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Abstract
Background: There is considerable interest in the development of methods to efficiently identify all coding variants 
present in large sample sets of humans. There are three approaches possible: whole-genome sequencing, whole-
exome sequencing using exon capture methods, and RNA-Seq. While whole-genome sequencing is the most 
complete, it remains sufficiently expensive that cost effective alternatives are important.

Results: Here we provide a systematic exploration of how well RNA-Seq can identify human coding variants by 
comparing variants identified through high coverage whole-genome sequencing to those identified by high coverage 
RNA-Seq in the same individual. This comparison allowed us to directly evaluate the sensitivity and specificity of RNA-
Seq in identifying coding variants, and to evaluate how key parameters such as the degree of coverage and the 
expression levels of genes interact to influence performance. We find that although only 40% of exonic variants 
identified by whole genome sequencing were captured using RNA-Seq; this number rose to 81% when concentrating 
on genes known to be well-expressed in the source tissue. We also find that a high false positive rate can be 
problematic when working with RNA-Seq data, especially at higher levels of coverage.

Conclusions: We conclude that as long as a tissue relevant to the trait under study is available and suitable quality 
control screens are implemented, RNA-Seq is a fast and inexpensive alternative approach for finding coding variants in 
genes with sufficiently high expression levels.

Background
The study of common human diseases is rapidly moving
away from an exclusive focus on common variants using
genome-wide association studies and toward sequencing
approaches that represent most variants, including those
that are rare in the general population.

Although rapidly falling, the per base costs of next gen-
eration sequencing platforms still preclude the genera-
tion of large sample sizes of entirely sequenced genomes
at high coverage. In addition to this economic constraint,
it is widely appreciated that the very large number of vari-

ants identified in such studies will make it difficult to use
association evidence alone to identify causal sites. For
these reasons, there has been considerable interest in
focusing attention on coding variants as a first step at
complete representation of human variation. Part of the
motivation for this approach stems from the experience
with Mendelian diseases, in which 59% of the causal vari-
ants are either missense or nonsense mutations [1].
Although there has been considerable speculation on the
topic, there are in fact no solid data showing that the pic-
ture is any different for common diseases, which may also
be influenced by variants that are in or near protein cod-
ing sequence [1].

The most comprehensive approach for focusing on
exons alone is clearly exome capture, where regions
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matching a defined set of coding exons are pulled from
the genomic DNA (gDNA) using microarrays and then
sequenced. However, this approach requires an initial and
costly hybridization step. The cost of exome sequencing
has contributed to the interest in sequencing the tran-
scriptome (RNA-Seq) as an alternative, and possibly eas-
ier and less expensive strategy [2]. While this approach
will clearly miss poorly expressed genes in whatever tis-
sue is being studied, it does have the advantage of gener-
ating additional information, such as gene expression
level and splicing patterns.

Although exome capture was demonstrated to identify
approximately 95% of genomic single nucleotide variants
(SNVs) in curated and non-paralogous exons [3], it is not
currently known to what extent SNVs identified by RNA-
Seq capture the full set of exonic SNVs identified by
genomic sequencing. If the ability to capture SNVs by
RNA-Seq is highly dependent on expression level, then
this method would be useful only when performed in the
appropriate tissue type. If, on the other hand, RNA-Seq at
high coverage allows SNVs to be captured even in genes
that are not highly expressed, then both methods could
be useful for opening up sequencing studies to larger
datasets in more diverse scientific studies.

Here, we have sequenced the entire genome and tran-
scriptome of a single individual to high coverage. By com-
paring the SNVs identified in the transcriptome at
different levels of coverage to those identified in the
gDNA, we are able to directly evaluate how well RNA-Seq
captures genomic variants.

Results
Alignment and coverage
Both DNA and RNA were extracted from peripheral
blood mononuclear cells (PBMCs) from the same individ-
ual. Both the cDNA and gDNA were sequenced using the
Illumina Genome Analyzer II. Sequencing of the gDNA
produced 1,450 million reads, each 75 bp long. Ninety
percent of these reads were aligned to the human refer-
ence genome by BWA [4], and after removing potential
PCR duplicates, the remaining 980 million reads pro-
duced a coverage of at least 5× for 94% of the bases in the
genome (gaps in reference genome excluded), and the
mean coverage for these bases was 24×.

Sequencing of the cDNA produced 280 million reads,
half 75 bp long and half 68 bp long. TopHat [5] was used
to align these reads to the reference genome, with exons
and splice junctions restricted to the 45,455 protein-cod-
ing transcripts annotated in Ensembl version 50. Sixty-
nine percent of these reads gave unique alignments,
aligning to exactly one location in the specified transcrip-
tome. Reads aligning to more than one location were dis-
carded. After removing potential PCR duplicates, the
remaining 81 million reads produced a mean coverage of

above 5× for 51% of exons: these exons had a median cov-
erage of 51×.

Single nucleotide variants and overlap between datasets
We used SAMtools to call SNVs in our aligned gDNA and
cDNA sequences. Indels and large structural variants
were not analyzed. SAMtools called 51,055 SNVs in pro-
tein-coding exons in gDNA and 64,128 in cDNA. Of
these, 48,740 in gDNA and 40,605 in cDNA passed qual-
ity control filters, and 19,054 of these overlapped between
the two datasets in terms of position. When considering
overlap between cDNA and genomic SNV calls, two mea-
sures were examined: sensitivity and specificity. Sensitiv-
ity was defined as the number of true positives (SNVs
overlapping between the two datasets) divided by the
number of true positives plus the number of false nega-
tives (SNVs existing in the gDNA but not the cDNA).
Specificity was defined as the number of true positives
divided by the number of true positives plus the number
of false positives (SNVs existing in the cDNA but not the
gDNA). Quality control filters were optimized to maxi-
mize both the sensitivity and specificity in this study. In
this dataset the sensitivity was 0.39 and the specificity
was 0.47. If an exact match of the genotype was required
as well as location, then the sensitivity fell to 0.35 and
specificity to 0.42.

SNVs called in the gDNA and cDNA were also com-
pared with entries in dbSNP. It was found that 90% of the
gDNA exonic SNVs corresponded to a dbSNP entry,
while this was true of only 56% of the cDNA SNVs. How-
ever, a further breakdown revealed that 94% of the true
positive cDNA SNVs corresponded to a dbSNP entry,
while only 23% of the false positives did the same. The
false negatives corresponded to dbSNP entries 89% of the
time.

SNV identification at different levels of expression and 
coverage
Many of the exons in Ensembl's transcript library are
hypothetical and not confirmed to be expressed. A list of
core exons as defined by the Affymetrix (Santa Clara,
California, USA) Human Exon 1.0 ST Array was utilized
to focus on exons with better curation. This list was fur-
ther screened to only include exons present in Ensembl's
list of canonical transcripts, resulting in 172,739 core
exons. When focusing on just core exons, sensitivity and
specificity rose to 0.44 and 0.55, respectively (Figure 1),
which coincided with the percentage of exons having at
least 5× coverage rising to 61% (median coverage for
these exons was 57×).

We then evaluated how the number of reads and the
level of expression affected the specificity and sensitivity
of cDNA sequencing. Using data from previous studies
on the level to which most of the transcripts containing
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these core exons are expressed in PBMCs [6], we defined
expression level for each transcript as a percentage of the
most highly expressed transcript in that tissue. For exons
in our dataset the sensitivity and specificity both rise as
known PBMC expression increases, until an expression
level of 4% of the most highly expressed transcript, at
which point both measures asymptote, with variants
called about equally well for all expression levels above
this (Figure 2). Ninety-four percent of exons from genes
above this expression level, or 'PBMC-expressed genes',
had at least 5× coverage, and the median coverage for

exons with at least 5× coverage was 126×. The sensitivity
also rose to 0.81 and the specificity to 0.67.

We also evaluated how the absolute number of true
positive SNVs called depends on the amount of sequence
data, in lanes, for all exons and for exons from PBMC-
expressed genes (Figure 3). Seventy-nine percent of the
6,434 true positive variants identified in PBMC-
expressed genes were identified with even one lane of
sequence data, which is approximately 35 million reads in
this instance. The total number of variants identified in
all genes, however, increased substantially as more lanes
were added. For the approximately 4,500 PBMC-
expressed genes (Figure 4), even a single lane can be
expected to capture most of the coding variants present.

We also found that the percent overlap with dbSNP
changed as expression level and coverage changed.
Although the percentage of SNV calls with a correspond-
ing dbSNP entry remained relatively stable at all expres-
sion and coverage levels for the true positives and false
negatives in our dataset, this was not true of the false pos-
itives. The percentage of false positives that overlapped
with dbSNP decreased as coverage increased (Supple-
mental figure S3 in Additional file 1) and increased as
expression level increased (Supplemental figure S4 in
Additional file 1).

SNV identification in genes with and without paralogs
An inspection of false positive SNVs identified in the
cDNA revealed that some arose from alignment of a read
to the wrong gene. In these cases the correct gene and the
gene chosen for alignment always had very similar
sequences. To determine if specificity would increase in a

Figure 2 Sensitivity and specificity by PBMC expression level. The 
level of PBMC expression was broken up into bins based on a log scale. 
The expression value is written as the percent of the most highly ex-
pressed transcript in the dataset. The measures of sensitivity and spec-
ificity are shown for increasing levels of PBMC expression, for sequence 
data from one lane, four lanes and eight lanes. There were approxi-
mately 35 million sequence reads in each lane.
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Figure 3 True positive SNVs identified as a function of the 
amount of sequence data generated. The number of true positive 
SNVs identified by RNA-Seq is shown for between one and eight lanes 
of sequence data, for exonic, core exonic and PBMC-expressed SNVs. 
PBMC-expressed genes are designated as those with an expression 
level of at least 4% of the most highly expressed PBMC transcript. There 
were approximately 35 million sequence reads in each lane.
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Figure 1 Sensitivity and specificity as a function of the amount of 
sequence data generated. Shown for all exons, core exons, and ex-
ons that are well expressed in PBMCs, designated as an expression lev-
el of at least 4% of the most highly expressed transcript in PBMCs. 
There were approximately 35 million sequence reads in each lane.
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set of unrelated genes, SNVs were called separately for
two groups of genes: those with paralogs, as annotated by
Ensembl, and those without. When SNVs were restricted
to exons in 12,124 transcripts from genes without anno-
tated paralogs, the overall sensitivity rose from 0.39 to
0.42 and the specificity rose from 0.47 to 0.54. If
restricted to PBMC-expressed genes without paralogs,
the sensitivity actually dropped slightly from 0.81 to 0.80,
but the specificity again rose from 0.67 to 0.72. In con-
trast, for SNVs in exons of 33,331 transcripts from genes
with paralogs, the sensitivity was 0.38 and the specificity
was 0.45 (sensitivity 0.81 and specificity 0.65 in PBMC-
expressed genes with paralogs).

Single nucleotide variant identification at different read 
depths
We studied the effect of read depth on specificity by
examining the read depth at individual SNV calls in our
complete RNA-Seq dataset of eight lanes. We found that
at a read depth of 3 (the minimum required for a variant
to be called), the specificity for SNVs found in the com-
plete set of exons was only 0.28, but that as read depth
increased, so did specificity, until it reached a plateau of
between 0.6 and 0.75 for read depths between 50 and
1,200 (Supplemental figure S1 in Additional file 1). The
13,892 SNVs called between these read depth levels had a
specificity of 0.67 (sensitivity of 0.19). However, above a
depth of 1,200, the specificity fell again, becoming as low
as 0.05 for the 94 SNVs with read depths greater than
2,000. Similar trends were found for core exonic SNVs
(sensitivity 0.22 and specificity 0.77), SNVs in PBMC-
expressed genes (sensitivity 0.59 and specificity 0.84), and
SNVs in PBMC-expressed genes without paralogs (sensi-
tivity 0.58 and specificity 0.90) when restricting to SNVs
with a read depth between 50 and 1,200 (Supplemental
figure S1 in Additional file 1).

We also studied the effect of read depth on specificity
as the dataset increased from one to eight lanes. We
found that at only one lane of RNA-Seq data, the specific-
ity was 0.5 for SNVs with a read depth of 3, which was far
better than the value of 0.28 found when using all eight
lanes of data. Again, the specificity increased as the read
depth increased, but in this lower coverage dataset the
specificity reached a plateau of between 0.6 and 0.75 at
greater than 10 reads, far earlier than the 50 reads needed
for specificity stability in the eight lane dataset. The spec-
ificity also decayed at a much lower read depth in this
smaller dataset, becoming less than 0.6 when the read
depth was greater than 150. As the dataset increased
from one lane to all eight lanes, the overall specificity
continually decreased (Figure 1), and the minimum and
maximum read depth value required for specificity to
remain stable continually increased (Supplemental figure
S2 in Additional file 1).

Discussion
If one simply considers all coding SNVs, our study sug-
gests that about 40% can be identified by RNA-Seq using
PBMCs as the RNA source. If we focus, however, on only
PBMC-expressed genes, we find that 81% of coding vari-
ants are identified. This suggests that RNA-Seq may be a
workable alternative for identifying exonic variants when
performed in the appropriate tissue for the trait of inter-
est.

One limiting factor in variant identification by RNA-
Seq is the ability to uniquely align a given read. Although
we were able to align 78% of our reads to a location in the
transcriptome, only 69% aligned to exactly one location
and could be kept in the analysis. Because exons are some
of the most conserved regions of the genome, without the
help of intervening and variable intron sequences it is
much harder to align a read to the correct gene, and espe-
cially to have it align to only one location. This limits
one's ability to identify variants in certain genomic loca-
tions, lowering the sensitivity of this method. Further-
more, if a read is uniquely aligned to the wrong gene, such
as a paralog, then this can result in false positive SNVs
being called in the cDNA. Restricting SNV calls to genes
without paralogs did increase specificity from 0.47 to 0.54
and sensitivity from 0.39 to 0.42.

Another limiting factor is coverage. Because genes are
expressed at different levels, in the random sampling of
transcripts that are sequenced there will be gross imbal-
ances. Some transcripts will have more than 1,000-fold
coverage while other transcripts, although also expressed
to some level in that tissue, will have coverage that is too
low for variants to be accurately called. Given the dimin-
ishing returns of additional sequencing in terms of vari-
ants called (Figure 3), it simply will not be possible to use
RNA-Seq to capture all exonic variants in genes with low

Figure 4 Distribution of genes by PBMC expression level. The 
number of genes lying within each PBMC expression level bin is shown 
in red. The cumulative number of genes expressed above each expres-
sion level is listed in blue. The expression value is written as the percent 
of the most highly expressed transcript in the dataset.
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expression levels. RNA-Seq is most useful for identifying
variants in a tissue type that highly expresses genes
related to the trait under study. One interesting possibil-
ity to improve the proportion of SNVs that can be called
would be to use more than one tissue type as a source for
the RNA. For example, data available on expression of
core exons in muscle shows that adding cDNA from this
tissue to PBMC cDNA would increase the number of
adequately expressed transcripts by 68% [6,7]. There are
no expression data for a more easily accessible tissue such
as skin for this exon array publicly available; however, one
can extrapolate that adding cDNA from almost any tissue
would be similarly beneficial to analysis.

A large number of false positive SNVs were identified in
this dataset: even when restricted to PBMC-expressed
genes without paralogs the specificity was only 0.72.
Many of these false positives, however, were due to the
very high coverage produced in this study. At low levels of
coverage, reads that could produce false positive calls are
not yet abundant enough to pass the quality control filters
used, and the specificity remains high. However, as more
reads are added to the dataset, the number of incorrect
alignments and sequencing mistakes increases, pushing
more and more of these false positive calls over the qual-
ity control filters. Thus, the more coverage that is added
in the search for true positives, the more false positives
that will appear in the data. We found that the specificity
for the dataset as a whole could be increased from 0.47 to
0.67 (and from 0.72 to 0.9 for PBMC-expressed genes
without paralogs), at a substantial cost to sensitivity, by
restricting the permissible read depth range for SNV
calls. The specificity was low at low read depths, as is
expected when a call is supported by less data; interest-
ingly, the minimum read depth required for high specific-
ity increased as coverage increased, supporting the view
that high coverage introduces more noise and comes with
a requirement for stricter quality control. An additional
support to this view was the finding of low specificity at
very high read depths. Both a minimum and a maximum
read depth cutoff are advisable for increasing the specific-
ity.

Some of the false positives found in this dataset are cer-
tainly due to the incorrect alignment of reads, as even
when a gene has no annotated paralog it can have sec-
tions with sequence similarities to other genes that per-
mit errors during alignment. Another alignment problem
that is unique to RNA-Seq is incorrect alignment at the
very ends of a read due to splicing. Because reads that
span exons require a certain number (four in our study)
of bases to fall on both sides of the exon-exon boundary
for proper alignment, reads that cross an exon boundary
at the very edge of the read will have between one and
three bases aligned to the wrong location. Our study
removed most of this type of false positive SNV during

the quality control process. Another scenario that would
produce a seemingly false positive SNV would be suffi-
cient coverage in the cDNA to call the variant but insuffi-
cient coverage in the gDNA sequencing to do the same:
however, in our study such bases had a median coverage
of 27× in the gDNA, which does not support this expla-
nation. Also, previous studies have shown that variants
can be present in the RNA but not the gDNA due to RNA
editing [2,8].

There are also likely to be disagreements between
gDNA and cDNA sequencing stemming from expression
differences. For example, some SNVs found in the
genomic sequence may be missed in the cDNA due to
expression balances, when an individual is heterozygous
for a given SNV yet the reference allele is much more
highly expressed. Also, an SNV may be called heterozy-
gous in the gDNA but homozygous in the cDNA due to
expression imbalances. In our dataset, 10% of the 19,054
SNVs that overlapped by location between gDNA and
cDNA were heterozygous in gDNA and yet homozygous
in cDNA. Differences in zygosity between the two meth-
ods can also result from insufficient coverage in one data-
set or the other: for example, 1% of these 19,054 SNVs
were homozygous in gDNA and yet heterozygous in
cDNA, and the median coverage for these SNVs in gDNA
was only 12×, compared to 28× for SNVs that matched
for zygosity. It is likely that many of the discrepancies
where the SNV was heterozygous in gDNA and homozy-
gous in cDNA also resulted from low coverage, as the
median coverage for this group was only 8× in the cDNA.
It should also be noted that only 13 of the 19,054 SNVs
that overlapped by location had completely mismatched
alleles, such as the cDNA being homozygous for a G and
the gDNA homozygous for C when the reference allele
was A.

Our study found that although the percent overlap of
our false positive SNVs with dbSNP entries was far less
than that of true positive (94%), false negative (89%), or all
exonic gDNA (90%) SNVs, it was still substantially greater
than zero (23%). Furthermore, we found that the percent
of false positives corresponding to dbSNP entries
increased as the PBMC expression level increased (Sup-
plemental figure S4 in Additional file 1), implying that the
'false positives' seen at high expression levels may actually
be true positives that were simply not seen in the gDNA
due to issues with coverage or alignment or because of
RNA editing. Additionally, we found that only 13% of the
false positive SNVs found in dbSNP had been genotyped
in HapMap, compared with 69% of the true positives
found in dbSNP. This suggests that many of the dbSNP
entries matching false positives are less well-curated, with
less supporting evidence. A brief inspection of a subset of
the SNVs showed that false positives were more likely to
have cDNA evidence (as opposed to gDNA evidence)



Cirulli et al. Genome Biology 2010, 11:R57
http://genomebiology.com/2010/11/5/R57

Page 6 of 8
supporting their dbSNP entry than were true positives;
this could be a reflection of either misalignment of the
cDNA reads for dbSNP entries, or RNA edits that would
not be seen in the gDNA. Finally, we found that the per-
cent overlap of false positives with dbSNP decreased as
the number of lanes of sequence data increased (Supple-
mental figure S3 in Additional file 1). This finding corre-
sponds with the fact that the overall specificity decreased
as coverage increased (Figure 1); these phenomena are
likely caused by the increasing ability of the random noise
inherently present in the data to overcome quality control
cutoffs as more and more reads were added, as described
above.

Two previous studies have also looked at using RNA-
Seq to identify SNVs. Chepelev et al. [2] used a dataset of
27 million uniquely aligned 30-bp RNA-Seq reads; while
they detected 50% of known exons with at least 1× cover-
age, and identified approximately 11,000 SNVs, they did
not compare these data to gDNA sequence and thus
could not calculate sensitivity or specificity of their meth-
ods. Shah et al. [8] used a dataset of 183 million RNA-Seq
reads of 38.9 bp each, 55 million of which aligned to
exons or exon junctions. They compared these data to 2.5
billion aligned gDNA reads of 48.2 bp to better under-
stand the evolution of mutation in a lobular breast tumor.
Although they showed that the number of SNVs called
through RNA-Seq increased as the number of reads
increased, they did not discuss the sensitivity or specific-
ity of SNV calls when compared to whole genome
sequencing, nor did they analyze how the number of
SNVs changed as known expression level changed.

Another technology that has been used to sequence
coding variants is exome capture. Because this method
sequences reads that are from gDNA but enriched for the
portions of interest, there are no complications with
aligning splice junctions or being limited by expression
level. A recent study showed that when restricted to the
non-paralogous exons of 16,496 curated protein coding
genes, exome capture utilizing 41 million 76-bp reads
(one quarter the number of bases we aligned) captured
SNVs with a sensitivity of 95% and a specificity of 90% [3].
Although this performance outshines the RNA-Seq data
presented here, RNA-Seq does have some advantages
beyond the ability to inexpensively genotype exonic
SNVs. It can also be used to identify expression differ-
ences between individuals or even between alleles within
an individual, which can lead to discovery of a nearby
causal variant even if it is not exonic. RNA-Seq may also
provide insight into novel exons, splice junctions or splice
forms in the tissue or cell type being studied that might
not be recognized as protein coding in genomic sequenc-
ing, or captured with targeted exomic sequencing.

While it is most useful to perform RNA-Seq in a tissue
relevant to the trait under study, other tissues can also be
of some use. For example, data from Heinzen et al. [6]
revealed an r2 of 0.23 between transcript expression in
PBMCs and in brain, and that 63% of the transcripts
highly expressed in brain were also expressed in blood to
a level that allowed for consistent SNV detection by
RNA-Seq (defined as expression level of at least 4% of the
most highly expressed transcript in both).

Conclusions
Here we show that RNA-Seq captured 81% of the exonic
variants from genes that were well expressed in the
source tissue. Although its usefulness is limited to these
genes, the cheaper cost involved, as well as the extra
information gained about expression and splice variants,
may make this method a workable alternative to genomic
sequencing or exome capture for groups that have access
to the right types of tissue.

Materials and methods
Sample preparation and sequencing
DNA was extracted from PBMCs using the QIAGEN
Autopure LS (Venlo, The Netherlands). RNA was
extracted from viable PBMCs using the Qiagen RNeasy
kit. The DNA was prepared for sequencing according to
Illumina's gDNA sample prep kit protocol: randomly
fragment the DNA by nebulization, end repair, add a sin-
gle A base, adaptor ligation, run a gel to isolate 300-bp
fragments, and PCR amplification. The total RNA was
prepared according to the Illumina RNA seq protocol:
briefly, globin reduction, polyA enrichment, chemical
fragmentation of the polyA RNA, cDNA synthesis, and
size selection of 200-bp cDNA products. Next, the size-
selected libraries were used for cluster generation on the
flow cell. All prepared flow cells were run on the Genome
Analyzer II using the paired-end module: nine flow cells
(with eight lanes each) for the gDNA and one flow cell for
the cDNA. The paired-end reads for the gDNA were each
75 bp long, although one flow cell only produced single
reads of 75 bp each. Due to a machine error near the end
of the read 1, the paired cDNA reads were not able to be
matched to each other and read 1 was only 68 bp long
while read 2 was 75 bp. The reads are available in the
NCBI Sequence Read Archive [9], under study ID
SRP001691. The Illumina GA Pipeline version was 1.4.0.
This pipeline produced the quality score for each nucle-
otide in standard Illumina format where the base was 64
(Illumina quality score = Qphred +64, where Qphred = -
10log10(e) and e = estimated probability of a nucleotide
being wrong). We converted the quality scores for each
nucleotide to standard Sanger fastq format, where the
base was 33.
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Alignment and single nucleotide variant identification
gDNA was aligned to the reference genome (NCBI build
36 Ensembl release 50) using the BWA software (version
0.4.9) [4]. cDNA was aligned to the reference genome
using TopHat [5]. The -GFF function utilized a transcript
library downloaded from Ensembl to specify known pro-
tein-coding transcripts and splice junctions, and the
library was screened to remove contigs and mitochon-
drial DNA. The --no-novel-juncs option was used to
restrict alignment to those exons and splice junctions
included in this transcript library. To assist in alignment
to small exons, the 75-bp reads were broken down into
three 25-bp segments (68-bp reads into two 34-bp seg-
ments), which were then joined back together after being
individually aligned. Two mismatches were permitted per
25-bp (or 34-bp) segment, and no mismatches were per-
mitted in the 4-bp anchor region on either side of a splice
junction. Introns were permitted to range in size from 10
bp to 500 kb. Only unique alignments were kept: that is,
reads that aligned to exactly one location. Reads mapping
to multiple locations were excluded using in-house soft-
ware.

SAMtools (version 0.1.5c) was used to remove potential
PCR duplicates via the rmdup (paired reads) and
rmdupse (single reads) command [10]. It was also used
for SNV identification, using the pileup command with
the -c option and default settings. The SNVs were then
filtered using SAMtool's variation filter with the default
settings but removing the filter for a maximum allowed
coverage per variant by setting it to 10 million for gDNA
and 1 million for cDNA. SNVs lying outside exons as
defined by the transcript library were removed. Indels
were not considered. All SNVs were further screened for
quality by only keeping those above a minimum SNP
quality score: 30 for cDNA and 20 for gDNA. This score
is calculated by SAMtools and is the Phred-scaled proba-
bility that the base at that location is identical to refer-
ence, with higher scores being less likely to be reference.
SNVs were also excluded if there were fewer than three
reads supporting the non-reference allele. cDNA SNVs
were further screened to exclude all SNVs where more
than 20% of the reads supporting the non-reference allele
were from the first or last base of a sequence read.

Coverage
Coverage of cDNA sequencing for each exon was calcu-
lating using in-house software. For each exon in the tran-
script library, coverage was calculated as the average
number of reads covering each base within that exon.

Paralogous genes
Genes were designated as paralogous using ENSG IDs as
input in Genecards' paralog finder [11,12]. The list of par-
alogs from Ensembl was utilized, and genes were split

into two groups: those with paralogs and those without.
The 42 ENSG IDs not recognized by Genecards were
individually examined for paralog status using Ensembl
directly.

Additional material
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