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Substitution rate variation at human CpG sites
correlates with non-CpG divergence, methylation
level and GC content
Carina F Mugal and Hans Ellegren*

Abstract

Background: A major goal in the study of molecular evolution is to unravel the mechanisms that induce variation
in the germ line mutation rate and in the genome-wide mutation profile. The rate of germ line mutation is
considerably higher for cytosines at CpG sites than for any other nucleotide in the human genome, an increase
commonly attributed to cytosine methylation at CpG sites. The CpG mutation rate, however, is not uniform across
the genome and, as methylation levels have recently been shown to vary throughout the genome, it has been
hypothesized that methylation status may govern variation in the rate of CpG mutation.

Results: Here, we use genome-wide methylation data from human sperm cells to investigate the impact of DNA
methylation on the CpG substitution rate in introns of human genes. We find that there is a significant correlation
between the extent of methylation and the substitution rate at CpG sites. Further, we show that the CpG
substitution rate is positively correlated with non-CpG divergence, suggesting susceptibility to factors responsible
for the general mutation rate in the genome, and negatively correlated with GC content. We only observe a minor
contribution of gene expression level, while recombination rate appears to have no significant effect.

Conclusions: Our study provides the first direct empirical support for the hypothesis that variation in the level of
germ line methylation contributes to substitution rate variation at CpG sites. Moreover, we show that other
genomic features also impact on CpG substitution rate variation.

Background
The rate of germ line mutation is the ultimate para-
meter governing the amount of genetic diversity within
populations and the divergence between species. There
is extensive variation in mutation rate within genomes
and a number of genomic features have been shown to
correlate with this rate variation, both at the whole-
chromosome level and at regional as well as local levels
[1-5]. Examples of factors suggested to be related to
mutation rate variation are genetic recombination [6,7],
transcription [8,9], replication [10,11], chromatin struc-
ture [12,13], distance to telomeres [5], exon density [14]
and sequence variables, such as the local GC content
[14,15]. Several of these factors are strongly interrelated
with each other, which complicates unraveling the driv-
ing forces of mutation rate variation.

Sequence context effects modulate the mutation rate
at individual nucleotide sites [16]. The most well-known
and strongest of these effects is the about one order of
magnitude higher frequency of C to T substitutions in
CpG dinucleotides than that of other transitions in the
genome [2,17-19]. The elevated mutability of cytosines
at CpG sites is due to the strong tendency of cytosine
residues in CpG dinucleotides to be methylated (mCpG)
and the associated tendency for cytosine to be replaced
by thymine [20,21]. This process is initiated via a spon-
taneous deamination reaction of 5-methylcytosine
directly leading to thymine, which is less efficiently
repaired by the DNA repair machinery than the cytosine
to uracil deamination reaction [20].
It has recently become clear that the degree of DNA

methylation varies significantly throughout the genome,
an insight reached by the ability to perform whole-gen-
ome analysis of DNA methylation status using massive
parallel sequencing coupled with bisulfite-treated DNA
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or immunoprecipitated methylated DNA [22-24]. The
availability of whole-genome methylation maps provides
an opportunity to integrate DNA methylation level in
models explaining the variation in CpG mutability
across the genome, which allows refinement of studies
about CpG mutation rate variation. Specifically, rather
than considering CpG sites as having a uniformly high
rate of mutation due to methylation, it may be that
there is variation in this high rate due to variation in
methylation level.
Here we made use of whole-genome methylation data

from human sperm cells to quantify the contribution of
the level of cytosine methylation to germ line CpG mut-
ability in intronic regions of the human genome. In
order to control for factors that are not specifically
affecting CpG sites, we incorporated non-CpG diver-
gence in our analysis. We then investigated the correla-
tion between CpG substitution rate variation and DNA
methylation level, intronic GC content, germ line tran-
scription level and recombination rate. We find a posi-
tive correlation of CpG substitution rate with DNA
methylation level and non-CpG divergence, and a nega-
tive correlation with GC content.

Results
We estimated human-specific CpG transition and trans-
version rate, and CpH transition rate, using alignments
of orthologous human, rhesus macaque and mouse
sequences for a set of 56,363 introns. For downstream
analysis we restricted the data to a set of 38,586 introns
for which estimates of five possible explanatory variables
(non-CpG divergence, DNA methylation level, intronic
GC content, germ line transcription level and recombi-
nation rate) were available. To investigate differences of
the five explanatory variables among the three datasets
defined by the presence or absence of CpG islands
(CGIs) and DNase I hypersensitive sites (DHSs) (see
Materials and methods), we computed their mean values
and variances for each dataset (Table 1). As expected for
regions containing CGIs, set C has lower methylation

level, higher GC content and a higher ratio of observed
versus expected CpG content (CpG[o/e]). In light of the
expected impact of selection on regions containing CGIs
and DHSs, non-CpG divergence is unexpectedly similar
for the three datasets.
We performed logit-regression analysis using CpG

transition rate as response variable. Variance inflation
factors were all < 2, so multi-colinearity was only a
minor issue. The regression analyses showed that, for all
three datasets, variation in CpG transition rate was
mainly explained by variation in non-CpG divergence,
DNA methylation level and GC content. It was posi-
tively correlated with divergence and methylation level
and negatively correlated with GC content. Germ line
transcription level was of subordinate importance, while
the impact of female and male recombination rate was
negligible. Estimates of the standardized slopes and their
significance levels are listed in Table 2. While for data-
sets A and B non-CpG divergence was the dominant
explanatory variable (standardized slopes of 0.1832 and
0.1574, respectively, compared to -0.1036 and -0.1382
for GC content and 0.0385 and 0.1047 for DNA methy-
lation level), DNA methylation level showed the stron-
gest impact for dataset C (0.3454 compared to -0.1849
for GC content and 0.1722 for non-CpG divergence).
The percentage of explained deviance was 17.4, 33.6 and
70.0 for datasets A, B and C, respectively.
To assess the strand bias in CpG transition rate, we

computed the difference between CpG transition rate
on the coding and on the non-coding strand. We found
95% confidence intervals (-0.275, 0.237) for dataset A,
(-0.204, 0.174) for dataset B and (-0.096, 0.085) for data-
set C. Thus, as differences in rates were distributed
around zero, we could not find evidence for transcrip-
tion-induced strand bias in CpG transition rate in any
of the three datasets.
We repeated the above analysis using CpG transver-

sion rate as the response variable. Estimates of the stan-
dardized slopes and their significance levels are listed in
Table 3.

Table 1 Mean values and variances of the explanatory variables for datasets A, B and C

Dataset A Dataset B Dataset C

Mean Variance Mean Variance Mean Variance

Non-CpG divergence 0.0206 3.98e-05 0.0207 3.00e-05 0.0203 2.93e-05

Methylation level 0.7723 1.17e-02 0.7588 1.45e-02 0.4348 4.09e-02

GC content 0.3961 3.28e-03 0.4221 3.93e-03 0.4719 5.42e-03

Transcription level 2.5920 4.22e-01 2.5770 4.00e-01 2.6240 3.98e-01

Female recombination ratea 0.0721 2.03e-01 0.0832 2.23e-01 0.0462 3.08e-01

Male recombination ratea -0.3969 5.01e-01 -0.3380 4.50e-01 -0.3551 5.27e-01

CpG[o/e]b 0.4168 1.85e-02 0.4334 1.68e-02 0.7026 6.82e-02

Dataset A contains no CpG islands (CGIs) or DNase I hypersensitive sites (DHSs)), dataset B contains DHSs but no CGIs, and dataset C contains both CGIs and
DHSs. aLog-transformed values. bObserved versus expected CpG content.
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For all three datasets non-CpG divergence was the
dominating explanatory variable (standardized slopes of
0.2044, 0.1823 and 0.1414 for datasets A, B and C,
respectively), followed by GC content (-0.0918, -0.1401
and -0.1076). Transcription level and methylation level
were of minor importance (standardized slopes generally
<0.05). As for the CpG transition rate, female and male
recombination rate were of negligible importance. Nota-
bly, the percentage of explained deviance was generally
rather low, with values of 3.4, 8.4 and 14.8 for datasets
A, B and C, respectively.
In order to investigate the contrasting effects of

methylation level on CpG transition and transversion
rates in more detail, we analyzed the relationship
between the five explanatory variables and the transi-
tion/transversion rate ratio (�) for cytosines located in
CpG sites (excluding introns with CpG transversion rate
values of zero). We then performed a linear regression
analysis for each of the three datasets. Estimates of the

standardized slopes and their significance levels are
listed in Table 4. For datasets A and B the overall
amount of explained variance was low (3.97% and
1.73%, respectively) and there was no clear pattern com-
mon to both datasets. However, for dataset C we found
the amount of explained variance to be as high as
17.73%. With a standardized slope of 0.8127, methyla-
tion level was clearly the dominating explanatory vari-
able, followed by non-CpG divergence (0.2093) and GC
content (-0.1815). Germ-line transcription level and
female and male recombination rate were of minor
importance.
As a negative control we performed logit-regression

analysis using CpH transition rate as the response vari-
able, which we a priori did not expect to be affected by
methylation level (Table 5). For all three datasets non-
CpG divergence was the dominant explanatory variable
(standardized slopes of 0.2559, 0.2205 and 0.2094), fol-
lowed by GC content (-0.1366, -0.1389 and -0.1681),

Table 2 Summary of parameter estimates and significance levels of the multivariate generalized linear regression
analysis for CpG transition rate

Dataset A Dataset B Dataset C

Estimate -log10(p) Estimate -log10(p) Estimate -log10(p)

Divergence 0.1832 > 15.70 0.1574 > 15.70 0.1722 > 15.70

Methylation level 0.0385 9.50 0.1047 > 15.70 0.3454 > 15.70

GC content -0.1036 > 15.70 -0.1382 > 15.70 -0.1849 > 15.70

Transcription level -0.0145 1.95 -0.0094 3.01 -0.0114 1.46

Female recombination rate 0.0031 0.22 0 0 0.0158 2.29

Male recombination rate -0.0054 0.43 -0.0084 2.29 -0.0167 2.42

Explained deviance 1,243 5,310 8,038

Residual deviance 5,894 10,496 3,451

na 13,038 21,636 3,871

AICb 37,300 78,030 17,172

Dataset A contains no CpG islands (CGIs) or DNase I hypersensitive sites (DHSs)), dataset B contains DHSs but no CGIs, and dataset C contains both CGIs and
DHSs. aSample size. bAkaike Information Criterion.

Table 3 Summary of parameter estimates and significance levels of the multivariate generalized linear regression
analysis for CpG transversion rate

Dataset A Dataset B Dataset C

Estimate -log10(p) Estimate -log10(p) Estimate -log10(p)

Divergence 0.2044 > 15.70 0.1823 > 15.70 0.1414 > 15.70

Methylation level 0.0222 1.14 0.0534 14.88 0.0781 > 15.70

GC content -0.0918 > 15.70 -0.1401 > 15.70 -0.1076 > 15.70

Transcription level -0.0440 3.84 -0.0322 8.15 -0.0336 3.64

Female recombination rate 0.0071 0.26 -0.0084 0.83 0.0044 0.19

Male recombination rate 0.0022 0.07 -0.0006 0.04 -0.0011 0.04

Explained deviance 356 1,421 519

Residual deviance 9,979 15,544 2,986

na 13,038 21,636 3,871

AICb 21,460 50,718 12,684

Dataset A contains no CpG islands (CGIs) or DNase I hypersensitive sites (DHSs)), dataset B contains DHSs but no CGIs, and dataset C contains both CGIs and
DHSs. aSample size. bAkaike Information Criterion.

Mugal and Ellegren Genome Biology 2011, 12:R58
http://genomebiology.com/2011/12/6/R58

Page 3 of 12



while DNA methylation level was only of marginal
importance (all slopes < 0.003 and P-values > 0.01).
Here, the percentage of explained deviance was in all
cases > 50% (59.3, 66.3 and 73.2).
In order to examine if the, in most cases, relatively

low percentage of explained deviance for CpG transition
and transversion rates was a matter of stochastic noise
on substitution rate estimates, we increased the
sequence length of each data point by concatenating all
introns of each gene from dataset A (n = 5,454 genes).
We then performed logit-regression analysis following
the above procedure (Table 6). There were no drastic
changes in the pattern and importance of explanatory
variables compared to the per-intron analysis of dataset
A. As a slight change though, GC content was now the
dominant explanatory variable for variation in CpG
transition rate (-0.1229 standardized slope), closely fol-
lowed by non-CpG divergence (0.1182) and then DNA
methylation level (0.0413). With respect to the percen-
tage of explained deviance, there was a general increase:
26.9% versus 17.4% for CpG transition rate, 8.4% versus

3.4% for CpG transversion rate, and 65.9% versus 59.3%
for CpH transition rate.
The ratio of the observed to the expected CpG con-

tent (CpG[o/e]) has been used as an indication of CpG
mutability or a proxy for DNA methylation level. To
qualitatively explore these relationships, we visualize the
relationships between CpG[o/e] and DNA methylation
level (Figure 1) and between CpG[o/e] and CpG transi-
tion rate (Figure 2). A high rate of CpG mutation should
deplete the frequency of CpG sites so that CpG[o/e]

decreases. Given the above demonstration that methyla-
tion level is positively correlated with CpG mutability,
one would thus expect CpG[o/e] to be negatively corre-
lated with methylation level. Figure 1 visualizes this
negative correlation between CpG[o/e] and methylation
level. Spearman rank correlation coefficients (rs) are
-0.44, -0.47 and -0.67 for datasets A, B and C, respec-
tively. As expected, CpG[o/e] and CpG transition rate are
also negatively correlated (rs = -0.21, -0.30 and -0.58 for
datasets A, B and C, respectively). As seen in Figure 2,
this relationship might be nonlinear. Figure 3 shows the

Table 4 Summary of parameter estimates and significance levels of the multivariate linear regression analysis for the
CpG transition/transversion rate ratio (�)

Dataset A Dataset B Dataset C

Estimate -log10(p) Estimate -log10(p) Estimate -log10(p)

Divergence 0.2574 15.20 0.1450 9.54 0.2093 8.46

Methylation level 0.1666 6.79 0.3116 > 15.70 0.8127 > 15.70

GC content 0.2478 13.98 0.0257 0.57 -0.1815 5.84

Transcription level -0.1744 7.31 -0.0294 0.69 0.0871 1.77

Female recombination rate -0.0321 0.48 0.0533 1.60 0.0210 0.25

Male recombination rate 0.0971 2.49 0.0642 2.13 -0.0130 0.14

Explained variance 3.97% 1.73% 17.73%

na 5,550 14,165 3,376

Dataset A contains no CpG islands (CGIs) or DNase I hypersensitive sites (DHSs)), dataset B contains DHSs but no CGIs, and dataset C contains both CGIs and
DHSs. aSample size.

Table 5 Summary of parameter estimates and significance levels of the multivariate generalized linear regression
analysis for CpH transition rate

Dataset A Dataset B Dataset C

Estimate -log10(p) Estimate -log10(p) Estimate -log10(p)

Divergence 0.2559 > 15.70 0.2205 > 15.70 0.2094 > 15.70

Methylation level 0 0 0.0036 1.34 0.0032 0.52

GC content -0.1366 > 15.70 -0.1389 > 15.70 -0.1681 > 15.70

Transcription level 0.0084 3.08 0.0065 6.09 0.0063 1.59

Female recombination rate 0.0048 1.15 0.0002 0.04 0.0019 0.27

Male recombination rate 0.0083 2.71 0.0046 2.91 0.0014 0.19

Explained deviance 10,790 24,947 6,639

Residual deviance 7,407 12,664 2,427

na 13,038 21,636 3,871

AICb 60,968 113,273 21,181

Dataset A contains no CpG islands (CGIs) or DNase I hypersensitive sites (DHSs)), dataset B contains DHSs but no CGIs, and dataset C contains both CGIs and
DHSs. aSample size. bAkaike Information Criterion.
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relationship between CpG transition rate and methyla-
tion level, the relationship that we explored quantita-
tively in the analyses presented above. With rs = 0.03,
0.14 and 0.67 for datasets A, B and C, respectively, note
the difference in the strength of correlation between the
sets of introns that do not contain CGIs (datasets A and
B) and the set of introns that contains CGIs (dataset C).
Because of male-biased mutation, mutation rates are

typically lower on the X chromosome than on auto-
somes [25,26] since the X chromosome spends approxi-
mately two-thirds of the time in females. We analyzed
the sex-bias in CpG transition rate and CpG-specific
transition rate (the CpG rate corrected for variation in
non-CpG divergence; see Materials and methods) by
comparing data from the X chromosome and the auto-
somes, where significance levels were based on a one-
way ANOVA (Table 7). While CpG transition rate was
generally higher on the autosomes than on the X chro-
mosome, the CpG-specific transition rate was similar in
the two chromosomal categories, indicating that

methylation-induced mutations occur at similar frequen-
cies on autosomes and the X chromosome. For visuali-
zation, box-plot diagrams are shown in Figure 4.

Discussion
Our analysis shows that variation in the substitution rate
of CpG sites in introns of human genes is mainly gov-
erned by three factors: non-CpG divergence, methyla-
tion level and GC content. Transcription level shows
only a weak influence and recombination rate has no
detectable importance. The relationship between CpG
transition rate and non-CpG divergence, methylation
level and GC content was similar in all three datasets
defined by the presence or absence of intronic DHSs
and/or CGIs: methylation level and divergence were
consistently positively correlated to CpG transition rate
whereas the local GC was always negatively correlated
to CpG transition rate. This indicates that even if
introns containing DHSs and/or CGIs are more likely to
evolve under selective constraint, the overall pattern is

Table 6 Summary of parameter estimates and significance levels of the multivariate generalized linear regression
analysis for the set of concatenated introns

CpG transition rate CpG transversion rate CpH transition rate

Estimate -log10(p) Estimate -log10(p) Estimate -log10(p)

Divergence 0.1182 > 15.70 0.1549 > 15.70 0.1854 > 15.70

Methylation level 0.0413 10.21 0.0261 1.44 0.0035 0.61

GC content -0.1229 > 15.70 -0.1404 > 15.70 -0.1423 > 15.70

Transcription level -0.0150 2.44 -0.0320 2.82 0.0107 5.53

Female recombination rate 0.0059 0.61 0.0073 0.32 0.0056 1.72

Male recombination rate -0.0047 0.44 -0.0066 0.29 0.0085 3.57

Explained deviance 880 333 6,538

Residual deviance 2,390 3,614 3,387

na 5,454 5,454 5,454

AICb 21,263 14,384 30,905
aSample size. bAkaike Information Criterion.
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Figure 1 Covariation between the observed versus expected CpG content (CpG[o/e]) and methylation level for intronic regions of the
human genome. The three panels show the covariation for datasets A, B and C, respectively (see text). Each grey dot represents one intronic
region. The black dashed line is the linear regression line of a simple linear regression model.
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not changed. Moreover, we note that non-CpG diver-
gence is similar in the three datasets, suggesting that the
impact of selection on intronic regions containing DHSs
and/or CGIs as a whole is low. This does not exclude
that selection acts on a subset of sites, but if so, the pro-
portion of such sites within introns seems to be low.
However, the relative importance of the three dominant
explanatory variables differs between the three sets of
introns; the presence or absence of CGIs especially
impacts on the hierarchical level of explanatory vari-
ables. Non-CpG divergence and local GC content have a
stronger impact than methylation level for introns not
containing CGIs (datasets A and B), while for introns
containing CGIs (dataset C) methylation level is the
most important factor. If introns containing CGIs are
under selection, it is difficult to envision a situation in
which epigenetic marks (methylation level) affect the
strength of selection at CpG sites. This is especially so if
one considers that a positive correlation between

methylation level and substitution rate would be
obtained, either directly or indirectly. Rather, the fact
that methylation level shows a much broader distribu-
tion in introns containing CGIs (Table 1, Figure 3),
where low methylation levels are usually necessary for
transcriptional activation, should provide higher power
to detect correlative relationships including methylation
level. This seems a more plausible explanation to the
stronger correlation between methylation level and CpG
transition rate in dataset C. In the following we discuss
in further detail the three main variables that explain
variation in the CpG substitution rate.

The effect of non-CpG divergence
The significant correlation between CpG transition rate
and non-CpG divergence demonstrates that regions
more amenable to mutations in general are also more
likely to show an increased CpG mutation rate. A signif-
icant proportion, likely the majority, of non-CpG
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Figure 2 Covariation between CpG transition rate and the observed versus expected CpG content (CpG[o/e]) for intronic regions of the
human genome. The three panels show the covariation for datasets A, B and C, respectively. Each grey dot represents one intronic region.
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Figure 3 Covariation between CpG transition rate and methylation level for intronic regions of the human genome. The three panels
show the covariation for datasets A, B and C, respectively. Each grey dot represents one intronic region. The black dashed line is the linear
regression line of a simple linear regression model.
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Table 7 Comparison of the CpG transition rate between the X chromosome and the 22 autosomes

CpG specific transition rate CpG transition rate

Levels of the one-way ANOVA Estimate P-value Estimate P-value

Intercept -0.0708 1.04e-03** -0.1730 6.82e-15***

Chromosome 1 0.0638 1.58e-02* 0.1531 1.83e-08***

Chromosome 2 0.0565 3.32e-02* 0.1567 9.46e-09***

Chromosome 3 0.0870 1.21e-03** 0.1809 5.97e-11***

Chromosome 4 0.0644 2.46e-02* 0.1759 2.37e-09***

Chromosome 5 0.0437 1.20e-01 0.1374 2.03e-06***

Chromosome 6 0.0579 4.94e-02* 0.1666 3.86e-08***

Chromosome 7 0.0330 2.97e-01 0.1293 6.84e-05***

Chromosome 8 -0.0036 9.08e-01 0.1382 1.53e-05***

Chromosome 9 0.0942 2.71e-03** 0.1890 4.94e-09***

Chromosome 10 0.0871 2.95e-03** 0.1864 6.22e-10***

Chromosome 11 0.0988 1.44e-03** 0.1911 2.09e-09***

Chromosome 12 0.0555 6.11e-02 0.1345 1.03e-05***

Chromosome 13 0.0625 8.53e-02 0.1501 5.88e-05***

Chromosome 14 0.0005 8.88e-01 0.0900 9.89e-03**

Chromosome 15 0.0333 9.87e-01 0.1376 2.74e-05***

Chromosome 16 0.0630 1.13e-01 0.1707 2.92e-05***

Chromosome 17 -0.0011 9.74e-01 0.1144 1.33e-03**

Chromosome 18 0.0862 1.92e-02* 0.1901 5.02e-07***

Chromosome 19 -0.0118 8.68e-01 0.1157 1.15e-01

Chromosome 20 -0.0077 8.46e-01 0.0756 6.28e-02

Chromosome 21 0.1033 5.49e-02 0.2319 2.76e-05***

Chromosome 22 0.0288 6.00e-01 0.1228 2.99e-02*

CpG-specific transition rate is corrected for among-chromosomes variation in divergence, GC content, DNA methylation and transcription level; CpG transition
rate is only corrected for variation in GC content, DNA methylation and transcription level among chromosomes. Estimates and P-values of a one-way ANOVA are
listed, where the contrasts are based on the X chromosome. P-values are marked with asterisks to highlight their significance level, where single, double and
triple asterisks indicate P-values below a threshold of 0.05, 0.01 and 0.001, respectively.
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Figure 4 Box plots of the CpG-specific transition rate (see Materials and methods) and CpG transition rate per chromosome. The black
dashed line represents the overall mean over all chromosomes.
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mutations are thought to arise as the result of replica-
tion errors in mitotic cell divisions of the germ line
[27,28]. Although most CpG mutations are considered
to occur spontaneously, CpG sites should also be subject
to replication errors where mutations are introduced
independent of cytosine methylation status. If so, geno-
mic parameters affecting the local rate of non-CpG
mutation rate may contribute to variation in the CpG
mutation rate as well. The correlation between CpG
transversion rate and non-CpG divergence and the
observation that the correlation between non-CpG
divergence and CpG transition rate stays significant
after incorporating methylation level support this expla-
nation. Moreover, the finding that CpG transition rate is
higher on autosomes than on the X chromosome when
non-CpG divergence is not corrected for is in line with
the predictions from male-biased mutation, which is
considered a consequence of replication-induced muta-
tions [25,26]. Note that a model of replication-associated
CpG mutations may be reinforced by methylation level
if methylated cytosines are more prone to replication
errors than unmethylated cytosines.
Those factors that cause variation in the rate of non-

CpG mutation may thus also cause variation in the rate
of 5-methylcytosine to thymine substitution (for exam-
ple, via the incidence of deamination or the efficiency of
repair of 5-methylcytosine to thymine conversions). One
such possibility is that mCpG marks sequences for chro-
matin modification, or is the result of such modification,
and that chromatin structure affects the overall muta-
tion rate at non-CpG sites [12,29]. Another possibility is
that both CpG and non-CpG substitution rates are
related to replication timing in that the incidence of
generalized DNA damage increases during replication
[10].

The effect of methylation level
Although certain types of sequences are known to be
methylated at high (repeat elements, CGIs of inactivated
genes) or low (CGIs of expressed genes) levels [30,31],
methylation-induced CpG mutability has often been
considered to occur genome-wide at a relatively con-
stant rate. Recently, the correlation between GC content
and CpG substitution rate has been interpreted as GC
co-varying with methylation level [5], which would then
be the cause of CpG mutation rate variation. Using mul-
tivariate regression analysis, our study provides evidence
that both parameters independently impact on CpG
mutation rate variation. However, while GC content
affects cytosine mutability in general, intronic levels of
methylation specifically affect the rate of CpG transi-
tions; the analysis of variation in CpH transition rate
and variation in the CpG transition/transversion rate
ratio clearly shows that methylation level has the

strongest effect on CpG transitions. In particular, the
lack of correlation between methylation level and CpH
transition rate argues against the possibility that methy-
lation level co-varies with a parameter that has an over-
all effect on substitution rate variation. Chen et al. [11]
found that both CpG and non-CpG substitution rate
increases with replication timing. In the case of the
non-CpG rate, this was suggested to result from an
increased rate of damage, or decreased efficiency of
repair, during replication. In the case of the CpG rate,
they noted that methylation levels increase from early to
late replicated regions so that the correlation between
CpG rate and replication timing could be an indirect
effect caused by the correlation between methylation
status and replication timing. However, while not
excluding an effect of replication timing on the CpG
rate, our results demonstrate that the link between CpG
and non-CpG rates is independent of methylation status.
A difference between our study and that of Chen et al.
[11] is that they incorporated methylation data from
approximately 2,000 PCR amplicons on three different
human chromosomes while we utilized whole-genome
methylation data from a total of more than 38,000
introns each more than1 kb in length.
An observation that further testifies to the role of

methylation level on the rate of CpG transition is the
correlation between methylation level and the CpG tran-
sition/transversion rate ratio (�). For dataset C, where
the methylation level was of the broadest range, methy-
lation was by far the most important factor explaining
the variation in � (standardized slope of 0.81). Our
results thus point out the impact of methylation level
specifically on CpG transition rate variation. Moreover,
several arguments suggest that the effect of methylation
level on CpG transition rate that we observe is, in fact,
underestimated. First, data on methylation levels were
from mature sperm cells, whereas most mutations in
the male germ line are expected to occur during mitosis
in spermatogonia. Although methylation levels of sperm
cells and spermatogonia are correlated [32], they may
not be identical. Second, data on methylation levels
represent the present day state of epigenetic modifica-
tion, whereas the estimate of CpG substitution rate is
averaged over millions of years of human evolution. If
methylation patterns have changed over this evolution-
ary time scale, we should expect the correlation between
methylation level and substitution rate to be reduced.
Third, since the sex-bias in the rate of CpG mutation is
small [2,33,34], maternally originating CpG mutations
should contribute significantly to the CpG substitution
rate. Since data on methylation levels from human
oogenesis are lacking, we are unable to include female
methylation level as an explanatory variable. Given that
methylation patterns may very well differ between the
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male and female germ line, as it does between sperm
cells and somatic tissues [31], using only methylation
data from the male germ line should reduce the
observed correlation between methylation level and
CpG substitution rate.

The effect of GC content
We found a negative correlation between CpG substitu-
tion rate and local GC content, confirming similar
results from previous work [5,14,15,35] (but see [36]). It
has been argued that high GC content stabilizes double-
stranded DNA and thereby reduces mutation rate
[5,15,35]. Deamination requires physical separation of
the two DNA strands. The thermodynamic stability of
the double-stranded DNA should be influenced by the
local GC content since G:C bonds are stronger than A:T
bonds. This makes intuitive sense. However, the nega-
tive correlation with GC content is not specific to CpG
substitution rate since we also find a significant negative
correlation between CpH transition rate (that is, the C
to T transition rate in non-CpG sites) and GC content.
Correlations to GC content need careful interpretation
as GC content itself co-varies with many other genomic
parameters. More work will clearly be needed here to,
for example, test hypotheses on the role of biased gene
conversion [35] or on regional variation in the rate of
deamination of unmethylated cytosines [15] to explain
the correlation between non-CpG divergence and GC
content.

The effect of germ line transcription level
Although the effect was generally very low (standardized
slopes < 0.015 for CpG transitions and 0.03 to 0.04 for
CpG transversions), there were consistently negative
correlations between CpG substitution rate and tran-
scription level. In contrast, the C to T transition rate at
non-CpG sites (that is, the CpH transition rate) was
positively correlated with transcription level. Even
though the effect was weak, the direction of correlation
was coherent among all three sets of introns analyzed. It
has previously been shown that C to T transitions in
non-CpG sites can be induced during active transcrip-
tion, known as transcription-induced mutations
[9,37,38], which is reflected by a strand bias in mutation
rate. As we find no evidence for strand bias in CpG sub-
stitution rate, it seems unlikely that the negative correla-
tion between transcription level and CpG substitution
rate reflects an influence via a strand-specific mechan-
ism, such as transcription-induced mutations, or the
efficiency of transcription-coupled repair, a repair
mechanism that repairs bulky lesions during active tran-
scription [39-41]. It might, however, reflect higher acces-
sibility to DNA for repair enzymes specific to
methylated CpG sites during active transcription [12,29].

Conclusions
Our study found a significant correlation between the
extent of germ line methylation and the substitution
rate at human CpG sites. It thus provides novel and
direct empirical support for a link between epigenetic
imprinting and the rate of molecular evolution. We also
show that the CpG substitution rate is positively corre-
lated with non-CpG divergence, suggesting common
factors involved in governing overall mutation rate var-
iation in the human genome. These results will help in
understanding the causes of mutation rate variation and
will thus help in formulating neutral models of sequence
evolution.

Materials and methods
Sequence data
Alignments of orthologous intronic regions for human
(GRCh37), rhesus macaque (MMUL1.0) and mouse
(NCBIM37) were retrieved as part of the 11-way euther-
ian mammal whole-genome alignments from the
Ensembl database release 59 via the Ensembl perl Appli-
cation Programme Interfaces (APIs). Positions of intronic
regions were established based on human exonic regions
extracted from Known Genes dataset at the UCSC table
browser [42], where intronic regions (and their aligned
sequences) were defined as all non-exonic regions within
a human gene. We restricted our dataset to introns that
fell within a single synthenic alignment block. To reduce
stochasticity in downstream analysis, we further limited
our dataset to introns with a minimum length of 1,000
unambiguous sites, of which there were 56,363.

Estimation of dinucleotide substitution rates
For estimation of three types of dinucleotide substitu-
tion rate - CpG transition rate, CpG transversion rate
and CpH transition rate (where H is either A, C or T) -
we used the PAML software package version 4.1 [43].
We applied the general time-reversible substitution
model implemented in baseml and allowed no substitu-
tion rate variation within an intron. For estimation of
dinucleotide substitution rates we first computed the
marginal probability distribution of intronic sequences
of the common ancestor of human and rhesus macaque
using mouse as an outgroup. As parsimonious sequence
reconstruction is critical when it comes to the assign-
ment of the ancestral CpG state, we used maximum-
likelihood-based ancestral sequence reconstruction [44].
Then we estimated human-specific dinucleotide substi-
tution rates based on the parsimony principle by com-
parison of the reconstructed ancestral sequences and
the human sequences. Here, CpG transition rate was
defined as the number of CpG to TpG mutations per
CpG site occurring on either of the two DNA strands
(that is, CpG to TpG or CpG to CpA). Only in order to
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address the mutational strand bias in CpG mutation
rate, we distinguished between two cases: CpG to TpG
occurring on the coding strand or CpG to TpG occur-
ring on the non-coding strand. Analogously, CpG trans-
version rate was defined as the number of CpG to RpG
mutations (where R is either A or G) per CpG site
occurring on either of the two DNA strands, and CpH
transition rate was defined as the number of CpH to
TpH mutations per CpH site occurring on either of the
two DNA strands.
Given the evolutionary distance between human and

rhesus macaque, we cannot exclude the possibility that
more than a single mutation has occurred at CpG sites,
which our method based on the parsimony principle
assumes by necessity. This may lead to CpG rates being
underestimated. To address how this could potentially
affect the downstream statistical analyses of the influ-
ence of different explanatory variables on CpG rates, we
compared human-specific CpG transition rates esti-
mated using mouse-rhesus macaque-human alignments
and rhesus macaque-chimpanzee-human alignments.
Further, we compared CpG transition rates estimated
with the method described here with a pure counting
method. As described in Additional file 1, while we are
likely to underestimate the CpG transition rate in the
human-rhesus monkey comparison, we are still able to
capture the general tendency of high versus low CpG-
diverged regions. Since our downstream statistical ana-
lyses aim to explain the variation in CpG transition rate,
and not to quantify the CpG transition rate, inferences
based on our results should not be critically affected.

Estimation of nucleotide divergence
We estimated human-specific non-CpG divergence for
the set of 56,363 introns as the divergence between
human and the ancestor of human and rhesus macaque
after all sites showing a CpG in any of human, rhesus
macaque and mouse had been masked. Again, estima-
tion was based on the PAML software package version
4.1 and the general time-reversible substitution model
implemented in baseml allowing no substitution rate
variation within an intron.

DNA methylation level
We downloaded data on whole-genome human sperm
cell DNA methylation levels from Array-Express experi-
ment E-TABM-482 [22]. Methylation levels - that is, the
fraction of methylated CpG sites among all CpG sites -
were calculated for 100-bp windows throughout the
genome. We extracted those 100-bp windows located
within introns to compute average DNA methylation
levels of introns weighted by the number of CpG sites
per window. From the initial set of 56,363 introns we
discarded introns containing less than five windows for

which methylation status was available. It should be
noted that we used methylation levels in human sper-
matozoa as an indicator of germ line methylation status.
In theory, methylation levels might differ between sper-
matozoa and germ cells; however, it has recently been
shown that sperm cell and germ cell DNA methylation
status are highly correlated, at least in mice [32].

Gene expression data set
We used human Affymetrix exon array expression data
from testis [45], evaluated by Xing et al. using a probe
selection algorithm [46], to determine the level of tran-
scriptional activity in germ cells. Three repeated mea-
surements of gene expression values, denoted as
expression indices, were available. Following Xing et al.
[45], we took the logarithm of the expression indices to
gain a measure approximately linearly proportional to
transcription levels in germ cells. Subsequently, mean
values were computed for each set of repeated measure-
ments. Assignments of expression values to Ensembl
gene IDs were based on a table extracted from the
UCSC table browser. Finally, we assigned each intronic
region the transcription level of its respective gene.

Recombination rate
We used deCODE female and male human recombina-
tion rate estimates for 1-Mb windows reported by Kong
et al. [47]. The coordinates for the 1-Mb windows are
based on the NCBI36 assembly of the human genome.
As estimates of substitution rates used in our study
were based on the GRCh37 assembly, we projected the
1-Mb windows onto the latter assembly via the coordi-
nate translation utility of the Ensembl database.

DNA sequence composition
Intronic GC content was defined as the frequency of
guanine and cytosine in all unambiguously assigned
sites. The ratio of observed versus expected CpG con-
tent (CpG[o/e]) was computed as the frequency of CpG
sites divided by the frequency of C and G:

CpG[o/e] =
p(CpG)
P(C)p(G)

where p(X) represents the frequency of X in the num-
ber of unambiguously assigned sites of the respective
intron.

Classification of introns
There is clear evidence of functional constraints in non-
coding DNA (reviewed in [48]), which is likely to
include intronic sequences. This might affect attempts
to find correlations between the intronic CpG substitu-
tion rate and other genomic parameters since selection,
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if strong enough, could blur existing correlations. In
contrast, it is unlikely that selection adds to existing cor-
relations, unless there is interaction between the
strength of selection and the genomic parameters under
consideration. To investigate the potential impact of
selection, we considered two types of potential regula-
tory sequences contained within introns, CGIs and
DHSs. CGIs, which are often hypomethylated in many
tissues, tend to be involved in transcription regulation
and hence might be under selection. By the same token,
DHSs, which are sites easily accessible to DNA proteins
and indicators of open chromatin structure, are com-
monly considered to identify the location of potential
regulatory elements [49]. CGIs were identified based on
the Gardiner-Garden criteria [50] and DHSs were iden-
tified as part of the ENCODE pilot project [51], the lat-
ter available through the Ensembl Human Regulatory
build version 8. Note that the Gardiner-Garden criteria
are only sequence-based and may thus not be specific
for bona fide CGIs [52]. We then classified introns on
the basis of the presence or absence of such sequences.
Dataset A was defined as introns containing neither
CGIs nor DHSs (13,038 introns), dataset B was defined
as introns containing DHSs but not CGIs (21,636),
while dataset C was defined as introns containing both
CGIs and DHSs (3,871). Dataset A might represent
introns most closely evolving neutrally. We discarded 41
introns containing CGIs but no DHSs from the analysis.

Multivariate generalized linear regression analysis
All statistical analyses were performed with the software
package R version 2.7.2. We performed generalized linear
regression analysis for a set of 38,586 introns where esti-
mates for each of the three dinucleotide substitution rates
as response variables and estimates of non-CpG diver-
gence, DNA methylation level, intronic GC content, germ
line transcription level and DNA recombination rate as
possible explanatory variables were available. We imple-
mented a logit link function and binomially distributed
error terms in the generalized linear model, as estimates of
dinucleotide substitution rates were binomial data. To
reduce skewness in the distribution of recombination rate,
recombination rate was log-transformed to base 10, after
adding a constant of 0.01 in order to allow for zero rate
values. Regression analysis was performed after Z-transfor-
mation of the explanatory variables, which means standar-
dization of the mean value to 0 and of the standard
deviation to 1. Note that the term ‘explanatory variable’ is
meant in a statistical context and does not necessarily
imply a causative role of a particular variable.

Sex-bias in mutation rate
To evaluate the strength of sex-bias in methylation-
induced CpG transition rate, we compared CpG

transition rate of autosomal and X-linked introns by
applying a one-way ANOVA to CpG transition rates
grouped by chromosomes with the contrast matrix
based on the X chromosome. We corrected CpG transi-
tion rates for variation in non-CpG divergence, methyla-
tion level, intronic GC content, germ line transcription
level and recombination rate among chromosomes,
which we denoted as CpG-specific transition rate. For
comparison, one-way ANOVA was also performed with-
out correction for variation in non-CpG divergence
among chromosomes, simply denoted as CpG transition
rate.

Additional material

Additional file 1: Supplementary text and Supplementary figures S1
and S2.
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