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Abstract

Background: The generation of mature mRNAs involves interconnected processes, including transcription by RNA
polymerase II (Pol II), modification of histones, and processing of pre-mRNAs through capping, intron splicing, and
polyadenylation. These processes are thought to be integrated, both spatially and temporally, but it is unclear how
these connections manifest at a global level with respect to chromatin patterns and transcription kinetics. We
sought to clarify the relationships between chromatin, transcription and splicing using multiple genome-wide
approaches in fission yeast.

Results: To investigate these functional interdependencies, we determined Pol II occupancy across all genes using
high-density tiling arrays. We also performed ChIP-chip on the same array platform to globally map histone H3 and
its H3K36me3 modification, complemented by formaldehyde-assisted isolation of regulatory elements (FAIRE).
Surprisingly, Pol II occupancy was higher in introns than in exons, and this difference was inversely correlated with
gene expression levels at a global level. Moreover, introns showed distinct distributions of histone H3, H3K36me3
and FAIRE signals, similar to those at promoters and terminators. These distinct transcription and chromatin
patterns of intronic regions were most pronounced in poorly expressed genes.

Conclusions: Our findings suggest that Pol II accumulates at the 3’ ends of introns, leading to substantial
transcriptional delays in weakly transcribed genes. We propose that the global relationship between transcription,
chromatin remodeling, and splicing may reflect differences in local nuclear environments, with highly expressed
genes being associated with abundant processing factors that promote effective intron splicing and transcriptional
elongation.

Background
Generation of mature mRNA transcripts requires com-
plex and interconnected processes that involve opening
of the local chromatin structure around the DNA region
to be transcribed, binding and transcription by RNA
polymerase II (Pol II), and processing of the pre-
mRNAs, including the splicing of the non-coding
introns [1,2]. Protein production is streamlined at sev-
eral levels of gene expression, including coordinated

transcription and translation [3]. Moreover, there is
some evidence for functional coupling between tran-
scription and pre-mRNA processing [4-6].
We have previously reported that, in fission yeast

(Schizosaccharomyces pombe), highly transcribed genes
tend to be most efficiently spliced while lowly tran-
scribed genes are less efficiently spliced [7]. The reason
for this unexpected global coordination between tran-
scription and splicing is not known. Moreover, Pol II-
directed transcription is controlled by permissive or
repressive chromatin modifications but in turn also
affects such modifications [8]. Splicing is initiated co-
transcriptionally in a chromatin context, which raises
the possibility of a functional relationship between
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splicing and the local chromatin environment. In addi-
tion to controlling the accessibility of DNA to the basal
transcriptional machinery, there is evidence that chro-
matin structure can influence the co-transcriptional spli-
cing of immature transcripts [9-11]. Notably, differential
marking of introns and exons has recently been reported
in several organisms [12,13], although the mechanism
and functional consequences of such marking are not
clear.
We applied multiple genome-scale approaches in fis-

sion yeast to clarify the relationships between chromatin,
transcription and splicing. Introns, besides promoter and
terminator regions, were relatively depleted of histones
and also showed distinct chromatin patterns. Unexpect-
edly, Pol II occupancy was much higher in intronic than
in exonic DNA regions, most notably in lowly expressed
genes. This differential marking of introns at the DNA
level suggests that Pol II stalls at the 3’-ends of intronic
regions, leading to substantial accumulation in the
introns of lowly transcribed genes. We speculate that
these patterns reflect a functional coupling between tran-
scription, chromatin remodeling, and splicing, and that
only highly transcribed genes are embedded in processive
environments such as ‘transcription factories’, where
abundant processing factors promote effective intron
splicing and transcriptional elongation.

Results and discussion
Experimental approach
In order to uncover any connections between transcrip-
tion, intron splicing, and chromatin marks in rapidly
growing fission yeast cells, we determined global Pol II
occupancy using chromatin immunoprecipitation on
microarray (ChIP-chip) experiments. Furthermore, we
applied ChIP-chip experiments to analyze the global dis-
tributions of histone H3 and lysine 36 trimethylation of
histone H3 (H3K36Me3), a modification that is enriched
in the body of actively transcribed genes [14]. In addi-
tion, to verify the histone H3 occupancy and reveal
genomic regions that are relatively protein free, we
applied formaldehyde-assisted isolation of regulatory ele-
ments (FAIRE) [15,16]. We used the same high-density
Affymetrix tiling array platform for all these genome-
wide approaches (Materials and methods).

Distinct Pol II occupancy and chromatin patterns in
promoter and terminator regions
The 5’ ends of genes, corresponding to the nucleosome-
free regions of promoters, had high FAIRE signals in fis-
sion yeast (Figure 1). These results are consistent with
the originally published results in human [15]. Figure 2
shows the average patterns for the different chromatin-
and transcription-related features across intron-less and

Figure 1 An example of FAIRE, Pol II ChIP-chip, and expression data. The top and bottom panels with green points depict expression data
for the upper and lower strand, respectively, obtained from random-primed RNA hybridized to Affymetrix tiling arrays with each point
representing a single probe. The second and fourth panels show annotated genes in the region around sec21 (SPAC57A7.10c), with exons
numbered underneath the gene. The third panel shows a 5 probe running average of Pol II signals (black points) or FAIRE signals (pink/red
points). The horizontal red line shows the 85% percentile line for all FAIRE probe signals, with probes above this cut-off colored red and those
below colored pink. Note that FAIRE and Pol II signals are not strand-specific.
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intron-containing genes. Peaks of Pol II enrichment were
evident in the promoter regions of genes, reflecting the
accumulation of Pol II before transcription elongation
[17,18]. Moreover, these regions showed high FAIRE sig-
nals, but relative depletion of histone H3 and, even more
so, for its H3K36Me3 modification (Figure 2).
Gene promoters are known to contain nucleosome-

free regions [19-21]. Notably, we found that the 3’ ends

of genes, corresponding to the terminator regions, also
show Pol II enrichment, low histone H3 density and
high FAIRE signal (Figures 2 and 3). While the nucleo-
some-free regions in promoters have been well charac-
terized, a similar depletion of nucleosomes in terminator
regions is not as well defined. A recent report in bud-
ding yeast shows depletion of nucleosomes at the 3’ end
of transcribed genes, and this depletion is coupled to

(a)

(b)

FAIRE, H3, RNA Poll II and H3K36(Me)3 IP signal across average unspliced gene

FAIRE, H3, RNA Pol II and H3K36(Me)3 IP signal across average spliced gene

Figure 2 Profiles of transcription- and chromatin-related patterns across average spliced and unspliced genes. (a) Average unspliced
gene profiles for FAIRE (red), histone H3 (blue), H3K36me3 (green, normalized for H3 signals), and Pol II (black) signals from Affymetrix tiling
arrays. Promoter and terminator regions are taken as 400 bp up- and downstream of the start and stop codons, respectively, and divided into 10
bins of 40 bp each, while the coding regions were divided into 20 bins of equal size. Black vertical lines separate different gene sections, and
each plotted point represents the average of all probes that fall into the respective location bin. Color-coded scales for FAIRE (F) and Pol II (P)
signals are shown on the left y-axis of the graph, while the scales for histone H3 (H) and H3K36me3 (K) are shown on the right y-axis. (b)
Average spliced gene profiles for FAIRE (red), histone H3 (blue), H3K36me3 (green), and Pol II (black) signals from Affymetrix tiling arrays as in (a).
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transcriptional activity [22]. Our findings are also con-
sistent with reports in mammalian cells that describe
pausing of Pol II in terminator regions [23,24]. The start
and end of introns showed lower levels of H3 occupancy
(Figure 2b). This pattern might result from a ‘looped’
arrangement of exons and introns analogous to that
proposed for the human BRCA1 gene [25]. Although
this exon-intron pattern is not reflected in FAIRE, the
overall patterns support the notion that nucleosome
density is likely the major determinant for the FAIRE
signals.

Gene expression levels affect Pol II occupancy and
chromatin patterns across genes
We next assessed the effects of transcript levels on the
observed Pol II- and chromatin-related patterns across
genes. To this end, we sorted all genes with measurable
expression on Affymetrix chips into decile ranked
groups, with the first decile representing the 10% most
highly expressed genes, and so on. Average expression

values for unspliced and spliced genes were calculated
for each data set and for each expression bin and
plotted either relative to the values in each bin (Figure
3) to highlight the range within each expression group
or on a single scale according to the range of values of
the entire dataset (Figure 4) to show the absolute
enrichment. This analysis revealed that gene expression
levels strongly influence the Pol II- and chromatin-
related patterns. Coherent differences depending on
expression level group were apparent (Figure 4): the
most highly expressed genes showed the highest Pol II
occupancy (Figure 4a), but the lowest density of histone
H3 (Figure 4b), and the highest levels of H3K36me3
modification (after correcting for nucleosome density;
Figure 4c). Glover-Cutter et al. [26] made similar obser-
vations of inverse enrichment between Pol II and
nucleosomes, which could reflect displacement of
nucleosomes by Pol II. The Pol II patterns were also
apparent at the level of highly or lowly expressed single
genes (Additional file 1).

(a) (b)

(c) (d)

RNA Pol II ChIP across average spliced gene H3 ChIP across average spliced gene

H3K35 ChIP across average spliced gene FAIRE across average spliced gene

Figure 3 Profiles of transcription and chromatin-related patterns as a function of gene expression. (a-d) Probe signals for Pol II (a),
histone H3 (b), H3K36me3 (c), and FAIRE (d) were used to generate average spliced gene profiles that were grouped into ten ranked bins based
on Affymetrix expression data. Scales for the relative data range from each expression bin were used to generate the plots. Identical data plotted
on the same absolute y-scale for all expression bins is presented for average spliced and unspliced genes in Figure 4. The color bar at bottom
depicts average expression levels of bins (red, high expression; green, low expression), and black vertical lines within each box demarcate
different sections within the average gene.
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Figure 4 Profiles of transcription and chromatin-related patterns as a function of gene expression. (a-d) Probe signals for Pol II (a),
histone H3 (b), H3K36me3 (c), and FAIRE (d) were used to generate average spliced gene profiles that were grouped into ten ranked bins
based on Affymetrix expression data. Average values for each bin within each expression group were plotted on the same absolute scale for
each experiment type. For panel (a), the background level of RNA Pol II enrichment was estimated by calculating the average signal from all
probes (152,253) that fell outside of binned regions for analysis. This background average is shown as a horizontal blue solid line. Because some
atypically large untranslated regions and novel annotated regions will also contribute signal to this value, a second average (horizontal blue
dotted line) is shown where the top 10% of probes by signal (15,226) are removed. The red-to-green color bar at the bottom of the figure
depicts average expression levels of bins (red, high expression; green, low expression), and black vertical lines within each box demarcate
different sections within the average gene.
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Expression level-dependent differences in Pol II pro-
moter patterns were also apparent: only lowly expressed
genes showed promoter regions with higher levels of Pol
II enrichment relative to downstream exonic regions,
while highly expressed genes had more Pol II in exonic
regions (Figure 3a). While Pol II is known to pause on
promoters of some genes [17,18], a global and gradated
relationship between gene expression level and Pol II
enrichment at promoters has not been reported pre-
viously. Unlike the promoter-associated accumulation,
the increased Pol II occupancy at the terminator region
showed little difference with varying expression levels
(Figure 3). Our data show that Pol II behavior in termi-
nator regions is less dependent on expression level than
in promoter regions. The enrichment of Pol II in the
terminator region could reflect the time required for the
release of Pol II from the DNA and/or interactions
between promoter and terminator regions [25,27,28].

Distinct chromatin patterns in intronic regions
To our surprise, intronic regions showed distinct pat-
terns with respect to the chromatin-related features.
The overall H3 occupancy was lower in introns than in
surrounding exons, and it dropped even lower in exon-
intron junctions at both 5’ and 3’ ends of introns (Figure
2b). A pattern of decreasing nucleosome occupancy at
exon-intron boundaries has also been described in other
organisms [29,30]. Accordingly, the FAIRE signals were
substantially higher in introns than in exons, similar to
the promoter and terminator regions (Figures 2b and
5a). This effect of increased FAIRE signals was not
dependent on intron position within genes (Figure 6b).
The differential patterns were not caused by sequence
bias between introns and exons because the

hybridization signals were normalized using genomic
DNA signals (or input signals for ChIP-chip experi-
ments) to correct for hybridization differences due to
GC content [7,31]. Moreover, within average introns, we
observed higher Pol II and FAIRE signals towards the 3’
ends of introns (Figure 2b). This effect did not reflect
any sequence disparity: a GC content comparison of 25-
bp sequences (the length of one microarray probe) at
either end of introns revealed no significant differences
(p = 0.48).
Finally, we also detected significantly lower densities

of the H3K36me3 modification (normalized for histone
H3 density) within introns compared to surrounding
exons (Figures 2b and 5c). Other papers have also
reported such differential marking of introns and exons
for the H3K36me3 modification in worms and humans
[12,29,30]. This modification is enriched within the
ORFs of transcribed genes and is catalyzed by the his-
tone methyltransferase Set2 [32,33], which is conserved
in fission yeast [14]. The H3K36me3 modification
depends on the interaction of Set2 and the terminus of
Pol II [34]; it is possible that the altered transcription
kinetics that we detect in intronic regions interferes
with H3K36me3 marking. It has been reported that Pol
II in human cells is more enriched in exons than in
introns, the reverse from our data [29]. A possible
explanation for this discrepancy is that, in the previous
study, any signals that fall within a 400-bp window (cen-
tered on the exon) are associated with that exon. Given
the small average size of human exons (approximately
200 bp), extended intronic sequences on either side of
exons would have been included with the exons for the
analysis. If Pol II pauses at the 3’ end of introns, as indi-
cated by the Pol II and FAIRE enrichments in the much

Figure 5 Violin plots of FAIRE and Pol II signals. (a-c) Violin plots (combining box plot and kernel density plot) show the uni-modal
distribution of signals for probes entirely within introns and exons (spliced genes) or entirely within coding regions (unspliced genes) for FAIRE
(a), Pol II occupancy (b), and H3K36me3 ChIP-chip signals (c). The median signal for probes in exons is shown by the dashed horizontal line.
Signal differences (shown on the y-axis) between introns and exons (indicated by the bar and asterisk) are significantly different (P-value < 2.2 ×
10-16; Welch two sample t-test).
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Figure 6 FAIRE/Pol II occupancy signals for introns and exons by position. (a, b) Box plots showing signal distributions for Pol II occupancy
(a) and FAIRE (b) in spliced genes by exon or intron number (E1 for exon1, I1 for intron1, and so on). The average signal for each intron
position was compared to the average signal for each previous exon in order to assess statistical significance. Box widths are proportional to the
number of probes in each class and position tested. Signals in exon/intron sets (marked with lines and symbols) are significantly different (*P <
2.2 × 10-16, §P < 7.2 × 10-7, †P < 5.6 × 10-13, ‡P < 0.0007, +P < 6.7 × 10-09; Welch two sample t-test).
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smaller fission yeast introns (typically < 100 bp), this
may not have been detected in human [29]. Of course,
it is also possible that Pol II progression across exonic
and intronic regions differs between fission yeast and
human genes.

Intronic transcription and chromatin are affected by gene
expression levels
As described above for other gene regions, we also
assessed the effects of transcript levels on the observed
Pol II- and chromatin-related patterns across intronic
regions (Figures 3 and 4). The introns of lowly
expressed genes showed more pronounced drops in
H3K36me3 modification signals relative to neighboring
exons (Figure 3c). Strikingly, the relative difference in
Pol II enrichments in introns compared to exons was
directly related to the expression level of genes: the
ratios of intronic to exonic Pol II occupancy levels
increased with decreasing gene expression (Figure 7a).
The same effect was evident when plotting the p-values
of t-tests of the intron and exon signals for each expres-
sion bin against expression bin numbers (Figure 7b).
These data, which cannot be explained by biased intron
size as a function of gene expression (Additional file 2),
demonstrate that with decreasing gene expression, there
is decreasing H3K36me3 modification and increasing
Pol II accumulation within intronic regions relative to
exonic regions.

Pol II enrichment in intronic regions
In accordance with the FAIRE signals, Pol II occupancy
was also significantly higher on average in intronic
regions than in exonic regions (Figures 2b and 5b). Con-
sistent results were obtained from Pol II occupancy and
quantitative real time PCR data of single genes (Addi-
tional files 1 and 3). This increased Pol II signal was not
dependent on intron position within genes (Figure 6b).
The average intron of spliced genes thus showed a pat-
tern of Pol II enrichment similar to the promoter and
terminator regions, raising the possibility that Pol II also
accumulates in intronic regions. Notably, the Pol II and
FAIRE signals increased throughout intronic regions
and peaked towards the 3’ ends of introns (Figure 3a, d).
We therefore propose that Pol II actually accumulates at
the 3’ end of introns before resuming transcription.
Given that Pol II accumulation was most pronounced in
the most lowly expressed genes (Figures 3a and 7), any
pausing seems to mostly affect genes that are poorly
transcribed. Anti-sense transcription is unlikely to cause
Pol II accumulation in introns as only 11 of 372 anti-
sense transcripts actually overlap with introns and none
reside entirely within introns [7].
Analyzing the processivity of Pol II, it has been noted

that transcription does not continuously progress at the

highest possible speed [35]. Pol II enrichment in introns
could be related to observations that transcriptional
speed can play a role in influencing alternative splicing
of transcripts [36]. We envisage two, not mutually
exclusive, possibilities why Pol II is enriched on introns.
First, certain chromatin remodeling factors required to
displace nucleosomes could be limiting. Recent studies
have noted that exons contain well positioned nucleo-
somes relative to introns [29,30,37]. A sudden ‘road
block’ of nucleosomes at the end of introns might cause
Pol II to slow down or pause. Alternatively, or in addi-
tion, Pol II enrichment in introns could be directly
linked to co-transcriptional splicing and could reflect
the time required for splicing to finish before transcrip-
tion can resume. Although we have not investigated the
dynamics of the Pol II enrichment, evidence exists for a
kinetic link between transcription and splicing [38],
where cellular treatment to pause elongating Pol II

Figure 7 Inverse relationship between gene expression and Pol
II accumulation in introns. (a) The ratios between average Pol II
occupancy in upstream (blue) and downstream (green) exons
relative to average Pol II occupancy in introns (in log2 values) are
plotted as a function of expression bins. (b) Pol II occupancy signals
from intron and exon probes for each expression group were used
for a Welch two sample t-test, and the resulting P-value is plotted
against the expression bins. The increasing significance of the P-
values is inversely correlated with the gene expression level.
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results in increased co-transcriptional splicing. Some
RNA processing or export factors are known to be asso-
ciated with intronic regions [39]. Moreover, we have
previously observed a global coordination between tran-
scriptional and splicing efficiencies, with increased tran-
scription leading to increased splicing in two genes
tested [7].

Conclusions
We conclude that intronic regions in fission yeast show
patterns distinct from exonic regions with respect to
several transcription- and chromatin-related features
analyzed here, and that these patterns are related in
large part to the transcriptional activities of genes.
Furthermore, our data suggest that Pol II accumulates
at the 3’ end of introns, most notably in lowly expressed
genes.
Intriguing studies in budding yeast have recently

reported splicing-related pausing of Pol II during tran-
scription [40-42]. Carillo Oesterreich et al. [42] found
that Pol II pauses after the last intron to allow sufficient
time for splicing before transcriptional termination.
Alexander and co-workers [41] demonstrate that Pol II
accumulates transiently at the 3’ ends of introns on two
reporter genes, which coincides with splicing factor
recruitment and the detection of spliced mRNA. This
pausing is tied to productive splicing and is accompa-
nied by phosphorylation of the paused Pol II. The
authors propose that transcriptional pausing is enforced
by a checkpoint that is linked to co-transcriptional spli-
cing [41].
Our data confirm and extend these findings in several

respects. First, we provide evidence for intronic Pol II
enrichment in fission yeast, which is only distantly
related to budding yeast and contains many more
introns (approximately 5,000 versus approximately 300
introns), suggesting that this phenomenon is conserved
throughout eukaryotes. Second, we provide global data
for all genes and introns, indicating that Pol II enrich-
ment in introns is a general phenomenon. Third, we
show that Pol II enrichment is linked to gene expression
levels: the relative difference in Pol II enrichment in
introns compared to exons is most pronounced in the
lowly transcribed genes and becomes weaker in more
highly transcribed genes. Moreover, the lowly tran-
scribed genes also show the largest drop in H3K36me3
modification within intronic regions. These findings are
consistent with differential H3K36me3 marking of intro-
nic regions reflecting disrupted local chromatin struc-
ture caused by Pol II accumulation and splicing, which
could interfere with H3K36me3 marking by Set2. On
the other hand, it is possible that the differential
H3K36me3 marking provides a favorable chromatin
context for splicing to occur.

The global coordination between transcriptional and
splicing efficiencies [7] and the inverse relationship
between Pol II pausing and gene expression levels have
important implications for current models of transcrip-
tion and splicing. We propose that highly expressed
genes out-compete lowly expressed genes for limiting
splicing factors, leading to increased Pol II accumulation
in the introns of lowly expressed genes. Transcription
has been shown to take place in ‘transcription factories’
[43-46], and we speculate that only the highly tran-
scribed genes are embedded in the processive environ-
ments of such factories, where abundant processing and
splicing factors promote effective intron splicing and
thus transcriptional elongation. Recent findings in fis-
sion yeast reveal that highly expressed genes associate
with each other in the nucleus [47]. So if actively
expressed genes either create, or are recruited to, highly
processive transcription factories, all the steps required
to generate mature mRNAs could be completed more
efficiently and in a coordinated manner. Further investi-
gations will define the precise mechanisms of the strik-
ing coordination between transcription, chromatin and
splicing, and the functional importance of Poll II paus-
ing within introns.

Materials and methods
Yeast strains and experimental conditions
Wild-type fission yeast cells (972 h-) were grown in rich
yeast extract media at 32°C before being harvested for
all experiments at exponential phase (approximately 5 ×
106 cells/ml).

ChIP-chip methods
Chromatin immunoprecipitions were performed, in bio-
logical duplicate, as described [7] using an antibody spe-
cific for the Pol II carboxy-terminal domain (CTD)
(4H8, Abcam Cambridge, UK), histone H3 (ab1791,
Abcam) or H3K36me3 (ab9050, Abcam). The two Pol II
ChIP-chip experiments analyzed here were those
reported by [7]. The whole cell extract was prepared
using a Fastprep machine with glass beads to break cells
after fixation, and the resulting lysate was sonicated to
an average size of approximately 150 bp using the bior-
uptor (3 × 5’, 30 s on, 30 s off). The immunoprecipi-
tated material and input control were amplified in two
steps as described [48]. During the second step, dUTPs
were added to the PCR mix for subsequent fragmenta-
tion of the products. Fragmentation and labelling of the
amplified products were performed using the Gene-
Chip® WT Double-Stranded DNA terminal labelling kit
(Affymetrix Santa Clara, CA, USA). The duplicated
immunoprecipitated samples and corresponding input
material were hybridized on four separate Affymetrix
GeneChip® S. pombe Tiling 1.0FR arrays. The log2
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signals of the probes on the input arrays were sub-
tracted from the log2 signals of the Pol II arrays and the
biological replicates were averaged. The H3K36me3 sig-
nals were normalized for the histone H3 signals.

FAIRE methods
Biological triplicates of FAIRE were performed essentially
as described [15]. Briefly, yeast cells were fixed with for-
maldehyde in medium at a final concentration of 1%.
Cells were left to incubate for 10 minutes at room tem-
perature before being spun down, washed once with
water, and resuspended in the same lysis buffer as for
ChIP with protease inhibitors (mini-complete EDTA free
tablets, Roche Applied Science, Welwyn, UK). Cells were
broken using glass beads and a Fastprep machine (20 sec-
onds at 6.0 m/s) and then sonicated using a Bioruptor
(Diagenode, Liège, Belgium) with 6 minutes total time
(15 s on, 30 s off). DNA was phenol/chloroform extracted
twice, and the resulting material was RNAse treated for
20 minutes before re-precipitating. The resulting DNA
was then labeled according to standard Affymetrix proto-
cols. The log2 FAIRE signals were normalized by sub-
tracting the average signal of three genomic DNA
hybridizations to correct for GC bias.

Probe mapping for bulk signal differences
For analyzing differences in Pol II, histone H3 and
H3K36me3 ChIP or FAIRE signals in introns and exons,
25-bp Affymetrix probes were mapped back to the S.
pombe genome (GeneDB). Probes where the entire 25
bp length fell within an intron or exon were classed as
‘intron probes’ or ‘exon probes’, respectively. All probes
that fell entirely within the ORF of unspliced genes were
used for calculating the signal of unspliced genes.

Average gene calculations
Every annotated S. pombe gene (downloaded from Gen-
eDB) was divided into three parts, the promoter, coding,
and terminator regions; in the case of spliced genes, the
ORF was further divided into exons and introns. For
both unspliced and spliced genes, 400-bp regions
upstream of the start of the ORF and downstream of the
end of the ORF were taken as the promoter and termina-
tor, respectively. These 400-bp windows were divided
into ten bins of 40 bp each, and Affymetrix probes were
assigned to bins depending on where their midpoint fell
(13th base pair). For the ORFs of unspliced genes, the
lengths of ORFs were divided into 20 bins of equal size,
with Affymetrix probes being assigned to bins based on
their midpoint position. For spliced genes, each intron
and exon was first divided into 10 or 20 bins of equal
size, respectively, with probes assigned to bins based on
their midpoint. In order to calculate an average of every
exon-intron-exon junction without counting probes

multiple times, the last ten bins of every upstream exon,
the ten bins of every intron, and the first ten bins of
every downstream exon were used to average probe sig-
nals from the various experiments. Probes falling in the
first ten bins of every first exon and the last ten bins of
every last exon were averaged to create the first and last
ten bins for upstream and downstream exons,
respectively.

Average gene calculations by expression group
Replicate gene expression data collected previously [7]
from Affymetrix Yeast 2.0 Genechip® arrays were first
filtered for undetectable signal (< 1; 480 of 5,296 genes
excluded) and then sorted into spliced and unspliced
genes (2,218 and 2,598 genes, respectively). Lists of
spliced/unspliced genes were then ranked in descending
order and split into 10 equal groups (approximately 220
and 260 genes per group for spliced and unspliced
genes, respectively). Average gene profile calculations
were then performed as described above for genes
within each expression bin.

Accession numbers
All microarray data used have been submitted to
ArrayExpress under the accession number E-TABM-946.

Additional material

Additional file 1: Single-gene examples of Pol II occupancy. (a-f)
Affymetrix tiling array data for RNA Pol II is shown for three genes
(SPAC13G7.11 (a), SPBC1773.01 (b), SPCC126.05c (c)) with low expression
(ranked 2,447,1,666, and 2,310 out of 4,816, respectively, according to
Affymetrix expression data) and three genes (SPBC4F6.18c (d),
SPAC17G6.06 (e), SPCC24B10.09 (f)) with high expression (ranked 216, 90,
and 56 out of 4,816, respectively, from data as above). Additional
annotated features are shown (expression rankings are SPAC13G7.12c
(3,307), SPBC1773.02c (2,764), SPCC126.04c (2,123), SPCC126.06 (2,591),
SPBC4F6.17c (1,944), SPAC17G6.05c (4,227), SPAC17G6.07c (811),
SPCC24B10.08c (3,300), SPCC24B10.10c (3,376)) and the range of absolute
values of RNA Pol II signals (as previously calculated [7]) are shown on
the left side of each panel. Introns within genes shown are indicated by
red lines.

Additional file 2: Expression level of spliced genes is not biased by
intron size. A scatterplot showing the size of each intron in the
annotated S. pombe genome and the corresponding gene expression
level (according to previously published Affymetrix microarray data [7]).

Additional file 3: Validation of Pol II occupancy in single genes by
quantitative PCR.
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