prioritization of variants to identify causative hearing loss mutations. A series of computational steps (blue background) are 

required to tackle the many variants that come out of the high-throughput sequencing. High-confi dence candidates will be further tested (orange 

background) in the proband’s family and ethnic group using Sanger sequencing or restriction enzyme assays. Confi rmed pathogenic mutations 

will be tested for biological function (gray background). Websites of the tools shown are at: 1000 Genomes Project [48]; dbSNP [49]; EVS [50]; PhyloP 

[51]; PolyPhen2 [52]; SIFT [53]; ConSurf [54].

Prevalence of variant among hearing 
impaired is determined by checking all 

unsolved deaf probands  

Control group of at least 100 hearing 
individuals of same ethnicity as 
proband   tested to differentiate 
between polymorphism and mutation Known variants present in databases 

(dbSNP, EVS ) are excluded  

Damage prediction web tools, 
including PolyPhen 2, SIFT, 
ConSurf  allow assessment of the

  the protein 

Variants with low evolutionary 
conservation across 46 vertebrates 
(PhyloP  score <1) are excluded  

Carrier rate in speci  population 
determined by checking additional 

hearing individuals  

Functional validation and gene 
characterization tested through 
biological assays, mouse model  

Variants with >1% frequency in 1000 
Genomes Project  excluded  

Output data of sequencer is aligned 
to reference genome (hg19)  

Predicted causative variants are 
checked for segregation of HL in the 

family by Sanger sequencing  

effect on
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will shed light on the biological mechanisms involved in 

the pathophysiology of HL, forming the basis for genetic-

based therapeutics.
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