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Abstract

Background: Human exome resequencing using commercial target capture kits has been and is being used for
sequencing large numbers of individuals to search for variants associated with various human diseases. We rigorously
evaluated the capabilities of two solution exome capture kits. These analyses help clarify the strengths and limitations of
those data as well as systematically identify variables that should be considered in the use of those data.

Results: Each exome kit performed well at capturing the targets they were designed to capture, which mainly
corresponds to the consensus coding sequences (CCDS) annotations of the human genome. In addition, based on
their respective targets, each capture kit coupled with high coverage Illumina sequencing produced highly
accurate nucleotide calls. However, other databases, such as the Reference Sequence collection (RefSeq), define the
exome more broadly, and so not surprisingly, the exome kits did not capture these additional regions.

Conclusions: Commercial exome capture kits provide a very efficient way to sequence select areas of the genome
at very high accuracy. Here we provide the data to help guide critical analyses of sequencing data derived from
these products.

Background
Targeted sequencing of large portions of the genome with
next generation technology [1-4] has become a powerful
approach for identifying human variation associated with
disease [5-7]. The ultimate goal of targeted resequencing
is to accurately and cost effectively identify these variants,
which requires obtaining adequate and uniform sequen-
cing depth across the target. The release of commercial
capture reagents from both NimbleGen and Agilent that
target human exons for resequencing (exome sequencing)
has greatly accelerated the utilization of this strategy. The
solution-based exome capture kits manufactured by both
companies are of particular importance because they are
more easily adaptable to a high-throughput workflow and,
further, do not require an investment in array-processing
equipment or careful training of personnel on array hand-
ling. As a result of the availability of these reagents and
the success of the approach, a large number of such pro-
jects have been undertaken, some of them quite large in
scope.
As with many competitive commercial products, there

have been updates and improvements to the original

versions of the NimbleGen and Agilent solution exome
capture kits that include a shift to the latest human gen-
ome assembly (hg19; GRCh37) and coverage of more cod-
ing regions of the human genome. However, significant
resources have been spent on the original exome capture
kits (both array and solution) and a vast amount of data
has been generated from the original kits. We therefore
analyzed two version 1 exome capture products and evalu-
ated their performance and also compared them against
the scope of whole genome sequencing to provide the
community with the information necessary to evaluate
their own and others’ published data. Additionally, our
investigation of factors that influence capture performance
should be applicable to the solution capture process irre-
spective of the actual genomic regions targeted.
While exome sequencing, with a requirement of 20-fold

less raw sequence data compared to whole genome
sequencing [5], is attractive, it was clear that based on the
number of regions targeted by the initial commercial
reagents compared to the number of annotated exons in
the human genome that not all of the coding regions of
the genome were targeted. Moreover, our qualitative ana-
lyses of our previous exon capture results indicated a
marked unevenness of capture from one region to another
in exome capture based on such factors as exon size and
guanine-cytosine (GC) context [3].
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To gain a more thorough understanding of the
strengths and weaknesses of an exome sequencing
approach, comparative analyses were done between two
commercial capture reagents and between exome capture
and high coverage whole genome sequencing. The results
show that the commercial capture methods are roughly
comparable to each other and capture most of the
human exons that are targeted by their probe sets (as
described by Consensus Coding Sequences (CCDS) anno-
tations). However, they do miss a noteworthy percentage
of the annotated human exons described in CCDS anno-
tations when compared to high coverage, whole-genome
sequencing. The limitations of the two commercial
exome capture kits we evaluated are even more apparent
when analyzed in the context of coverage of the more
comprehensive RefSeq annotations [8,9], which are effi-
ciently covered by whole genome sequencing.

Results
Characteristics of commercially available solution exome
capture kits
Two exome capture platforms were evaluated: NimbleGen
SeqCap EZ Exome Library SR [10] and Agilent SureSelect
Human All Exon Kit [11]. These two commercial plat-
forms are designed to provide efficient capture of human
exons in solution, they require smaller amounts of input
DNA compared to the previous generation of array-based
hybridization techniques, and they support scalable and
efficient sample processing workflows. Both platforms are
designed to target well-annotated and cross-validated
sequences of the human hg18 (NCBI36.1) exome, based
on the June 2008 version of CCDS [12]. However, because
the probes used for each kit were designed using algo-
rithms specific to the particular platform, the two kits tar-
get different subsets of the approximately 27.5 Mb CCDS.
The Agilent SureSelect system uses 120-base RNA probes
to target 165,637 genomic features that comprise approxi-
mately 37.6 Mb of the human genome, whereas the Nim-
bleGen EZ Exome system uses variable length DNA
probes to target 175,278 genomic features covering
approximately 26.2 Mb of the genome.
Each kit targets the majority of the approximately 27.5-

Mb CCDS database: NimbleGen 89.8% and Agilent 98.3%.
However, they each cover somewhat different regions of
the genome. We found by comparing the 37.6 Mb Agilent
target bases to the 26.2 Mb NimbleGen target bases that
67.6% of the Agilent target bases are included in the Nim-
bleGen targets and 97.0% of the NimbleGen target bases
are included in the Agilent targets.

Solution exome capture with the 1000 Genomes Project
trio pilot samples
Six samples from two trios (mother, father, and daughter)
that had been sequenced in the high-coverage trio pilot

of the 1000 Genomes Project [13] were used: one trio is
from the European ancestry in Utah, USA population
(CEU) and one trio from the Yoruba in Ibadan, Nigeria
population (YRI). Table 1 shows the specific sample iden-
tifiers. We obtained purified genomic DNA from cell
lines maintained at Coriell Cell Repositories in Coriell
Institute for Medical Research (Camden, NJ, USA) and
carried out multiple exome capture experiments using
both the NimbleGen and Agilent solution-based exome
capture products. Using the NimbleGen kit we per-
formed one independent capture for each of the CEU
trio samples, two independent captures for the YRI father
sample, and four independent captures for the YRI
mother and YRI daughter samples. Using the Agilent kit
we performed four independent captures for the YRI
mother and YRI daughter samples (Table 1).
Each captured library was sequenced in a single lane of

a Genome AnalyzerIIx instrument (Illumina, Inc.) using
paired-end 76-cycle chemistry. The pass-filter Illumina
sequence data were analyzed for capture performance
and genetic variants using a custom-designed bioinfor-
matics workflow (see Materials and methods). This work-
flow imposed stringent filtering parameters to ensure
that the data used downstream for variant detection were
of high quality and did not have anomalous characteris-
tics. To evaluate capture performance, the pipeline per-
formed the following steps: (1) filter out bases in a given
read that match the Illumina PCR oligos used to generate
the final library; (2) map the reads to the human hg18
reference using Burrows-Wheeler Aligner (BWA) [14]
and only retain read pairs with a maximal mapping qual-
ity of 60 [15] and with constituent reads spanning a max-
imum of 1,000 bp and oriented towards each other; (3)
remove replicate read pairs that map to identical genomic
coordinates; and (4) remove reads that do not map to
platform-specific probe coordinates. The last step was
integrated into the pipeline in order to allow rigorous
evaluation and comparison of the targeting capabilities of
the capture kits, since non-specific reads generated from
the capture workflow were likely to be inconsistent
between capture experiments (data not shown). Given
that most of our sequence data were retained following
each filtering step, we conclude that most of our exome
capture data were of good quality to begin with. A full
bioinformatics report of the results of our exome capture
data analysis is provided in Additional file 1.

Exome coverage differs between two solution capture
platforms
We first examined the exome coverage with respect to
the intended targets of the two platforms. These targets
were determined based on the information provided by
NimbleGen and Agilent. There is an important difference
in the way the two companies define and provide their
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targets. NimbleGen provides an ‘intended target’ that
comprises the regions (exons) for which they expected to
be able to design probes for, whereas Agilent only pro-
vides their ‘intended target’ based on their final probe
design. This difference in ‘intended target’ definition
leads to a substantial difference in the intended target
sizes: 26.2 Mb for NimbleGen and 37.6 Mb for Agilent.
On the other hand, the genomic space covered by the
exome probes is more comparable between the two com-
panies, which is likely due to various methodological
similarities in hybridization probe design. The Nimble-
Gen probes span 33.9 Mb of genomic space, and the Agi-
lent probes span 37.6 Mb of genomic space.
It is important to mention that the amount of sequence

data generated from each of the sequencing lanes used in
this study was fairly consistent: 28 to 39 million pass-filter
clusters per paired-end 76-cycle lane, corresponding to
approximately 5 Gb of raw sequence data per lane. For
clarity, we use one lane to represent one unit of raw data,
except for data shown in Figures 1, 2, and 3, where the
coverage of different targets is shown as a function of the
amount of raw data, either in terms of lanes or in terms of
bases. This demonstrates the variability in output from the
lanes used in this study and allows, through interpolation,
an estimation of the number of lanes necessary if different
sequencing instruments or different read lengths are used.
We first calculated intended target coverage at selected

sequencing depths. From a single lane of sequencing per
capture, we obtained 61× to 93× mean depth across the
NimbleGen target and 39× to 53× mean depth across the
Agilent target (Figure 1a). When measured at 1× coverage,
the NimbleGen platform captured 95.76 to 97.40% of its
intended target, whereas the Agilent platform captured
96.47 to 96.60% of its intended target. The 1× coverage
shows how much of the target can potentially be covered
and, not surprisingly, we obtained similarly high coverage
of the intended targets for each platform. However, we

observed differences between the two kits when we mea-
sured coverage at read depths of 20×, which is a metric we
use to support reliable variant detection. At 20× coverage,
the NimbleGen kit covered 78.68 to 89.05% of its targets,
whereas the Agilent kit performed less well, and covered
71.47 to 73.50% of its intended targets (Figure 1a). It
should be noted that, in summary, these results also show
that the commonly used metric of mean coverage depth
has almost no value in capture experiments since the dis-
tribution of reads is uneven as a result of the capture.
Importantly, improved coverage was obtained with addi-

tional sequencing lanes, although the two platforms per-
formed differently in terms of the extent and rate of
improvement (Figure 1a). At 20× depth from multiple
lanes of data, the NimbleGen platform produced a modest
increase in breadth of coverage compared with one lane of
data. However, the Agilent platform showed a more signif-
icant increase in breadth of coverage at 20× depth from
multiple lanes of data. Thus, the NimbleGen kit was more
effective at capture with less raw data input. The Nimble-
Gen platform reached target coverage saturation with two
lanes of data, whereas the Agilent platform required at
least four lanes. This suggests that the Agilent kit provides
less uniformity of capture across the target.
We next analyzed how well each product targeted the

exons annotated in the CCDS. The approximately 27.5
Mb hg18 CCDS track is a highly curated representation of
protein-coding exons whose annotations agree between
various databases [12], and was the source of the protein
coding regions targeted by the NimbleGen and Agilent
capture platforms.
From one lane of data per sample, the NimbleGen plat-

form covered 86.58 to 88.04% of the CCDS target at 1×
depth, whereas the Agilent platform covered 95.94 to
96.11% of the CCDS target at 1× depth (Figure 1b). The
two platforms performed as we had predicted from our
theoretical calculations (see above). In contrast, at 20×

Table 1 Human DNA samples and exome captures used in this study

Number of captures

Our ID Population HapMap ID Family member NimbleGen Agilent

CEU-M CEU NA12892 Mother 1 0

CEU-F CEU NA12891 Father 1 0

CEU-D CEU NA12878 Daughter 1 0

YRI-M YRI NA19238 Mother 4 4

YRI-F YRI NA19239 Father 2 0

YRI-D YRI NA19240 Daughter 4 4

The human genomic DNA samples used for this study were chosen to match those analyzed by the trio pilot of the 1000 Genomes Pilot [13]. The sources of the
genetic material consist of a European ancestry in Utah, USA population (CEU) trio and a Yoruba in Ibadan, Nigeria population (YRI) trio, with each trio composed
of a mother, a father, and a daughter. The table reviews the exome captures performed with each sample. For DNA samples from which multiple exome
captures were performed, independent libraries were prepared from each DNA sample in order to support independent exome captures. Exome captures were
performed with either the SeqCap EZ Exome Library SR (NimbleGen) or the SureSelect Human All Exon Kit (Agilent), which were designed to capture well-
annotated protein-coding regions of the human hg18 (NCBI36.1) assembly. Following exome capture, each captured library was sequenced using paired-end 76-
cycle chemistry, in one flowcell lane on the Genome AnalyzerIIx instrument (Illumina).
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Figure 1 Targeting efficiency and capability varied between commercially available exome capture kits. (a) The intended targets of the
NimbleGen and Agilent exome kits were 26,227,295 bp and 37,640,396 bp, respectively. Both exome kits captured similarly high amounts (up to
about 97%) of their intended targets at 1× depth or greater, but the NimbleGen kit was able to reach saturation of target coverage at 20×
depth more efficiently than the Agilent kit. The NimbleGen exome kit required less raw data to provide sufficient coverage of the exome and to
support confident genotype analysis. (b) Both exome kits were designed to target exons based on the June 2008 version of CCDS, which
consisted of 27,515,053 bp of genomic space. Notably, the NimbleGen target was smaller than the CCDS, while the Agilent target was larger
than the CCDS. Based on 1× depth sequence coverage, the Agilent exome kit captured more of the CCDS than the NimbleGen exome kit (97%
covered by Agilent versus 88% covered by NimbleGen), but the NimbleGen kit was more efficient at capturing the regions of the CCDS it had
the capability to capture.
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Figure 2 With enough raw data, whole genome sequencing could achieve almost complete coverage of the CCDS (intended target of
the exome capture kits). Approximately 98% of CCDS was covered at 1× or greater and approximately 94% covered at 20× or greater from
the more deeply sequenced daughter samples. To generate this plot depicting the relationship between CCDS coverage depth and raw
sequence data input, we imposed a coverage model based on two assumptions: that CCDS coverage depth should match genome coverage
depth, and that genome size (3 Gb) times the desired coverage depth is the amount of raw sequence data (in gigabases) necessary to achieve
such depth. Illumina Only, only the alignment files from Illumina sequence data were used; All, alignment files from Illumina, 454, and SOLiD
sequence data were used.
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depth NimbleGen covered 71.25 to 80.54% of CCDS while
Agilent covered 72.06 to 73.82%. As mentioned above,
with multiple lanes of data per sample, CCDS coverage at
20× improved for both platforms, while producing only a
modest increase in CCDS coverage at 1×. Again, the
increase at 20× was substantially larger for Agilent. For
example, with four lanes of data, NimbleGen covered 85.81
to 85.98% of the target at 20× (approximately 10% more
than the 20× coverage with one lane), while Agilent cov-
ered 90.16 to 90.59% (approximately 20% more than the
20× coverage with one lane). These results are consistent
with our observation that the NimbleGen platform is more
efficient at providing significant coverage of regions that it
was designed to capture, though it targets a smaller percen-
tage of the CCDS regions.

Human exome coverage from solution exome capture
versus whole genome sequencing
Given that a greater sequencing depth would be required
in order to cover the CCDS to the same extent if the
entire genome was sequenced, we wanted to determine
the efficiency of exome capture and sequencing to that
obtained with whole genome sequencing. To accomplish
this, we used whole genome sequence data for the CEU
and YRI trio samples, generated and made publically
available by the 1000 Genomes Project [13].
The 1000 Genomes Project reported an average of

41.6× genome coverage for the trio pilot samples,

although there was substantial variability among the cov-
erage of the individual samples. The genomes of the
daughter samples were covered at 63.3× (CEU daughter)
and 65.2× (YRI daughter), while their parents were cov-
ered at 26.7×, 32.4×, 26.4×, and 34.7× (CEU mother,
CEU father, YRI mother, and YRI father, respectively)
[13]. When we measured the depth of coverage over the
CCDS target, after downloading the alignment files and
filtering for reads mapping to CCDS sequences with
quality ≥ 30 [15], we observed a somewhat lower mean of
36.9× for the six individuals.
Although the variability of genome depth across the

samples did not affect the CCDS coverage results at 1×, it
had a major effect on the CCDS coverage at 20×. For
example, while the YRI mother had a mean depth of
16.64× across CCDS, with 37.71% of CCDS covered at
20×, the YRI daughter had a mean depth of 65.15× across
CCDS, with 94.76% of CCDS covered at 20×. The relation-
ship between the mean depth and the percent covered at
1× and 20× is clearly demonstrated in Figure 2. Instead of
plotting the actual mean depths of CCDS coverage
obtained from the whole genome sequence data we ana-
lyzed, we extrapolated and plotted the amount of raw data
that should be necessary to achieve such coverage depths.
For the extrapolation we made two assumptions. First, we
assumed that in order to get a certain mean depth across
CCDS with whole genome sequencing, we would need to
cover the whole genome at the same mean depth. Second,
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Figure 3 Exome coverage, based on RefSeq sequences, was incomplete with exome capture but nearly complete with whole genome
resequencing. (a) Since the CCDS only includes very well annotated protein-coding regions, we assessed exome kit coverage of the more
comprehensive RefSeq sequences, which include protein-coding exons, non-coding exons, 3’ and 5’ UTRs, and non-coding RNAs, and encompass
65,545,985 bp of genomic space. Coverage of RefSeq sequences by the exome kits was clearly incomplete, with at most 50% of RefSeq covered at
1× depth or greater. (b) In contrast, coverage of RefSeq by whole genome data from the trio pilot of the 1000 Genomes Project was nearly
complete, with approximately 98% of RefSeq covered at 1× or greater and approximately 94% covered at 20× or greater from the more deeply
sequenced daughter samples. This plot uses an identical format to the one used in Figure 2; see the caption of Figure 2 for detailed description.
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we optimistically assumed that in order to have the 3-Gb
long human genome covered at a depth of D we would
need three times D Gb of raw data (that is, we assumed
that no data are wasted or non-specific in whole genome
sequencing). We choose to use these two assumptions
instead of plotting the specific raw data we downloaded
from the 1000 Genomes Project because these data consist
of predominantly 36-base reads with poor quality. With
longer-cycle (for example, 100 or more) paired-end runs
producing high quality sequence data, achieved routinely
by us and others in the past year, our optimistic second
assumption is only slightly violated. Having the x-axis of
the plot in Figure 2 expressed in terms of raw data makes
the relationship between raw data and target coverage in
Figure 2 directly comparable to the plot in Figure 1b,
which shows the extent of CCDS coverage obtained from
using the NimbleGen or Agilent exome capture kits.
Whole genome sequencing at 20× genome depth covered

more than 95% of the CCDS annotated exons (Figure 2).
However, this required approximately 200 Gb of sequence,
considering the results from the deeply covered daughters.
This is in comparison to the roughly 90% coverage at 20×
or greater of regions corresponding to the CCDS annota-
tions by Agilent capture (or 85% coverage by NimbleGen)
requiring only approximately 20 Gb of raw sequence
(Figure 1b). It is possible that the newer sequencing chem-
istry used for the exome sequencing was partially responsi-
ble for this difference. However, it seems clear that even by
conservative estimates exome sequencing is able to provide
high coverage of target regions represented in the CCDS
annotations 10 to 20 times as efficiently as whole genome
sequencing, with the loss of 5 to 10% of those CCDS exons
in comparison to whole genome sequencing.

Capturing and sequencing regions not included in CCDS
The approximately 27.5 Mb hg18 CCDS track is a highly
curated representation of protein-coding exons whose
annotations agree between various databases [12], and the
CCDS track was the source of the protein coding regions
targeted by the NimbleGen and Agilent capture platforms.
As described above, both reagents efficiently capture the
vast majority of those exons.
The approximately 65.5 Mb hg18 RefSeq track, while

also curated and non-redundant, is a much larger and less
stringently annotated collection of gene models that
includes protein coding exons (33.0 Mb), 5’ (4.5 Mb) and
3’ (24.1 Mb) UTRs, as well as non-coding RNAs (3.9 Mb)
[8,9]. Not surprisingly, since the exome capture reagents
are targeted against CCDS annotations, they did not cover
approximately 6 Mb of potential protein coding regions as
well as the 5’ and 3’ UTR regions (Figure 3a), resulting in
at most approximately 50% of RefSeq annotations covered
by the exome kits (Additional file 1). On the other hand,
greater than 95% of RefSeq was covered from the whole

genome data from any of the six trio samples, and greater
than 98% of RefSeq was covered from the whole genome
data from either of the more deeply sequenced daughter
samples (Figure 3b; Additional file 1).
In addition to the global whole exome level, we looked

at the coverage of individual genes. We considered two
measures of gene coverage: (1) which genes and how
much of each gene were targeted by a particular exome kit
according to the intended target; and (2) the proportion of
bases of each gene for which we were able to call geno-
types (both measures were based on the coding regions of
RefSeq). Surprisingly, quite a few medically important
genes were not directly targeted by either the NimbleGen
or the Agilent exome kits. Two examples of particular
interest to us were CACNA1C (voltage-dependent L-type
calcium channel subunit alpha-1C), which is one of the
few bipolar disorder gene candidates, and MLL2, which is
implicated in leukemia and encodes a histone methyltrans-
ferase. The reason these genes were not targeted was that
neither of them were included in the CCDS annotations.
Moreover, there was a large set of genes that, although tar-
geted, were not covered sufficiently for genotype calls (for
example, APOE (apolipoprotein E), TGFB1 (transforming
growth factor beta 1), AR (androgen receptor), NOS3
(endothelial nitric oxide synthase)). This points to the lim-
itations of using capture technology based solely on CCDS
annotations. We provide a complete gene coverage report
in Additional file 2. These limitations are important when
considering the results of published exome sequencing
projects, particularly negative results, since they may be
caused by the exon of importance not being present in the
CCDS annotations or by the important variant being non-
coding.

Factors that influence capture performance
The factors that influence all next generation sequencing
results, whether from whole genome or hybrid selection,
include sample quality, read length, and the nature of the
reference genome. Although a powerful and cost- and
time-effective tool, target capture carries additional inher-
ent variables. In addition to the nature and restrictions of
probe design [10,11], the success of target capture is parti-
cularly sensitive to sample library insert length and insert
length distribution, the percent of sequence read bases
that map to probe or target regions, the uniformity of tar-
get region coverage, and the extent of noise between cap-
ture data sets. These performance factors directly
influence the theoretical coverage one may expect from
the capture method and therefore the amount of raw
sequence data that would be necessary for providing suffi-
cient coverage of genomic regions of interest.
Our analysis pipeline generates library insert size distri-

bution plots based on alignment results. Since the Nimble-
Gen and Agilent platforms utilized different sizing

Parla et al. Genome Biology 2011, 12:R97
http://genomebiology.com/content/12/9/R97

Page 6 of 17



techniques in their standard sample library preparation
workflows, the greatest difference in insert size distribu-
tion was observed between libraries prepared for different
platforms (Figure 4). The NimbleGen workflow involved a
standard agarose gel electrophoresis and excision-based
method, whereas the Agilent workflow applied a more
relaxed small-fragment exclusion technique involving
AMPure XP beads (Beckman Coulter Genomics). Overall,
there were tight and uniform insert size distributions for
the NimbleGen capture libraries, ranging from 150 to 250
bp and peaking at 200 bp, whereas the insert size distribu-
tions for the Agilent libraries were broader, starting from
approximately 100 bp and extending beyond 300 bp.
Despite producing inserts that are more narrowly distribu-
ted, the process of gel-based size selection is more suscep-
tible to variation inherent to the process of preparing
electrophoresis gels and manually excising gel slices. The
bead-based size selection process provides the benefit of
less experiment-to-experiment variation.
One of the most important metrics for determining

the efficiency of a capture experiment is the proportion
of targeted DNA inserts that were specifically hybridized
and recovered from the capture. Our analysis pipeline

calculates enrichment scores based on the proportion of
sequence bases that map specifically to target bases.
With the NimbleGen platform 87.20 to 90.27% of read
pairs that properly mapped to the genome were also
mapped to probe regions, whereas with Agilent this
metric was only 69.25 to 71.50%.
The more uniform the coverage across all targets, the

less raw data are required to cover every target to a rea-
sonable depth, thereby increasing the sequencing effi-
ciency. The uniformity is represented by the distribution
of the depths of coverage across the target. Figure 5 shows
the depth distributions obtained with one lane from each
exome capture and the average depth distributions
obtained from the NimbleGen and Agilent captures. The
two average distributions differed significantly, and neither
displayed optimal coverage uniformity. A larger portion of
the Agilent targets was insufficiently covered, whereas
some of the NimbleGen targets were covered at higher
depths than necessary.
Examining the results from multiple exome captures

from the same source material allowed us to investigate
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libraries prepared for the NimbleGen and Agilent exome
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were prepared according to the manufacturer’s guidelines. The
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and paired reads determined by our capture analysis pipeline. The
NimbleGen library preparation process involved agarose gel
electrophoresis-based size selection, whereas the Agilent process
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for removing DNA fragments smaller than 100 bp but less effective
than gel-based size selection in producing narrow size distributions.
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Figure 5 Uniformity plots of exome capture data revealed
fundamental differences in uniformity of target coverage
between exome capture platforms. The numbers of platform-
specific target bases covered from 0× to 300× depth coverage are
plotted for NimbleGen (NM) and Agilent (AG) exome captures. The
NimbleGen exome data were more efficient at covering the
majority of intended target bases, but the corresponding uniformity
plots from these data revealed that there was also some over-
sequencing of these positions, which thus broadened the coverage
distribution for the NimbleGen targets. The Agilent exome data,
however, showed significantly more target bases with no coverage
or very poor coverage compared to the NimbleGen data, thus
indicating that the Agilent data provided less uniform target
coverage than the NimbleGen data. The lower uniformity of
coverage produced from the Agilent captures results in the need to
provide more raw sequence data in order to generate adequate
coverage of targets. The Agilent platform was thus less efficient at
target capture than the NimbleGen platform.
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experiment-to-experiment variation in the depth of cover-
age (Figure 6). Comparing the depth of target base cover-
age from a single replicate capture against any other
replicate capture from the same individual, there was sig-
nificant concordance for both the NimbleGen and Agilent
exome platforms. Of note, inconsistencies were found
between the NimbleGen captures, for which it appeared
that captures performed with one lot of the exome kit pro-
duced slightly poorer correlations when compared to cap-
tures performed with a different lot. Although the use of
different NimbleGen exome kit lots was not intentional,
these results emphasize the necessity to consider potential
differences between different probe lots if a given capture
project will require the use of multiple lots for integrated
analyses. All Agilent captures were performed with a sin-
gle kit lot. Given the additional sample processing steps
required for the hybrid capture workflow relative to whole
genome resequencing, the consistency of the necessary
reagents and procedures is an important factor that should
be carefully monitored in order to minimize potential
experimental artifacts.

Genotyping sensitivity and accuracy of exome capture
It was previously reported that various genome capture
methods, including array capture and solution capture,
are capable of producing genotype data with high accura-
cies and low error rates [16]. These performance metrics
are clearly important for properly evaluating targeted
resequencing methods, which carry the caveat of gener-
ally requiring more sample handling and manipulation
than whole genome resequencing. In addition, if the
downstream goal of targeted resequencing is to identify

sequence variants, one must consider the efficiency of
exome capture for genotyping sensitivity and accuracy.
Therefore, in addition to investigating the extent of the
human exome that can be effectively captured in the con-
text of exome coverage attained by whole genome
sequencing, we further analyzed exome capture sequence
data for these two parameters. We used the genotype
caller implemented in the SAMtools package [17], and
considered a genotype at a given position to be confi-
dently called if the Mapping and Assembly with Quality
(Maq) consensus genotype call [15] was ≥ 50 (10-5 prob-
ability of being an incorrect genotype). Table 2 lists the
percentage of the CCDS target for which genotypes were
confidently called, and further describes the different
types of variants that were called. There were more var-
iants observed in the YRI sample than in the CEU sam-
ple, which is consistent with prior findings [18]. From
this analysis it is also apparent that more data (for exam-
ple, more sequencing lanes) leads to improved coverage
and thus the ability to assign genotypes over a larger pro-
portion of the region of interest. This trend is more pro-
nounced with the Agilent exome data, which we believe
to be due to factors that influence capture performance
(see above). With NimbleGen exome captures, one lane
of data provided enough coverage to support the assign-
ment of genotypes to 85% of the CCDS target, and the
data from four lanes provided a minor increase to 87%.
With Agilent exome captures, the increase in coverage
per amount of data was substantially larger: 86% of
CCDS genotyped with one lane of data and 94% of CCDS
genotyped with four lanes of data. While the Agilent kit
provides the potential benefit of almost 10% more CCDS

(a) (b)

Figure 6 Depth correlation plots prepared from exome capture data revealed that artificial background noise arising from the use of
target capture kits might be problematic. (a) Correlations of target base coverage depth between four independent NimbleGen captures
with the daughter sample from the YRI trio (YRI-D-NM). Two different lots of NimbleGen exome probe libraries were used for this analysis, and
correlation anomalies were only observed when comparing data between the two lots. YRI-D-NM-LN1 was captured with one lot and YRI-D-NM-
LN2, YRI-D-NM-LN3, and YRI-D-NM-LN4 were captured with the other. (b) Correlations of target base coverage depth between four independent
Agilent captures with the daughter sample from the YRI trio (YRI-D-AG). Only one lot of Agilent exome probe library was used for this analysis,
and data between different captures consistently correlated well. AG, Agilent exome; D, YRI daughter; LN, lane; NM, NimbleGen exome; r,
correlation coefficient.
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coverage for genotyping, it is important to note that this
comes with the cost of requiring significantly more
sequence data.
To support our genotyping analyses and to examine the

accuracy of our single nucleotide variant (SNV) calls,
‘gold standard’ genotype reference sets were prepared for
each of the six CEU and YRI trio individuals based on
the SNPs identified by the International HapMap Project
(HapMap gold standard) and based on the genotype calls

we independently produced, with parameters consistent
with those used for our exome data, using the aligned
sequence data from the trio pilot of 1000 Genomes Pro-
ject (1000 Genomes Project gold standard).
Our HapMap gold standard is based on HapMap 3

[18], which we filtered for genotyped positions that are
included in the CCDS. Approximately 43,000 CCDS-spe-
cific positions were genotyped in HapMap 3 for every
individual. Of these, almost a quarter (11,000 positions)

Table 2 Genotyping results obtained from exome capture data produced in this study

Percentage Variant Heterozygous Homozygous Transition/transversion

Sample called number Syn. Non-syn. Syn. Non-syn. ratio

CEU-D-NM-LN1 80.85 12,994 3,547 4,359 2,828 2,260 3.48

CEU-F-NM-LN1 79.68 12,501 3,413 4,182 2,726 2,180 3.45

CEU-M-NM-LN1 84.93 13,934 3,848 4,668 3,019 2,399 3.35

YRI-D-AG-LN1 86.38 17,214 5,161 6,082 3,266 2,705 3.44

YRI-D-AG-LN12 91.48 18,803 5,608 6,728 3,530 2,937 3.43

YRI-D-AG-LN123 93.33 19,468 5,804 6,974 3,665 3,025 3.41

YRI-D-AG-LN1234 94.17 19,719 5,869 7,061 3,708 3,081 3.41

YRI-D-AG-LN2 86.09 17,145 5,097 6,110 3,236 2,702 3.47

YRI-D-AG-LN3 86.04 17,161 5,127 6,091 3,238 2,705 3.47

YRI-D-AG-LN4 84.99 16,708 4,976 5,909 3,176 2,647 3.45

YRI-D-NM-LN1 84.27 17,146 5,014 6,273 3,272 2,587 3.47

YRI-D-NM-LN12 86.15 17,864 5,258 6,530 3,378 2,698 3.38

YRI-D-NM-LN123 86.71 18,081 5,328 6,608 3,405 2,740 3.35

YRI-D-NM-LN1234 87.01 18,208 5,376 6,642 3,426 2,764 3.33

YRI-D-NM-LN2 84.17 17,341 5,080 6,359 3,292 2,610 3.44

YRI-D-NM-LN3 84.06 17,328 5,101 6,336 3,289 2,602 3.40

YRI-D-NM-LN4 83.92 17,213 5,033 6,319 3,268 2,593 3.44

YRI-F-NM-LN1 85.26 17,389 5,006 6,217 3,446 2,720 3.38

YRI-F-NM-LN12 86.57 17,820 5,128 6,366 3,517 2,809 3.35

YRI-F-NM-LN2 84.62 17,294 4,966 6,194 3,419 2,715 3.41

YRI-M-AG-LN1 86.20 16,991 5,101 5,974 3,226 2,690 3.39

YRI-M-AG-LN12 90.97 18,452 5,523 6,539 3,501 2,889 3.36

YRI-M-AG-LN123 92.89 19,086 5,685 6,798 3,606 2,997 3.35

YRI-M-AG-LN1234 93.97 19,423 5,799 6,917 3,669 3,038 3.33

YRI-M-AG-LN2 83.48 16,095 4,859 5,619 3,059 2,558 3.37

YRI-M-AG-LN3 84.59 16,472 4,933 5,772 3,136 2,631 3.42

YRI-M-AG-LN4 85.95 16,832 5,032 5,897 3,215 2,688 3.38

YRI-M-NM-LN1 84.85 17,195 5,028 6,259 3,278 2,630 3.35

YRI-M-NM-LN12 86.33 17,742 5,219 6,458 3,358 2,707 3.29

YRI-M-NM-LN123 86.81 17,936 5,283 6,516 3,392 2,745 3.26

YRI-M-NM-LN1234 87.06 18,034 5,306 6,553 3,414 2,761 3.24

YRI-M-NM-LN2 84.52 17,222 5,043 6,271 3,285 2,623 3.35

YRI-M-NM-LN3 84.53 17,205 5,031 6,265 3,274 2,635 3.38

YRI-M-NM-LN4 84.40 17,197 5,045 6,252 3,268 2,632 3.36

Sequencing lanes were arbitrarily numbered from 1 through 4, irrespective of the actual lane on the Illumina flowcell the data were generated from. Lane data
merges are represented by the digits after LN (lane), with LN1 representing the data from a single lane, LN12 representing the data from the two lanes LN1 and
LN2, LN123 representing the data from the three lanes LN1, LN2, and LN3, and so forth. Genotypes were assigned based on consensus quality of 50 or above
[15], and the proportion of the CCDS target bases genotyped using this filter is indicated for each dataset. The extent of CCDS coverage had a direct influence
on the extent of genotyping we were able to carry out with each dataset. It is also apparent that increasing raw sequence data, obtained by lane merges in this
study, results in increases in the number of genotypic variants detected. The YRI individuals were found to have a greater number of variants than the CEU
individuals, which has also been determined in other studies [13,18]. Syn., synonymous.
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were variants and roughly two-thirds (6,700 positions) of
these variants were heterozygous calls (Table 3). The
HapMap project focuses on highly polymorphic positions
by design, whereas the exome capture and resequencing
method evaluated in this study aims to describe geno-
types for all exonic positions, whether polymorphic, rare,
or fixed, with the polymorphic genotypes being only a
minority compared to genotypes that match the human
reference. Thus, in order to have a more comprehensive
gold standard, we used the whole genome sequence data
generated from the two sets of trio samples by the 1000
Genomes Project, and collected all of the base positions
that we were able to genotype with high confidence
(minimum consensus quality of 100). As discussed above,
the depth of whole genome coverage for the six trio sam-
ples varied substantially, from 20× to 60×. These differ-
ences in genome depth influenced the number of gold
standard positions we were able to generate for each of
the different samples. For example, the data from the
mother of the YRI trio provided only 2.3 million confi-
dently genotyped positions, while the data from the
daughter of the YRI trio provided 25.8 million confi-
dently genotyped positions. Only a small subset of the
1000 Genome Project standard positions had a genotype
that was not homozygous for the allele in the reference
genome (Table 2).
We first assessed the accuracy of our CCDS genotype

calls based on our exome capture data, which is a measure
of whether our genotype calls (variant or reference) are
consistent with a given gold standard. We found that we
attained accuracies greater than 99% for each individual
based on both types of our gold standards (Figure 7a, b). It
is notable, however, that our accuracies were more than
two orders of magnitude greater when we used the 1000
Genome Project gold standard (> 99.9965%) than when we
used the HapMap gold standard (> 99.35%). We believe
that this is due to variant genotypes being informatically

harder to call with high confidence than reference geno-
types, and that this is directly reflected by the variant-
focused nature of our HapMap gold standard. Additionally,
the 1000 Genomes Project sequence data that we used to
generate our sequencing gold standard were obtained
through next-generation sequencing, which is more consis-
tent with our exome capture data than the data from the
SNP arrays used for genotyping in the HapMap project.
We also tested the ability of our pipeline to identify posi-

tions with genotypes that differed (homozygous or hetero-
zygous variation) from the human genome reference, and
to specifically identify positions with heterozygous geno-
types. For our analyses, we focused on the sensitivity of
our method (the proportion of gold standard variants that
were correctly called a variant from the captured data),
and the false discovery rate of our method (the proportion
of our variant calls at gold standard positions that were
not in the list of variants within the gold standards). For
both tests, we used the SNV calls generated from our
exome captures and qualified them against both our
HapMap and our 1000 Genomes Project gold standards
(Figure 7c-f). For both our capture genotype calls and the
two sets of gold standards we used, there is the possibility
of missing one of the alleles of a heterozygous genotype
and making an incorrect homozygous call (due to spurious
or randomly biased coverage of one allele over the other),
thus making the detection of heterozygous genotypes
more challenging. Consistent with this challenge, we
observed a larger proportion of false discoveries for het-
erozygous variants with respect to both gold standards.
For example, up to 1.5% of our heterozygous calls were
not in agreement with our HapMap gold standards.
Consistent with our findings regarding the genotyping
accuracy of our method, our error rates associated with
correct variant identification were lower based on our
1000 Genome Project gold standards. On the other hand,
we observed no differences in the genotyping sensitivity of

Table 3 Description of the HapMap and the 1000 Genomes Project gold standards used in this study

HapMap 1000GP Whole Genome

Sample Positions Variants Heterozygous variants Positions Variants Heterozygous variants

CEU-D 42,964 11,558 6,568 24,926,557 14,605 9,595

CEU-M 42,967 11,455 6,460 7,038,292 3,489 2,514

CEU-F 43,049 11,461 6,498 12,227,792 6,030 4,012

YRI-D 43,161 12,320 7,041 25,818,250 18,730 12,569

YRI-M 43,219 12,205 6,843 2,356,922 1,136 831

YRI-F 43,246 12,202 6,734 11,322,826 6,393 4,052

Both gold standards comprise a set of positions within CCDS for each of the six samples for which genotypes are given. We use the gold standards to compare
the given genotypes to the genotype calls we make from our capture data over the same positions. The positions for the HapMap gold standard are taken to be
the CCDS positions that have been successfully genotyped by the HapMap project using SNP arrays. The positions for the 1000 Genomes Project gold standard
are the ones for which we were able to obtain high confidence (minimum consensus quality of 100) genotype calls based on the 1000 Genomes Project trio
pilot sequence data. For both gold standards, the Positions column specifies the number of positions in the gold standard for each of the six samples, the
Variants column specifies the number of gold standard genotypes that differ from the reference allele at the corresponding position, and the Heterozygous
variants column specifies the number of heterozygous gold standard genotypes.
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our method based on the two types of gold standards.
However, as reflected in our coverage results, we observed
that the genotyping sensitivity associated with our Agilent
exome captures improved with increasing amounts of
sequence data. This was not necessarily the case for our
NimbleGen exome captures since the coverage generated
by these captures was less dependent on the data gener-
ated from multiple lanes of data. The high accuracy and
high sensitivity of our exome captures are consistent with
what was reported by Teer et al. [16], and support the uti-
lity of exome capture and resequencing when the entire
genomic region of interest is adequately covered by the
capture method.

Discussion
Genome enrichment by hybridization techniques has
shown rapid progress in its development and usage by the

scientific community. The success of solution hybridiza-
tion represents a transition for the capture methodology
where the technique has become much more accessible
for experimentation and more readily adaptable for high-
throughput genetic studies. As with any experimental
technique, there are both strengths and limitations, and it
is important to understand these for accurate data inter-
pretation. Herein we comprehensively identify important
variables and critical performance liabilities and strengths
for two solution exome capture products (Agilent and
NimbleGen), and examine this with respect to whole gen-
ome resequencing. These analyses are crucial for the inter-
pretation of exome capture projects, some involving
hundreds or thousands of samples, that are in progress or
have been completed using commercial exome kits.
Our results are consistent with the understanding that

capture methodology is heavily design dependent [16].
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Figure 7 Assessments of the genotyping performance of exome capture and resequencing over the CCDS target. Exome capture
sequence data were analyzed using our capture analysis pipeline (see Materials and methods; Figure 8), and genotype calls with consensus
quality of at least 50 were used to determine the utility of solution exome capture for proper genotyping. These tests were performed with
genotype gold standards prepared from the HapMap 3 panel and the trio pilot of 1000 Genomes Project (1000GP) for the two CEU and YRI trios
used for this study (Table 3). In all panels, the color of the symbols designates the platform used, with green representing the NimbleGen
platform (NM) and red representing the Agilent platform (AG). The label associated with the symbol identifies the sample using a two-letter
code: the first letter identifies the trio (y for YRI and c for CEU) and the second letter identifies the family member (m for mother, f for father,
and d for daughter). The shape of the symbols specifies the number of lanes of data used (rectangle for one lane, circle for two lanes, diamond
for three lanes, and triangle for four lanes). (a, b) The y-axes show the percentage of the HapMap (a) and 1000 Genomes Project (b) gold
standard positions that were successfully genotyped with a minimum consensus of 50; the x-axes show the percent of the called genotypes that
disagree with the given gold standard genotypes. (c, d) Plots of sensitivity versus false discovery rates for the task of identifying variants:
HapMap (c); 1000 Genomes Project (d). Sensitivity is defined as the percentage of positions with a variant genotype in the gold standard that
have been called as variants from the exome capture data. The false discovery rate is defined as the percentage of variant calls from the exome
capture data over the gold standard positions that do not have a variant genotype in the gold standard. (e, f) Plots of sensitivity versus false
discovery rates for the task of identifying heterozygous variants: HapMap (e); 1000 Genomes Project (f).
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Subsequent to these analyses, both NimbleGen and
Agilent have released updated versions of their solution
exome capture kits that are designed based on the latest
assembly of the human genome reference, hg19
(GRCh37), and target both RefSeq (67.0 Mb) and CCDS
(31.1 Mb) annotations. Looking forward, we computed
hg19 CCDS and hg19 RefSeq coverage predictions based
on the updated exome target files from NimbleGen and
Agilent. The NimbleGen version 2 exome targets 9.8
Mb more genomic space (36.0 Mb total) than version 1,
and we predict version 2 would provide 99.2% coverage
of CCDS (approximately 10% more than version 1).
However, the extent of version 2 target base overlap with
RefSeq suggests that only 49.6% of RefSeq would be cov-
ered. The development of exome capture by Agilent has
thus far produced two newer exome kits, one that targets
8.7 Mb more genomic space (46.2 Mb total; version 2)
than version 1, and another that targets 13.9 Mb more
genomic space (51.5 Mb total; version 3) than version 1.
We predict that the newer Agilent kits should provide
96.3 to 98.1% of CCDS and 49.3 to 51.8% of RefSeq.
While these kits will be invaluable for many researchers,
others who are interested in regions not targeted in these
kits will need to opt for ordering custom capture designs.
Beyond investigating the coverage limitations of exome

capture kits, we determined that the high confidence
genotypic information produced by exome capture and
resequencing provides accuracies greater than 99.35%,
sensitivities up to 97%, and false discovery rates up to
0.67% for all variants and up to approximately 1.5% for
heterozygous variants (Figure 7). In this regard, the
results of our assessment of exome capture genotyping
accuracy and power are consistent with what has been
previously reported [16].
In addition to investigating the performance of exome

resequencing relative to whole genome sequencing and
array-based genotyping (SNP arrays), we studied the
consistency of our data by correlating the sequence cov-
erage depths between independent replicate captures for
a given DNA sample. We found significant correlations
for both the NimbleGen and the Agilent exome capture
platforms, with possible variations between different
capture probe lots influencing the strength of correla-
tions between captures (Figure 6). The extent of noise
produced by the hybrid capture process is a distinctive
parameter that does not influence whole genome rese-
quencing. Alternatively, however, producing adequate
whole genome coverage currently requires more exten-
sive sequencing than producing adequate exome cover-
age, which introduces variables that can be challenging
to control (for example, multiple sequencing runs,
necessity for longer read lengths of high quality). Over-
all, the findings from this study underscore the impor-
tance of sequence capture uniformity and capture probe

performance, which directly influence the amount of
raw sequence data necessary to produce adequate target
coverage for downstream data analysis.
Our results clearly show both the value of exome cap-

ture approaches and their relative limitations in capturing
salient variation in the human genome. It is important to
recognize that critically relevant, disease-associated var-
iants are not found only in coding exons [19-21]. Whole
genome sequencing offers the least biased and most com-
prehensive method of studying the human exome, and
additionally provides one with the option to study poten-
tially relevant variants in the non-coding regions of the
human genome or coding regions that had not initially
been annotated as such. Whole genome sequencing is also
significantly more suitable for studies designed to investi-
gate structural variants such as copy number variants,
translocations, and fusion events.
For exome resequencing projects, the drawback of hav-

ing to handle the much larger data sets presented by
whole genome sequencing might be reasonably offset by a
need to produce comprehensive data, and by performing
family based analyses as an efficient means of filtering data
sets for finding genetic candidates of highest priority or
interest. The argument for performing whole genome
resequencing in situations requiring, at the minimum, true
whole exome coverage becomes stronger with the rapidly
dropping cost of massively parallel sequencing using
newer sequencers such as the Illumina HiSeq 2000 instru-
ment, juxtaposed with the cost of performing hybridiza-
tion-based enrichment and resequencing.

Conclusions
We show relatively small but consistent differences
between exome and genome sequencing in terms of pro-
viding sequence coverage of the regions of the genome
represented by CCDS. Moreover, significant genes are not
present in the CCDS annotations and hence not targeted
by exome sequencing. This, combined with the general
absence of non-coding exons in the regions annotated by
CCDS, is apparent in our data, which shows only about
48% of the more expansive RefSeq annotated sequences
are effectively sequenced by exome capture. While not
surprising, since the regions were not targeted for capture,
such data are important in interpreting published exome
capture results, particularly negative results. Our data also
underscore the need for critical evaluation of positive
results from exome capture kits, since they cannot provide
the ‘completeness’ of analysis that genome sequencing can
provide.
One area where targeted sequencing will likely see even

greater value is in the custom capture of much smaller
regions of the genome in a highly multiplexed fashion, for
which the difference in cost compared to whole genome
sequencing would be too great to support a workflow that
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does not involve target capture. Ongoing large sample size
exome resequencing projects, as well as various whole
genome resequencing projects, will identify substantial
numbers of potential candidate genes for a range of dis-
eases and other phenotypes. Being able to efficiently direct
the capability of next-generation sequencing instruments
towards highly multiplexed resequencing of relatively
small numbers of genes in large numbers of patients and
controls is currently an unmet need that could potentially
be addressed by hybridization-based target enrichment.

Materials and methods
DNA samples and publicly available data used for this
study
Purified genomic DNA from cell lines of the CEU family
trio individuals NA12892, NA12891, and NA12878 and
YRI family trio individuals NA19238, NA19239, and
NA19240, maintained at Coriell Cell Repositories in Cor-
iell Institute for Medical Research (Camden, NJ, USA),
was used for exome captures. The publicly released
whole genome alignment and filtered sequence files from
the high coverage trio pilot of the 1000 Genomes Project
were downloaded from the NCBI FTP site [22]. The
alignment files utilized were downloaded from the pilot_
data directory of the FTP site, and the filtered sequence
files were downloaded from the data directory of the FTP
site. The genotyping data used as ‘gold standards’ for the
six trio individuals were obtained from the International
HapMap Project FTP site [23].

Targets and gene annotations
For the CCDS annotations, CCDS version 20090327 was
downloaded from the NCBI FTP site [12,24]. For
RefSeq, the NCBI36.1/hg18 associated gene name and
gene prediction (refFlat) and extended gene prediction
(refGene) tables from the University of California, Santa
Cruz (UCSC) Table Browser database on 7 September
2010 were downloaded [25,26]. The intended targets for
NimbleGen and Agilent were provided by the two com-
panies and were downloaded from their respective
websites.

Sample library preparation and whole exome solution
captures
The CEU and YRI DNA samples were directly processed
into Illumina sequencing compatible libraries (pre-cap-
ture) prior to exome capture. The DNA modification
enzymes and reaction reagents necessary for the Illumina
library preparation procedure were individually pur-
chased from New England Biolabs (Ipswich, MA, USA)
or Roche Applied Science (Indianapolis, IN, USA). All
necessary oligos for Illumina library preparation or
exome capture were purchased from Integrated DNA
Technologies (Coralville, IO, USA).

For each exome capture platform, one to four indepen-
dently prepared pre-capture libraries were generated from
each DNA sample, for one capture or multiple captures,
respectively, with a given sample. The pre-capture libraries
were prepared according to the manufacturer’s guidelines
that accompanied the SeqCap EZ Exome Library SR
(Roche NimbleGen, Madison, WI, USA) or the SureSelect
Human All Exon Kit (Agilent Technologies, Santa Clara,
CA, USA). Pre-capture libraries that were intended for
NimbleGen exome captures were size-selected for approxi-
mately 290 bp library fragment size (including the Illumina
adapter sequences on each end of a library fragment),
using 2% Certified Low Range Ultra Agarose (Bio-Rad
Laboratories, Hercules, CA, USA) in 1× TAE (40 mM Tris
acetate, pH 8.0; 1 mM ethylenediamine tetraacetic acid)
containing 0.5 μg/ml ethidium bromide, consistent with
the user’s guide accompanying the NimbleGen exome cap-
ture product and with other sequence capture procedures
[27]. Pre-capture libraries that were intended for Agilent
exome captures were broadly size-selected for the exclu-
sion of DNA fragments less than approximately 150 bp,
using AMPure XP (Beckman Coulter Genomics, Brea, CA,
USA) according to the Agilent SureSelect Human All Exon
Kit user’s guide. Our NimbleGen and Agilent exome solu-
tion captures were carried out according to the manufac-
turer’s guidelines, and post-capture library amplifications
and quality assessments were also performed according to
the manufacturer’s guidelines.

Illumina DNA sequencing of exome captures
Illumina (San Diego, CA, USA) sequencing of exome
captures was performed on site, at Cold Spring Harbor
Laboratory, using constantly maintained Genome Analy-
zerIIx instruments with paired-end modules. Each exome
capture was individually sequenced in one lane of a Gen-
ome AnalyzerIIx flowcell using paired-end 76-cycle
sequencing chemistry. Collectively, the exome capture
data were obtained from four separate Genome Analyzer-
IIx runs. Each exome capture lane generated 268,972 to
367,692 clusters per tile (raw), with 82.45 to 91.89% of
the clusters passing the Illumina data quality filter. These
exome capture sequence data have been deposited into
the National Center for Biotechnology Information
(NCBI) Sequence Read Archive [28].

Initial sequence data analysis
Sequencing images that were generated on Genome Ana-
lyzerIIx instruments were processed and base calls and
quality scores were generated on the fly using the Illumina
Real Time Analysis software (RTA v1.8). The processed
signal intensity files, base calls and quality scores were
then transferred to a shared 2,000 core IBM blade cluster
running Linux or to a dedicated 96 core Sun cluster run-
ning Linux for further analysis. The Offline Basecaller
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(v1.8) was used to convert the binary base call files to text
format. The Illumina CASAVA pipeline (v1.6 or v1.7) was
then used to determine initial genome alignment statistics
for the sequence data. These versions of RTA and
CASAVA allow images with a high density of clusters to
be analyzed (in the range of 35 to 38 million clusters per
lane), thereby providing greater data output with 70 to
80% of the sequences passing the standard quality filter.
The GERALD module included in CASAVA provides the
run summary and output statistics along with graphical
data quality files.

Capture data analysis pipeline
The main goal of our analysis pipeline is to reliably iden-
tify SNVs in the target regions of individual samples; a sec-
ondary goal is to produce detailed reports that can be used
to monitor the performance of the sequencing experi-
ments and to allow us to compare different sequencing
strategies. We developed our pipeline around the de facto
standard format SAM using the freely available tools
BWA [14] and SAMtools [17]. We used Makefiles [29] to
integrate the different steps and we used the qmake tool
from the Sun Grid Engine platform to execute the pipeline
on the large computational cluster BlueHelix at Cold
Spring Harbor Laboratory.
An ideal capturing technique would ensure that all the

bases produced by the sequencing machine would be
aligned confidently on the target of interest, that the target
would be covered uniformly, and that each base would
provide an independent observation of the underlying gen-
otype. This ideal cannot be achieved due to many factors
of the sequencing strategy and the structure of the human
genome. Figure 8 demonstrates some of the issues that
arise and that are addressed in our analysis pipeline.
Figure 8a addresses the relationship between the

sequenced insert length (insert here refers to the DNA
molecule before ligating the sequencing and PCR primers)
and the chosen read length. The expectation is that the
insert is longer than the doubled read length and thus the
paired reads from the ends of the insert would sequence
different non-overlapping bases (Figure 8a, left). In reality,
the insert lengths cannot be tightly controlled and a sub-
stantial proportion of the sequenced inserts might have
lengths shorter than the doubled read length. In the data
presented here, we used paired-end 76-cycle runs and
from Figure 4 it is apparent that there were a number of
inserts shorter than 152 bp. For shorter inserts, the ends
of the two paired reads sequence the same nucleotide and
for those the assumption of independent genotype obser-
vation is broken (Figure 8a, middle). In more extreme
cases, the insert length is shorter than the length of a sin-
gle read, and that leads not only to complete overlap of
the two reads but also to the sequencing of the ligated
adapters (Figure 8a, right). If not removed, the presence of

these non-human bases interferes with the proper align-
ment of sequence reads.
When aligning a pair of reads we hope to find only one

locus in the reference genome for which the two reads
align close to each other in a way consistent with them
being sequenced from the two ends of a short DNA insert
(Figure 8b1). A pair that is aligned in this way is a ‘proper
pair’. (For Illumina pair-end sequencing a proper pair
alignment implies that the read that aligns closer to the 5’
of the reference chromosome is aligned on the forward
strand and the pair closer to the 3’ end is aligned on the
reverse strand with respect the reference.) There are mul-
tiple ways for a pair to not be a proper pair. First, for some
pairs there is no suitable locus in the reference genome
(Figure 8b2). Second, there might be multiple candidate
loci in the reference genome for a given pair (with identi-
cal or similar alignment scores; Figure 8b3). Third, the
two reads can align on different chromosomes (Figure
8b4), align on the same chromosome in a wrong orienta-
tion (Figure 8b5 and 8b6), or align on the same chromo-
some far away from each other (Figure 8b7). Improper
pairs can be caused by incorrect reference genome, by
structural variants in the sample, or by a large number of
sequencing or sample preparation protocol artifacts. Given
that the focus of the pipeline is on SNVs in coding regions,
we choose to analyze only proper pairs.
Several steps in the sample preparation and capture pro-

tocols require PCR amplification. As a consequence, a cer-
tain proportion of the original DNA inserts will be
sequenced multiple times. One of the main benefits of
paired-end sequencing is that it allows for a reliable identi-
fication of the identical copies based on their alignment
coordinates. It is unlikely that two independent DNA
inserts would have exactly the same genomic coordinates
(both at the beginning and at the end) and if we do
observe two or more read pairs aligning at the same coor-
dinates, we can conclude that they are PCR copies of the
same original insert (Figure 8c, right). Such redundant
sequencing does not contribute independent observations
of the underlying bases and, therefore, are removed prior
to the SNV calling step.
A capture/enrichment strategy aims at sequencing DNA

inserts that overlap the target of interest. The hybridiza-
tion-based capture approaches achieve that by designing
probes within or next to the target of interest. After the
identification of the proper pairs we can easily identify the
ones that have been specifically hybridized by searching
for pairs that are aligned at a locus overlapping the
designed probes (Figure 8d). The proportion of off-probe
pairs is the most important measure of capture perfor-
mance. In addition, not all the bases of the on-target
proper pairs fall within the target of interest. The bases
outside of the target cannot contribute to the SNV calls.
The proportion of bases of the on-target proper pairs that

Parla et al. Genome Biology 2011, 12:R97
http://genomebiology.com/content/12/9/R97

Page 14 of 17



fall outside the target is another measure of performance;
it depends on probe design strategy and on the insert
length distribution. For whole exome sequencing with an
average exon length of about 150 bp, longer inserts (for
example, longer than 200 bp) are not desirable.
The pipeline is split into lane-level processing and

sample-level processing. The lane-level processing has
seven steps.
Step 1 is removing sequencing adapters (Figure 8a,

right). This step is implemented with our custom script
that works by aligning the two reads of each pair against
each other after reverse-complementing one of them
while aligning the flanking sequence to the Illumina
standard adapters.
Step 2 is aligning. For this we use BWA [14] in paired-

end mode (aln and sampe commands) and with default
parameters. For 76-base long reads, the default BWA para-
meters allow four differences (single nucleotide or an
indel) between the read and the alignment reference locus.
The default parameters also require BWA to report no

more than one alignment location of a read with multiple
possible locations (Figure 8b3). The mapping quality,
defined as qm = -10 log10P, where P is the probability that
the location provided is incorrect, produced by BWA
reflects the degree of ambiguity. A mapping quality of 0
indicates that there are two or more equally good candi-
date locations in the reference genome. The maximum
mapping quality reported by BWA is 60. In paired-end
mode BWA reports two potentially different mapping qua-
lities for the two reads of a pair. We assigned the minimum
of the two mapping qualities as the mapping quality for the
pair as a whole.
Step 3 is finding proper pairs. This is accomplished

with a custom script that analyzes the FLAG field in the
SAM file alignment records [17].
Step 4 is removing PCR duplicates. This step addresses

the issue demonstrated in Figure 8c. The step is imple-
mented with the SAMtools rmdup command [17].
Step 5 is finding well mapped read pairs that overlap

with probes. This step uses a custom script that

Read overlaps and adapter sequencing

Off-target reads/bases

PCR Replicates

Alignment Issues

Remove sequencing 
adapters

Align to reference genome

Find proper pairs

Find well mapped pairs that 
overlap with probes

Remove PCR duplicates

(a)

(b)

1) 2) 3)

4)

5)

6) 7)

(c)

(d)

Collapse overlapping reads 
in pairs

Count the number of bases 
in target

Lane level processing 
(e)

Figure 8 Description of the lane-level processing of our analysis pipeline. (a-d) The issues that our lane-level processing addresses. (a)
Insert length-related complications. (b) The various ways a pair of reads can align, with 1) showing a proper-pair alignment. (c) How PCR
duplicates look after alignment. (d) A cartoon of off-target reads and off-target bases of on-target reads. (e) The steps we take to address the
issues demonstrated in (a-d). See the Materials and methods section for detailed descriptions.
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implements two filters simultaneously: exclusion of all
read bases that do not map to exome capture probe
regions (we require an overlap of at least 20 bases between
a read and a probe region) and removal of proper read
pairs with suboptimal mapping quality. We chose to use
only pairs aligned with the maximum mapping quality of
60.
Step 6 is collapsing overlapping bases in read pairs. This

step addresses the issue demonstrated in Figure 8a (mid-
dle). The two reads of a given pair with overlapping bases
are shortened until the overlap is eliminated. The base
quality scores are subsequently updated to increase cer-
tainty if the two reads agree at a given position or to
decrease certainty in the case of disagreement. This step
also removes all reads determined to contain insertion or
deletion mutations.
Step 7 is counting and reporting the number of bases

that fall within target regions.
In the sample-level processing there are three steps. In

step 1 the data generated from different lanes containing
the same sample are merged together (SAMtools merge
command). In step 2 consensus genotypes are called using
the SAMtools Maq-based model (pileup command with -A
option). In step 3 the confident genotypes are filtered for
those with genotype, or consensus, quality ≥ 50.

Additional material

Additional file 1: Full bioinformatic capture analysis report. A full
lane-level and sample-level report from our capture sequence data
analysis pipeline. This report contains all of the statistics our standard
pipeline generates. Three distinct sets of sample-level statistics are
provided for the specific analyses we performed using various genomic
targets of interest.

Additional file 2: Gene-specific coding region coverage from exome
capture. A table listing all UCSC hg18 RefSeq track genes, their predicted
capture coverage (percent) based on capture kit intended targets, and
their actual capture coverage (percent) from our data. GeneLength
depicts the combined length of the coding regions of each gene, in
bases.
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