
Not long after roulette fi rst appeared in the casinos of 
18th century Paris, a new betting system emerged. 
Known as the ‘martingale’, it was adapted from a strategy 
used in bar games, and was supposedly foolproof. As a 
result, it soon became extremely popular among French 
players.

Th e martingale involved betting on black or red. Th e 
choice of color didn’t matter, only the stake: rather than 
putting down a fi xed amount each time, a player would 
instead double their bet after each loss. When the player 
eventually won, they would therefore recoup all previous 
losses as well as gaining their initial stake. Mathematically, 
the system seemed perfect. However, it had one crucial 
fl aw: occasionally the required bets would increase 
beyond the size of the gambler’s ­ or even the casino’s ­ 
wallet. Although people might make small profi ts in the 
short term, eventually solvency would get in the way of 
strategy. Despite its popularity, the martingale was a 
system that no one could aff ord to pull off  successfully.

At the start of the 21st century, another fl awed strategy 
became fashionable. Th e mathematics was more compli­
cated, and the name less elegant, but the problem was 
fundamentally the same. ‘Collateralized debt obligations’ 
clumped together outstanding loans such as mortgages 
and allowed investors to earn money by taking on some 
of the lenders’ risk. Th ey were based on the assumption 
that although one person might have a high chance of 
defaulting on a loan, it was extremely unlikely that 
everyone would default at the same time. Like the French 
gamblers, investors had assumed a rare event wouldn’t 
happen, and bet the bank on that assumption.

Th ey turned out to be wrong. As fi nancial markets 
descended into chaos in 2008, and economies sank into 
recession the following year, it became clear that too 
much faith had been placed in the predictions from 
mathematical models. ‘Wall Street’s Math Wizards 
Forgot a Few Variables’, read one headline in the New 
York Times. ‘Recipe for Disaster: Th e Formula Th at Killed 
Wall Street’, was another in Wired.

Before 2008, many people had been in awe of the 
mathematical tools in fi nance, happy to believe that hard 

science could tame the markets; in 2009 these same ideas 
were met with skepticism and anger. Seeing the problems 
created by their fi eld, two prominent fi nancial mathe­
maticians published a ‘Financial Modelers’ Manifesto’. 
Emanuel Derman and Paul Wilmott had warned about 
the limitations of models for years, and wanted to 
summarize these dangers in the wake of the crisis. Th eir 
analysis was followed by a sort of Hippocratic Oath, 
which began: ‘I will remember that I didn’t make the 
world, and it doesn’t satisfy my equations’.

Why use models?
Although Derman and Wilmott were preaching caution 
rather than abandonment, lack of realism is a criticism 
directed often at mathematical models. Financial markets 
and biological systems are just too complicated to capture 
perfectly in a few equations. So what can models possibly 
contribute to these fi elds?

Well, quite a lot actually. George Box, a statistician, put it 
well when he wrote, ‘Essentially, all models are wrong, but 
some are useful’. Despite their limitations, mathe ma tical 
and statistical methods can help us tackle a number of 
problems that elude other techniques. When it comes to 
models in the life sciences, three applications stand out.

Making predictions
In 1897, a British doctor called Ronald Ross showed that 
it was the Anopheles mosquito that transmitted malaria, 
its bite allowing the parasite to spread from person to 
person. Th e discovery won him a Nobel Prize and a 
knight hood, but what he really wanted was to fi nd a way 
of stopping the disease.

Ross had long believed that controlling malaria meant 
controlling the mosquitoes. But his peers were not con­
vinced, pointing out that it would never be possible to 
remove all the mosquitoes from a region. Ross therefore 
outlined a mathematical model to demonstrate what 
might happen if mosquito numbers were reduced. ‘We 
assume a knowledge of the causes’, he wrote, ‘construct 
our diff er ential equations on that supposition, follow up 
the logical consequences, and fi nally test the calculated 
results by comparing them with the observed statistics’. 
Th e results from the model were clear: in theory disease 
spread could be prevented without killing every 
mosquito. Ross had shown that there was a critical 
mosquito density, below which there would simply not be 
enough insects to sustain transmission.© 2010 BioMed Central Ltd
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It has since become apparent that malaria control 
requires more effort than Ross predicted, but the concept 
of a critical threshold has become a vital part of ecology 
and epidemiology. One prominent example is vaccina­
tion, which can protect a population even if a few people 
don’t get the jab. Today, we still use models to make 
predictions about disease control measures, from vac­
cination strategies to school closures. They are also 
helping us anticipate the biological effects of other 
actions, from pollution to overfishing. In this respect, it is 
good that models are artificial: they allow us to observe 
what happens when we change a biological system, 
without interfering with the real world.

Although such models are often simple, they should 
not be simplistic. The best modeling studies are those 
that follow Ross’ approach: they are open about their 
assumptions; clear about the consequences of these 
assumptions; and where possible test their predictions 
against real observations.

Understanding complex data
As well as producing results that can be compared with 
data, models can help us analyze the data itself. The 
advent of genome sequencing has created a rich source of 
information for researchers, but unraveling the relation­
ships within the data can be challenging. Phylogenetic 
trees are one way of identifying evolutionary patterns in 
such datasets. By plotting the points at which each 
species or variant splits into two distinct branches, the 
trees allow us to visualize the relationship between 
different parts of a population. However, even for a few 
variants, there are a large number of possible trees. By 
making assumptions about the manner and rate of 
mutation, we can use models to find the tree that is most 
likely to capture the observed data.

Phylogenetic trees can help us tackle a range of 
problems, from understanding the evolution of influenza 
viruses to mapping the diversity of fishes. When using 
such techniques, however, it is important to balance 
complexity with accuracy. Detailed, flexible models will 
often match the data better than simple, restrictive ones. 
We must therefore avoid throwing more assumptions 
into a model than we need to. We can do this by using an 
‘information criterion’, which measures the amount of 
information that is lost when we use a particular model 
to describe reality: simplicity and accuracy should be 
rewarded, and complexity and error penalized.

Finding explanations
Models can help us find patterns, but they can also help 
explain them. After working on codebreaking and 
computing during the Second World War, Alan Turing 
turned his attention to developmental biology. In 
particular, he was interested in what dictates the shape of 

organisms. Using a mathematical model, he found that it 
was possible to reproduce biological patterns with a 
‘reaction-diffusion system’. This involves two types of 
chemical processes: local reactions in which substances 
are transformed into one another, and diffusion, which 
makes the chemicals spread out over a surface.

It was a nice theory, but it wasn’t until February 2012 
that Turing’s hypothesis was finally proven experimen­
tally, with researchers showing that a reaction-diffusion 
system is responsible for the pattern of ridges in the roof 
of a mouse’s mouth. Without Turing’s work, we might 
have taken far longer to find the cause of these stripes. By 
proposing such mechanisms, models can therefore 
support - and even guide - experimental work, suggesting 
possible explanations for observed results, as well as 
areas for future investigation. However, such research 
needs modelers to engage with those running experi­
ments - and the science behind this research - as much as 
it requires biologists to be aware of the merits of 
mathematical approaches.

Beyond the life sciences
Models have many benefits: they allow us to estimate 
future outcomes, analyze large amounts of data, and find 
explanations for observed patterns. Their potential will 
no doubt continue to increase as computing power does, 
allowing us to understand complex biological systems 
from the genetic to population level. The methods will 
also have applications outside the life sciences: ideas from 
ecology have recently been used to study networks of 
financial transactions, for example. No model is perfect, 
of course, but they can be valuable tools for compre­
hending - and questioning - our surroundings.

Despite their strengths, however, mathematical 
methods still meet with hostility. In the recent US 
election, statisticians Nate Silver and Sam Wang used 
simple models to predict the results in each state. By 
averaging across a large number of polls, weighting each 
according to their perceived reliability, both came to the 
conclusion that Obama had a good chance of winning. 
Much of the media disagreed, preferring to stick with the 
story that the race was too close to call. Pundits called the 
models a joke, or accused the statisticians of political 
bias. In these journalists’ view, predicting the election 
was like predicting a coin toss, or a game of roulette: 
there was an equal chance the support of the electorate 
would land on the blue of the Democrats or the red of the 
Republicans. Silver and Wang disagreed, and bet on blue. 
Thanks to their models, they turned out to be right.
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