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Heterochronic evolution reveals modular timing
changes in budding yeast transcriptomes
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Abstract

Background: Gene expression is a dynamic trait, and the evolution of gene regulation can dramatically alter the
timing of gene expression without greatly affecting mean expression levels. Moreover, modules of co-regulated
genes may exhibit coordinated shifts in expression timing patterns during evolutionary divergence. Here, we
examined transcriptome evolution in the dynamical context of the budding yeast cell-division cycle, to investigate
the extent of divergence in expression timing and the regulatory architecture underlying timing evolution.

Results: Using a custom microarray platform, we obtained 378 measurements for 6,263 genes over 18 timepoints
of the cell-division cycle in nine strains of S. cerevisiae and one strain of S. paradoxus. Most genes show significant
divergence in expression dynamics at all scales of transcriptome organization, suggesting broad potential for
timing changes. A model test comparing expression level evolution versus timing evolution revealed a better fit
with timing evolution for 82% of genes. Analysis of shared patterns of timing evolution suggests the existence of
seven dynamically-autonomous modules, each of which shows coherent evolutionary timing changes. Analysis of
transcription factors associated with these gene modules suggests a modular pleiotropic source of divergence in
expression timing.

Conclusions: We propose that transcriptome evolution may generally entail changes in timing (heterochrony)
rather than changes in levels (heterometry) of expression. Evolution of gene expression dynamics may involve
modular changes in timing control mediated by module-specific transcription factors. We hypothesize that
genome-wide gene regulation may utilize a general architecture comprised of multiple semi-autonomous event
timelines, whose superposition could produce combinatorial complexity in timing control patterns.

Background
Recent evolutionary studies using natural and inbred
Drosophila and C. elegans lines have shown that gen-
ome-wide gene expression levels are much more con-
served in nature than expected compared to
independent measurements of mutational input [1-3],
supporting the hypothesis that transcriptome evolution
is characterized by stabilizing selection. These observa-
tions suggest that organisms show limited evolutionary
divergence in gene expression via changes in gene regu-
lation, either by qualitative changes in the connectivity
of regulatory interactions or by quantitative changes in
the strength of regulatory interactions. In addition, since
the architecture of gene regulation involves highly

connected and hierarchical cascades of control [4-7],
regulatory change may be limited due to the broad
potential for negative pleiotropic consequences [8].
Given this evidence for deleterious changes in gene reg-
ulation, how do organisms acquire transcriptome
divergence?
Many studies have addressed this question by investi-

gating the relationship between gene expression diver-
gence and different kinds of genomic variation. Studies
focusing on the regulatory effects of single nucleotide
mutations have revealed that expression divergence gen-
erally associates with cis variation within species [9-13]
and with trans variation between species [14-18]. Other
studies have focused on larger, structural mutations,
such as mobile element transposition or non-homolo-
gous recombination [19-21]. While these studies have
discovered many important links between genomic var-
iation and expression divergence, few studies have
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directly observed how genomic variation affects the qua-
litative structure or quantitative dynamics of an organ-
ism’s genome-wide regulatory network. Notably,
genome-wide binding patterns of six transcription fac-
tors were recently compared between two Drosophila
species during embryonic development [22], revealing a
dominant signature of quantitative, rather than qualita-
tive changes in TF-DNA regulatory interactions.
One possible avenue for transcriptome divergence that

remains consistent with the evidence of stabilizing selec-
tion on genome-wide gene expression levels and evolu-
tionary conservation of gene regulatory network
topology is that divergence might occur via changes in
the timing of gene expression. Gene expression is both
a quantitative trait and a dynamic trait, such that the
timing of gene expression is regulated by a complex,
polygenic combination of factors [5,23-26]. Evolutionary
modifications to gene regulation have the potential to
dramatically alter gene expression timing without greatly
affecting mean expression levels [27,28]. Moreover,
changes in the timing of regulatory factor expression
could induce temporal shifts in the expression trajec-
tories of some genes relative to others (heterochrony)
[29,30] without disrupting functional relationships.
In this study, we investigated the evolution of gen-

ome-wide gene expression as a dynamical system, to
evaluate the pattern of divergence in expression timing,
the mode of time-dependent transcriptome evolution,
and the genome-wide architecture of timing control. We
performed a large number of analyses and experiments
that follow multiple inference pathways, as diagrammed
in Figure S1 in Additional file 1. To overview our results
and conclusions, we propose that our data and analyses
support the following hypotheses: (1) while the vast
majority of genes have bounded expression levels con-
sistent with stabilizing selection, most expression trajec-
tories show significant heterochronic divergence among
strains; (2) the pattern of transcriptome divergence
involves time-dependent changes in the magnitude,
direction, and degrees of freedom of among-strain cov-
ariation; (3) genome-wide gene regulation utilizes a gen-
eral architecture for transcriptome timing control
comprised of distinct, coherent, and dynamically-auton-
omous modules; (4) population-level transcriptome
divergence may predominantly result from quantitative
changes in the expression dynamics of module-specific
trans-regulatory factors rather than qualitative changes
in the structure of genome-wide gene regulation; (5) an
architecture involving modular timing control could
generate complex patterns of heterochronic divergence
combinatorially, while alleviating global negative pleio-
tropic effects associated with changes in regulatory
interactions or changes in the expression of trans-regu-
latory factors.

Results
We assayed genome-wide gene expression (transcrip-
tome) levels throughout the mitotic cell-division cycle
(CDC) of ten natural budding yeast lines, including
eight woodland and one laboratory strain of S. cerevisiae
and one outgroup of S. paradoxus, in a comparative
experimental design that involves technical, but not bio-
logical replicates of each timepoint (see Materials and
methods). To calibrate the variation in gene expression
across these lines with an expectation from mutation-
drift, we also measured transcriptomes for 23 mutation
accumulation (MA) lines. Normalizing and processing
our data yielded expression levels for 6,263 genes at 18
sampled CDC-timepoints for the natural lines and
unsynchronized expression for the MA lines. We vali-
dated our array measurements by comparison with pre-
viously published CDC-dependent temporal expression
data (Figure S32 in Additional file 1) and with RNA
sequencing data produced using the ABI SOLiD 3 plat-
form (Figure S33 in Additional file 1). Our expression
data show significant consistency both with previous
CDC expression data and with quantification of RNA
sequencing data.

Genome-wide expression levels show much less
variability than expected, but CDC-temporal expression
patterns display broad divergence
To assess the natural variability in genome-wide gene
expression levels, we computed F -statistics at each time-
point t for 4,973 genes g exhibiting significant mutational
variance [2] (see Supplemental materials and methods in
Additional file 1). Each F -statistic is defined as the ratio
of natural (Vn) to mutational (Vm) variances within S. cer-
evisiae, scaled by the divergence times of the natural and
MA lines (in generations) and degrees of freedom:
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represent estimates per-generation natural variation in
gene expression calibrated by neutral mutational varia-
tion. The genome-wide CDC median F-value is 1.56 ×
10-4 (cf. [31]), indicating that variation among natural
strains is roughly 104-fold smaller than expected under
mutation-drift equilibrium. (The median scaled natural
and mutational variances are 2.40 × 10-8 and 1.54 × 10-
4, respectively.) With a maximum F -value of 0.23, not a
single gene shows evidence of positive selection for
adaptive divergence at any timepoint. When tests are
carried out for each gene at each timepoint (Figure 1A),
95.6% of hypotheses indicate stabilizing selection on
expression level on average (FWER < 10-5). The nine
natural S. cerevisiae lines in our study are estimated to
have diverged between 3.02 and 4.19 thousand years ago
(95% confidence interval); therefore 94.4% to 96.4% of
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gene expression levels are under stabilizing selection.
Moreover, the majority of genes (81.9%) exhibit expres-
sion trajectories consistent with complete stabilizing
selection at every timepoint, while 742 genes (15.0%)
exhibit low variability in at least half of the timepoints
(partly neutral genes) and only 152 genes (3.1%) exhibit
neutral variability in at least half of the timepoints (neu-
tral genes) (Figure 1D, Table S2 in Additional file 1). No
single trajectory appears to diverge completely neutrally.
Thus, when analyzed in terms of gene expression levels
only without considering the effect of CDC-dynamics,

the overall pattern of our data is consistent with pre-
vious hypotheses that the expression levels of most
genes are under strong stabilizing selection.
One might suspect that the broad lack of expression

divergence among strains may be due to a general defi-
ciency of CDC-temporal variation for many of the
genes. To test this, we partitioned S. cerevisiae expres-
sion variation into relative contributions from strain and
temporal effects using a linear mixed model analysis.
3,750 genes (59.9%) exhibit significant effects (FDR < 0.1
over all 6,251 × 2 hypotheses): 2,797 genes (46.6%) show
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Figure 1 Natural variability in genome-wide gene expression. (a) Distributions of genome-wide gene expression variability F(t) among
natural S. cerevisiae strains across the cell-division cycle (CDC), and the number of genes exhibiting positive (+), stabilizing (-), or no selection (0)
at each timepoint (FWER < 0.05). Average variability profile (red line) exhibits a maximum fold change of 1.95. (b) Proportion of genes under
stabilizing selection over time for eight life-cycle terms, ranked by average proportion. Numbers of associated genes are shown in parentheses.
See Figure S4 in Additional file 1 for profiles of GO Slim terms. (c) Average budding index for natural S. cerevisiae strains. (d) Histogram of the
number of timepoints for which a gene’s CDC-expression trajectory undergoes stabilizing selection, partitioned into stabilized, partly neutral, and
neutral categories. (e) Enrichment of life-cycle terms among neutral genes. * indicates significant enrichment (FDR < 0.05).
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significant strain variation (that is, divergence), 2,596
genes (43.3%) show significant temporal variation, and
1,643 genes (26.2%) show both effects. Averaging over
these 1,643 genes, strain effects explain 39% and tem-
poral effects explain 23% of the total variance in gene
expression; combining these marginal effects explains
50%-90% of each gene’s total variance. Strain and tem-
poral variances show significant but mild correlation
(R = 0.25, P < 10-10; Figure S2 in Additional file 1), and
temporal effects contribute 104-fold more to overall
expression variation compared to strain effects when
scaled by divergence time (genome-wide medians

 time strainvs2 4 2 89 54 10 7 43 10= × = ×− −. . . ). Thus, con-

siderable temporal variation in CDC-expression is pre-
sent in the yeast transcriptome (see also Figure S3 in
Additional file 1).
To relate evolutionary forces to yeast gene function,

we computed the proportion of genes under stabilizing
selection for eight broad life-cycle terms and 88 GO
Slim terms over time, Qj(t), where j indexes each term.
The Qj profiles of most terms appear qualitatively simi-
lar (Figure S4 in Additional file 1), and a comparison of
average Qj values for life-cycle terms reveals that peri-
odic, meiotic, and CDC-specific genes (in that order) are
the most neutral (Figure 1B). In particular, a significant
number of neutral genes are periodically expressed
(Fisher’s Exact test, FDR < 0.05; Figure 1E). Of the 88
GO Slim terms, only 5 terms have average Qj values less
than 0.94 (the 95th percentile over Qj; Table S3 in Addi-
tional file 1): helicase activity (0.76), extracellular region
(0.86), cell wall (0.91), cellular component (0.92), and
pseudohyphal growth (0.93). Of these, cell wall and
extracellular region terms are enriched among the 1,643
genes with significant strain and time effects (FDR <
0.05). Thus, while it is not clear whether there is a func-
tional aspect to expression divergence in temporal tra-
jectories, among genes with the most strain divergence,
specific functional categories are enriched within the set
of temporally variable genes.
A hierarchical clustering of the entire CDC-tran-

scriptome data set shows a complex inter-relationship
among strains and timepoints, such that no strain’s
entire CDC-temporal expression and no timepoint’s
entire strain expression form a single clade (Figure S5
in Additional file 1); however, different timepoints
from the same strain tend to be more similar than the
same timepoints from different strains, indicating a
general pattern of strain divergence. Notably, 17 of 18
timepoints for our S. paradoxus strain (YPS3395) clus-
ter as a single clade, indicating their general distinction
from S. cerevisiae expression. Yet only 457 genes (7.5%
of the genome) show significant differential expression
between S. paradoxus and the 8 woodland S. cerevisiae

lines (t-test, FWER < 0.1), and no gene shows greater
than a three-fold change in expression level. Surpris-
ingly, the S. cerevisiae laboratory strain exhibits the
most divergent dynamic expression profile in this clus-
tering, beyond the S. paradoxus outgroup, despite hav-
ing only 248 genes (4%) that are differentially
expressed compared to woodland strains (FWER < 0.1)
with a maximum fold change of 4.2. Thus, compared
to S. paradoxus, the laboratory S. cerevisiae strain
shows only slightly greater expression level divergence
from woodland strains but for fewer genes, yet it
shows a more distinct pattern of temporal divergence.
One possibility is that the laboratory strain’s CDC
molecular physiology has become adapted to labora-
tory growth conditions [32], which is manifest in its
CDC-transcriptome dynamics. Overall, these results
indicate that while levels of expression show limited
among-strain and between-species divergence, the
dynamic pattern of expression displays significant
temporal fluctuations, with broad among-strain and
between-species divergence.

Divergence in CDC-temporal coexpression patterns is
found at all scales of transcriptome organization
To evaluate the quantitative divergence in CDC-tem-
poral expression following the qualitative patterns
revealed by clustering analysis above, we first generated
a 6,082 × 6,082 gene coexpression matrix for each strain
by computing pairwise correlations between all CDC-
temporal gene expression profiles and then calculated
matrix correlation coefficients between coexpression
matrices for all pairs of strains (Figure S6A in Addi-
tional file 1). Due to the extreme size of the matrices, all
comparisons yield significant concordance in coexpres-
sion patterns (FDR < 0.01), but the degree of concor-
dance is low (avg. R = 0.11), indicating most strains lack
strong similarity in CDC-coexpression (that is, similar
pairwise relationships between genes). Restricting these
coexpression matrices to a subset of 266 transcriptional
regulatory genes does not strengthen this pattern of
weak association (avg. R = 0.12; Figure S6B in Addi-
tional file 1). Controls using replicated and simulated
microarray data confirm this pattern (Text S1). As may
be expected, S. paradoxus has the lowest coexpression
correlation with other strains (avg. R = 0.047); however,
S. cerevisiae strains YPS3137 and YPS2073 also have low
correlations (0.055 and 0.068). The laboratory strain
shows an average correlation of 0.12, indicating that its
divergence in CDC-coexpression is typical compared to
woodland strains. Thus, the laboratory strain appears to
show pronounced divergence in overall CDC-transcrip-
tome dynamics compared to other strains (see above)
without markedly different coexpression relationships
(that is, changes in regulation). Overall, we found
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considerable divergence in the genome-wide pattern of
temporal coexpression.
To assess coexpression divergence in a time-specific

manner, we grouped each strain’s expression data into
three overlapping CDC-phase groups (first, middle, and
last nine timepoints). We first assessed coexpression
matrix similarity between strains and between CDC-
phase groups. This recapitulated the pattern of weak
association between strains (R = 0.075; Figure 2A).
Coexpression matrices consistently cluster by strain
(Figure 2B), but cluster relationships between strains are
unique to each CDC-phase group (Figure 2C). We also
identified phase-directions of temporal covariation using
a singular value decomposition (SVD) of each strain’s
expression data for each of the three CDC-phase groups.

Within each group, the angular distance of major phase-
directions between strains averages 75.8°, close to the
maximum of 90° (Figure S7A in Additional file 1). Mul-
tidimensional scaling (Figure S7C in Additional file 1)
and hierarchical clustering (Figure S7D in Additional file 1)
indicate that similarity relationships between strains are
phase-specific. These results indicate that the genome-
wide pattern of coexpression divergence is time-dependent.
Since coexpression divergence may occur at different

scales of transcriptome organization, we also assessed
the pattern of modular temporal coexpression. We
defined a coexpression k-module for every gene as its k
most correlated genes within each strain. We assessed
divergence in modular coexpression by computing the
overlap of each gene’s k-modules between strains and
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Figure 2 Strain divergence in CDC-transcriptome coexpression within and between CDC-phase groups. (a) Heat map of Mantel matrix
correlation coefficients between pairs of strains for each of three CDC-phase groups (Early: E, Middle: M, Late: L), corresponding to the first,
middle, and last nine sampled timepoints. Correlations were computed between pairs of 6,082 × 6,082 genome-wide CDC-expression correlation
matrices. (b) Hierarchical clustering of the correlation matrix shown in (a). (c) Hierarchical clusterings for data within each CDC-phase group,
corresponding to the three main diagonal blocks (outlined in (a)). Clustering was performed using average linkage with the Pearson correlation
metric.
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determining the degree of excess overlap compared to
random expectation among significant genes. Less than
two-thirds of genes exhibit significant overlap at any
scale (from 25% at k = 25 to 65% at k = 2,500, averaging
over all strain pairs, P < 1/250), suggesting that patterns
of shared temporal coexpression cannot be identified for
a large portion of the genome. While the average over-
lap among significant genes is consistently greater than
expected by chance (Figure S8 in Additional file 1), the
excess is generally low, averaging 8.24% with a mini-
mum of 4.39% at k = 25 and maximum of 10.03% at k =
880 genes (Table 1). Thus, similar to the matrix correla-
tion results, the pattern of modular coexpression shows
low concordance between strains regardless of scale.
Moreover, there is lower overlap at smaller scales, sug-
gesting that temporal coexpression diverges more
rapidly for genes that are more tightly coexpressed
within a genome. To determine whether relationships of
modular coexpression between strains change across
organizational scales, we computed hierarchical cluster-
ings of the 10 × 10 matrices of average module overlap
between strains (Figure S9 in Additional file 1). A few
strains, notably YPS3137 and YPS2073, show changes in
overlap relationships across scales, suggesting that these
strains differ in temporal coexpression at all scales of
transcriptome organization. Thus, divergence in CDC-
temporal coexpression is found genome-wide, in a time-
dependent manner, and at all scales of transcriptome
organization.

CDC regulatory architecture exhibits time-dependent
changes in multi-dimensional complexity
The gene-oriented analyses above indicate surprisingly
large divergence in CDC-temporal expression,

suggesting a broad potential for evolutionary divergence
of expression dynamics despite stabilizing selection on
expression levels. Changes in expression dynamics imply
changes in the timing patterns of genome-wide gene
regulation. To dissect the architecture of time-depen-
dent gene regulation that underlies the observed pattern
of transcriptome divergence, we analyzed multivariate
(multi-genic) patterns of expression covariation among
the S. cerevisiae lines, including time-dependent multi-
variate patterns. We first performed a canonical correla-
tion analysis using genome-wide expression grouped by
timepoint and found that expression can be correlated
nearly perfectly between all pairs of timepoints using
primary canonical variables (R ≈ 1.0, FWER < 0.05).
This indicates that genome-wide expression at each
timepoint shares the same sub-space (that is, funda-
mental directions of variation); however, particular
directions of major variation may differ across time-
points. We next assessed the degrees of freedom of
expression variation among strains by analyzing the
covariation at each timepoint independently, using
latent factor mixed model analysis (LFA) and principal
component analysis (PCA). Compared to patterns seen
in the mutation accumulation lines, natural time-speci-
fic covariation exhibits greater overall regulatory com-
plexity, averaging 4.6 vs. 2 factors by LFA (Table S4 in
Additional file 1), and restricted degrees of freedom of
covariation, averaging 6.1 vs. 13 dimensions by PCA
(Figure S13A in Additional file 1), at each timepoint.
Combining all timepoints and strains, a total of 56
dimensions are required to explain 90% of the covaria-
tion in the natural strain CDC data (Figure 3). Surpris-
ingly, these degrees of freedom do not simply separate
into time and strain components: if each strain’s expres-
sion is time-averaged, only five PCA factors explain the
resulting among-line covariation; if each timepoint’s
expression is strain-averaged, ten factors explain the
among-timepoint covariation. Thus, a much greater
complexity of expression divergence is revealed when
both CDC-temporal and strain covariation are taken
into account.
Both LFA and PCA results strongly suggest the pre-

sence of differential constraints on transcriptome diver-
gence as a function of CDC progression. We examined
this by asking whether yeast strain covariance structure
changes between different timepoints. We applied a
SVD to the expression data at each timepoint for all S.
cerevisiae strains, obtaining r = 9 multivariate directions
of strain divergence Ur(t) for each of the 18 timepoints
t [33] (see Supplemental materials and methods). We
call these CDC-directions, which might reflect develop-
mental constraints, mutational biases, or directions of
selection (or combinations thereof), for example. We
first computed angular distance between the major

Table 1 Strain divergence in modular coexpression
structure

Diameter
(%)

Sig. modules
(%)

Overlap (% of
diameter)

Excess
%

25 (0.4) 1507.3 (24.8) 1.2 (4.8) 4.39

100 (1.6) 1645.7 (27.0) 10.6 (10.6) 8.96

500 (8.2) 3220.4 (52.9) 88.0 (17.6) 9.38

880 (14.5) 3389.2 (55.7) 215.6 (24.5) 10.03

1314 (21.6) 3625.3 (59.6) 408.6 (31.1) 9.49

2500 (41.1) 3972.1 (65.3) 1207.5 (48.3) 7.20

A module is defined for every gene as the set of its k top correlating genes
by Pearson correlation of temporal expression profiles, where k is the
diameter, shown as number of genes and as genome-wide proportion (of
6,082 genes). Sig. modules reports the number and percentage of significant
gene modules (P < 1/250) averaged over all pairs of strains. Overlap reports
the number of genes overlapping for a given module between a pair of
strains, at the specified diameter k, averaged over all significant modules and
all pairs of strains. This is also shown in parentheses as a percentage of
diameter. Excess shows the excess percentage of overlap compared to
random expectation using binomial sampling. The excess percentage
averaged over all k is 8.24%.
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CDC-directions for all timepoint pairs (∠ U1 (s) U1 (t);
Figure 4C). Adjacent timepoints as well as those in
phase between cell-division cycles appear more similar
than other timepoints, indicating that changes in covar-
iance structure are both gradual and cyclic. Despite
these similarities, angles average 50.4° and range from
19.4° to 88.9°. A random angles test failed to identify
any significantly small angles (that is, significantly simi-
lar directions), even with a lenient cutoff (FWER <
0.15). Visualization of the major CDC-direction distance
matrix by multidimensional scaling reiterates this pat-
tern (Figure 4A). These results suggest that most major
CDC-directions are distinct. Similar testing of each of
the eight minor CDC-directions (Figure 4D) identified
only eight significantly small angles out of 1,072 com-
parisons. Common principal component analysis of
time-dependent covariation [34] revealed broadly consis-
tent results (Text S2). Thus, we observe significant
changes in the yeast transcriptome covariance structure
across strains throughout the CDC.

To assess whether the CDC-directions correspond to
biologically relevant axes of covariation, we identified
the genes contributing the most to strain covariation in
each major CDC-direction by correlation and deter-
mined the functional terms enriched among the top 5%
of genes (Tables S6, S7 in Additional file 1). Significant
terms vary by timepoint and include metabolic, periodic,
ribosomal, and CDC life-cycle terms (FDR < 0.05). In
addition, TATA regulatory motifs have been hypothe-
sized to drive expression divergence via neutral drift
[31]. We found that TATA-associated genes project
onto major CDC-directions 4-fold less than genes lack-
ing TATA motifs, which are over-represented among
the top 5% of genes (P < 0.01, Table S8 in Additional
file 1). Also, few of the 152 genes with neutral CDC-
expression are found among the top 5% (P < 10-5). This
paucity of genes hypothesized to diverge neutrally
argues against drift as a major force in strain diversifica-
tion of CDC-directions. We also tested whether the
major CDC-directions (of within-species covariation) are
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predictive of directions of between-species divergence,
as might be expected for neutral species divergence [35].
For each timepoint we calculated angular distance
between the major S. cerevisiae CDC-direction and the
displacement vector of S. paradoxus expression, oriented
within S. cerevisiae CDC-space (for example, Figure S14
in Additional file 1). All angles exceed 45°, and no angle
is significantly small (FWER < 0.15). Thus, within-
species covariation does not predict the direction of
between species divergence. However, release from
a-factor, S-phase, and the G2/M transition have the
smallest angles, suggesting that response to mating
pheromone and DNA replication dynamics may be
more constrained in evolutionary covariation.
We next evaluated whether the amount of variation

projected onto the multivariate CDC-directions reveals a
different, non-stabilizing pattern of selection compared
to the pattern for individual genes. We computed F -sta-
tistics by comparing natural and mutational among-line
expression variances projected onto each timepoint’s
CDC-directions. Although the average F -value over
major CDC-directions U1(t) is 14.6-fold larger than the
genome-wide average F -value (2.28 × 10-3 vs. 1.56 ×
10-4, P = 1.5 × 10-4), all F -values remain significantly
low, including those calculated for minor CDC-

directions (FWER < 0.05). Therefore, multivariate pat-
terns of transcriptome divergence are also consistent
with stabilizing selection. However, the temporal profile
of major multivariate F -values, unlike that for individual
genes, exhibits peaks in expression variability (87, 176,
260, and 345 min.; Figure S15 in Additional file 1); the
average peak is 1.4-fold greater than that at all other
timepoints (P = 0.018) and 19.1-fold greater than the
genome-wide average (P = 0.006). Intriguingly, these
peaks in expression variability are preceded by large
changes in the major axis of CDC-covariation (63, 152,
251, and 301 min.), occur just prior to CDC-phase tran-
sitions (97, 218, 267, and approximately 350 min.), and
coincide with drops in regulatory complexity (latent fac-
tors; 176, 260, 345 min.) (Table S4 in Additional file 1;
see also Figure 4B). In addition, reductions in regulatory
complexity generally coincide with the CDC-phase tran-
sitions G1/S, G2/M, and M/G1 (48, 218, 260, 301 min.;
except S/G2 at 111 min.), suggesting greater constraint
on gene regulation through the influence of CDC check-
points. Thus, temporal fluctuations in strain variability
might reflect multi-genic pleiotropic effects being chan-
neled to varying dimensions and directions of gene
expression through a regulatory architecture that
changes dynamically across CDC-phases [7].
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Figure 4 CDC-temporal variability in multivariate variation among strains. (a) Spiral 2 D projection showing angles between major
directions of covariation at successive timepoints. Arrow colors indicate approximate CDC-phase. Xs denote CDC-phase transitions. Vector
lengths are arbitrary (but see Figure S15 in Additional file 1). (b) Successive angles from (a) ranked by magnitude of change. (c) Heat map of
angular changes in the major direction of covariation between all unique pairs of timepoints. Angles can range from 0° (coincident) to 90°
(orthogonal). (d) Heat maps of angular changes in the directions of covariation for the eight remaining minor directions (rank 2. . . rank 9). The
average angular distance (in degrees) is reported for each rank.
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Heterochronic changes in expression timing explain strain
divergence for the majority of yeast genes
Our multivariate analysis of the architecture of genome-
wide gene regulation argues that the broad pattern of
CDC-transcriptome divergence among yeast strains is
heavily influenced by dynamical changes in control.
However, if this architecture of timing control involves
a global cascade of regulation, any changes in control
could cause broad negative pleiotropic effects through-
out the CDC [8]. Given our findings of strong stabilizing
selection on both univariate and multivariate strain var-
iation across the CDC, such a global, hierarchical archi-
tecture seems unlikely. Alternatively, this architecture
may be organized into discrete modules of regulation
that exhibit dynamically-autonomous timing control
[36]. Moreover, superposition of regulatory timing
patterns from different modules could combinatorially
generate the regulatory complexity required for

transcriptome-wide timing control while minimizing
negative pleiotropic effects.
We evaluated this hypothesis of modular timing con-

trol by identifying genes that share patterns of expres-
sion heterochrony (evolutionary shifts in expression
timing compared to the CDC) [27,37,38], which can be
used to delineate dissociable units of structure and func-
tion [29,39]. Briefly, we reasoned that if two genes are
coregulated, their temporal expression trajectories might
show similar evolutionary shifts in timing between
strains and species, despite overt differences in the
expression trajectories themselves. We tested for the
presence of heterochrony in the yeast cell-division cycle
by asking whether a time transformation (that is, hetero-
chrony) model significantly explains a gene’s divergence
in temporal expression between two strains (Figure 5A).
On average, our heterochrony model explains 61%
of between-strain transcriptome variation (Figure 5B).
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Figure 5 The heterochrony model of time-dependent changes in gene expression trajectories between strains. The model was fit to
single period, Z-standardized CDC-expression data for a single gene measured in two strains. (a) Formulation of the time-independent (null) and
heterochrony regression models. The heterochrony model estimates a timepoint mapping between strains using the Beta cumulative
distribution function, which generates smooth and invertible transformations on [0, 1] according to parameters a and. b. This model also allows
translation of expression trajectories using the phase parameter g. Transformed timepoints were modulated around 1, so that transformations are
defined with respect to a single cell-division cycle. Estimates of a, b, and g were bounded within [1/3, 3], [1/3, 3], and [-260/2, 260/2],
respectively, where 260 is the CDC period. The light blue line (a = 1; b = 1; g = 0) describes the null (time-independent) model, where t = t’ =
Beta (t, 1,1) + 0. (b) Distributions of R2 values for the time-independent (top) and heterochrony (bottom) models, over all 45 comparisons per
gene. Both models were fit identically, except that parameter values for the null model were fixed at (a = 1; b = 1; g = 0). (c) Distribution of the
proportion of significant F -values (genes) over the 45 strain comparisons (FDR < 0.05). (d) Distribution of the number of significant strain
comparisons over genes. (e) The number of genes significant in at least k comparisons versus k. A cutoff of 30/45 = 2/3 was used to classify a
subset of 4998 genes as heterochronic.
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We then computed a likelihood-ratio statistic for every
gene by comparing the fit of the heterochrony model to
the fit of a time-independent model. 64%-96% of genes
show a significant time effect for any between-strain
comparison (d.f.1, 3 and 14, FDR < 0.05; Figure 5C),
indicating a broad pattern of heterochronic divergence.
Each gene exhibits significant fit to the heterochrony

model for an average of 33.1 of the
10

2
45

⎛

⎝
⎜

⎞

⎠
⎟ = pairwise

comparisons (Figure 5D). We retained 4998 genes show-
ing consistent support for heterochrony (≥ 2/3 signifi-
cant comparisons; Figure 5E) for the analysis of shared
patterns of heterochrony. As expected, these genes tend
to exhibit large dynamical fluctuations in expression
level across the CDC: 85.8% belong to the set of 2,596
genes with significant temporal variation (P < 10-10). At
least 85% of the top 1,000 periodically expressed genes
in our data set show significant heterochrony (Figure
S16 in Additional file 1). In addition, functional analysis
reveals significant enrichment for a variety of GO Slim
terms (Text S3). These results suggest that the major
mode of transcriptome divergence in the yeast CDC
entails changes in timing (heterochrony) rather than
changes in levels (heterometry) of expression.

Shared patterns of heterochrony reveal modular timing
changes
We identified shared patterns of heterochrony among
the 4,998 heterochronic genes by comparing their tim-
ing change curves (defined by the heterochrony model
parameter estimates; Figure S17 in Additional file 1),
such that two genes are similar if their timing change
curves are concordant across the entire CDC (Figure
S19 in Additional file 1). In this way we computed a dis-
tance matrix that characterizes the timing pattern rela-
tionships between all pairs of genes (Text S4).
Clustering genes by their timing pattern relationships
revealed seven significant timing modules, consistent
with the hypothesis of modular timing control (Text
S5). To identify the genes significantly associated with
each timing module, we performed a pairwise analysis
by counting the number of between-strain comparisons
(out of 45) in which two genes exhibit the same pattern
of timing change. We identified 5,393 significant inter-
actions connecting 3,715 genes (binomial, P < 10-4; see
Additional file 2); 47.2% of the significant interactions
connect genes within the same timing module. Genes
sharing significant interactions display an average simi-
larity of 0.46, compared to the genome-wide average
similarity of 0.19 (Figure S24 in Additional file 1). Inter-
acting genes also share functional ontology terms, on
average sharing 95% of possible life-cycle terms (P <
10-7) and 23% of possible GO Slim terms (P < 10-19),

consistent with a functional interpretation for diver-
gence in expression timing. We partitioned genes shar-
ing significant heterochronic interactions into two
groups: 1,828 genes showing a majority of interactions
within an individual timing module (module-specific
genes), and 1,887 genes showing a majority of interac-
tions across timing modules (between-module genes).
Among these 3,715 genes, within-module interactions
are found 5.6-fold more often than between-module
interactions (P < 10-10), indicating that module-specific
genes comprise the inter-connected core of each timing
module (Figure 6A). Functional enrichment of timing
modules reveals five life-cycle terms and 21 GO Slim
terms associated with four of the seven timing modules
(Table S10 in Additional file 1), whereas analysis of
between-module genes revealed no significantly enriched
terms (FDR < 0.1). Thus, analysis of shared patterns of
heterochrony reveals significant modular organization in
the timing patterns of genome-wide gene expression
and suggestive evidence that these modules are asso-
ciated with cellular function.

Modular timing changes reflect coherent and
dynamically-autonomous timing control
Heterochronic modularity of gene expression timing
suggests that each timing module could represent a dis-
tinct unit of temporal development, responsible for
executing a particular timeline of gene expression
events. In this case, each module’s characteristic timing
pattern might undergo dynamically-autonomous evolu-
tion without losing coherence in modular timing con-
trol. According to this hypothesis, a module’s timing
pattern may change during evolutionary divergence,
increasing variation among modules; however, variation
in the timing patterns of genes within a module should
not change (or change more slowly), since this implies
potentially deleterious changes in functional coregula-
tory relationships. We first used analysis of variance to
test for differences in the mean timing pattern among
modules, using the timing change curves of module-speci-
fic genes pooled from the 45 strain comparisons. Timing
patterns differ significantly among modules (P < 10-10),
suggesting that timing modules undergo heterochronic
divergence in a dynamically-autonomous manner. We
then examined timing pattern variability within modules,
by comparing the observed variance in timing change
curves among module-specific genes to a distribution of
random variances, produced by grouping timing change
curves drawn randomly from the set of all observed
curves. Within-module timing pattern variability is gener-
ally lower than expected and may be lower within species
than between species (Text S6 and Figure S26 in Addi-
tional file 1). Linear discriminant analysis of the timing
pattern relationships for module-specific genes illustrates
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this coherence of timing patterns within modules despite
differences between modules (Figure 7). These results sug-
gest that divergence in timing patterns may increase more
quickly between modules than within modules, consistent
with the representation of modules as distinct units of
timing control.
Furthermore, robustness of the yeast CDC against

genetic [40], environmental [41], and dynamical pertur-
bations [42] suggests the possibility that timing pattern
variability both within and between modules might be
limited by a form of negative selection, potentially cana-
lizing selection [43-45], which could reinforce the coher-
ence of modules as integrated developmental processes.
Consistent with this, module-specific genes as a group
show significantly low variation for timing change
curves across strain comparisons (P = 0.0002), and

when separated by module, their strain variation corre-
lates with each module’s estimated coherence (Spear-
man’s r = -0.94, P = 0.0009). This suggests a
relationship between within-module variability and
among-strain variability in timing patterns (Text S7). In
addition, variability among all timing patterns is also
lower than expected and is time-dependent, suggesting
the possibility of system-wide coordination and periodic
synchronization of modular timing patterns (Text S8
and Figure S27 in Additional file 1). These results sug-
gest that the CDC timing control architecture is com-
prised of a core of distinct, coherent, and dynamically-
autonomous modules involving nearly 30% of the gen-
ome, combined with a layer of interactions between
modules, which may potentially coordinate or synchro-
nize expression timing globally.
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Figure 6 The modular architecture of genome-wide timing control. (a, left) Network of significant heterochronic interactions between 1828
module-specific genes, grouped by module. Interactions are defined by strongly correlated changes in expression timing (P < 10-4). (Figure S25
in Additional file 1 shows this graph with greater resolution.) (a, right) Heterochronic interaction network from module 3 (black lines); only a
subset of genes within 2 degrees of gene Swi5 and that share TFs is shown (dashed blue arrows). Blue nodes indicate significant association of a
TF with a module. (b) Novel interaction between Swi5 and Mfa2, which co-cluster in 23/45 comparisons (P = 6.8 × 10-6); four are shown. Timing
maps (columns 1, 3) illustrate timing pattern changes between strains for each gene, given parameters (a, b, g) and Beta CDF: t’ = (Beta (a, b) +
g) mod 1. Gray dashed lines indicate no change. Trajectory plots for each gene (columns 2, 4) show the time transformation of CDC-expression
from one strain (dashed red line) to another (orange line). Blue lines show a gene’s CDC-expression in the respective target strain.
Transformation order is reversible, since timepoint maps are invertible. R2 and RMSE fit statistics are shown. * indicates significance (P < 0.05).
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Heterochronic expression of module-specific regulatory
factors may explain modular timing changes
While the prevalence of heterochrony is consistent with
broad changes in gene coregulation, modularity in the
patterns of heterochrony suggests that regulatory archi-
tecture itself could effectively constrain multi-genic
strain variation into distinct channels of phenotypic
expression. In this way, widespread divergence in tran-
scriptome dynamics may be explained by predominantly
quantitative changes in the expression patterns of mod-
ule-specific regulatory factors, rather than qualitative
changes in gene coregulation. Using the 1828 module-
specific genes, we tested whether strongly shared hetero-
chrony implies common transcription factor trans-regu-
lation, as one possible mode of module-specific gene
regulation. Genes sharing heterochronic interactions

share more TFs than expected (P < 10-100) and associate
with TFs more strongly than pairs of genes without
strongly shared heterochrony (P < 10-10). The genome-
wide pattern of TF-gene trans-regulatory interactions
also associates significantly with the segregation of genes
into timing modules (P = 0.014). We then sought to
identify TFs that associate specifically with each timing
module, using 2 × 2 contingency tables to summarize
the interactions between each TF and module (Text S9).
We identified 37 TFs showing 42 module-specific asso-
ciations, averaging six TFs per module (FDR < 0.1); this
represents significant association for 59% of the 63 TFs
tested (the subset of 117 TFs showing ≥ 7 targets [46]).
These 37 module-specific TFs themselves exhibit signifi-
cant patterns of heterochrony (Table 2; Figure S28 in
Additional file 1); as a class, they show more extreme

Module 1
Module 2
Module 3
Module 4
Module 5
Module 6
Module 7

Figure 7 Timing modules are coherent and dynamically-autonomous. A series of linear discriminant analysis (LDA) plots are shown,
illustrating 2 D projections of seven timing modules. LDA was performed using pairwise distances between the patterns of timing change for
1,828 genes strongly associated with individual timing modules (module-specific genes).
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Table 2 Heterochrony in module-specific transcription factors

Gene (Alias) P
RH1

2 RH0

2
Sig. F-tests (Prop.) Distortion

Module 1 YHR206W (Skn7) 0.06567o 0.591 0.138 36 (0.80) 77.48

YPL089C (Rlm1) 0.07051o 0.605 0.142 35 (0.78) 75.80

YNL309W (Stb1) 0.06356o 0.616 0.146 36 (0.80) 74.13

YNL216W (Rap1) 0.02399* 0.624 0.175 33 (0.73) 73.92

YLR403W (Sfp1) 0.01056* 0.653 0.200 36 (0.80) 73.46

YDR207C (Ume6) 0.01626* 0.532 0.153 27 (0.60) 63.20

YPR104C (Fhl1) 0.0015** 0.547 0.120 28 (0.62) 59.81

Module 2 YKL112W (Abf1) 0.025* 0.629 0.201 33 (0.73) 68.51

YIL131C (Fkh1) 0.04142* 0.649 0.151 35 (0.78) 62.44

Module 3 YOL028C (Yap7) 0.09046o 0.659 0.163 36 (0.80) 77.63

YDR123C (Ino2) 0.03916* 0.585 0.134 33 (0.73) 76.02

YOR372C (Ndd1) 0.01219* 0.592 0.120 34 (0.76) 73.02

YNL068C (Fkh2) 0.00457** 0.601 0.119 34 (0.76) 71.61

YER040W (Gln3) 0.00459** 0.593 0.161 29 (0.64) 70.99

YMR043W (Mcm1) 0.01094* 0.672 0.203 40 (0.89) 69.36

YGL237C (Hap2) 0.00053*** 0.537 0.138 22 (0.49) 69.01

YML007W (Yap1) 0.03816* 0.603 0.136 35 (0.78) 62.86

Module 4 YOR028C (Cin5) 0.03329* 0.582 0.165 29 (0.64) 87.10

YPL202C (Aft2) 0.07004o 0.579 0.092 34 (0.76) 75.80

YDL056W (Mbp1) 0.05184o 0.588 0.158 33 (0.73) 73.87

YGL071W (Rcs1) 0.02813* 0.581 0.115 33 (0.73) 73.42

YDL106C (Pho2) 0.01764* 0.569 0.143 27 (0.60) 61.63

Module 5 YPR065W (Rox1) 0.06635o 0.666 0.185 35 (0.78) 80.97

YBR049C (Reb1) 0.04439* 0.682 0.206 37 (0.82) 80.96

YDR423C (Cad1) 0.05867o 0.574 0.119 31 (0.69) 75.47

YHR178W (Stb5) 0.09263o 0.626 0.166 37 (0.82) 70.27

YMR037C (Msn2) 6.0 ×10-5*** 0.597 0.183 35 (0.78) 72.13

YMR070W (Mot3) 0.09263o 0.624 0.161 35 (0.78) 60.97

YKL062W (Msn4) 0.02334* 0.706 0.242 36 (0.80) 54.91

Module 6 YNL216W (Rap1) 0.05212o 0.624 0.175 33 (0.73) 73.92

YJR060W (Cbf1) 0.00544** 0.605 0.140 35 (0.78) 73.15

YIR018W (Yap5) 0.00379** 0.527 0.110 27 (0.60) 70.80

YDL020C (Rpn4) 0.08764o 0.641 0.185 30 (0.67) 70.10

YOR344C (Tye7) 0.03477** 0.663 0.175 38 (0.84) 68.96

YKL112W (Abf1) 0.04084* 0.629 0.201 33 (0.73) 68.51

YPR104C (Fhl1) 0.02139* 0.547 0.120 28 (0.62) 59.81

Module 7 YBR049C (Reb1) 0.00056*** 0.682 0.206 37 (0.82) 80.96

YKR099W (Bas1) 0.01578* 0.591 0.163 29 (0.64) 69.26

YBL103C (Rtg3) 0.04638* 0.607 0.144 36 (0.80) 67.13

YDR043C (Nrg1) 0.08764o 0.637 0.205 33 (0.73) 63.85

YDR146C (Swi5) 0.02932* 0.764 0.289 41 (0.91) 63.56

YDL106C (Pho2) 0.02567* 0.569 0.143 27 (0.60) 61.63

2 × 2 TF-module association tables were computed that reflect the number of module-specific genes (n = 1,828) that associate with one of seven timing
modules and are regulated by one of 63 transcription factors (TFs). (A subset of 63/117 TFs were used that has at least seven targeted genes.) TF regulatory
binding data were obtained from [46] using a cutoff of P < 0.001 and moderate conservation (cons = 1). Fisher’s Exact tests were used to evaluate the

significance of each TF-module association along with a false discovery rate correction ***indicates FDR < 0.001; **indicates FDR < 0.01; *indicates FDR < 0.05;
oindicates FDR < 0.1. In total 37 TFs show significant modular association (FDR < 0.1). Five TFs associate with two modules (Abf1, Fhl1, Pho2, Rap1, Reb1). RH 1

2

and RH0

2 indicate explained CDC-expression variation averaged over 45 strain comparisons, computed by the time-dependent heterochrony or time-

independent model, respectively. Sig. F-tests indicates the number (and proportion) of significant F-tests supporting the heterochrony model, among strain
comparisons. Distortion is computed as the RMSE of the optimal time transformation curve against a line (a = 1, b = 1, g = 0), averaged over strain comparisons.
Genes are ranked by distortion for each category. The average genome-wide distortion (n = 6.082) is 67.6 with a standard deviation of 8.7.
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heterochronic shifts (distortion) compared to expecta-
tion from all heterochronic genes (76th percentile) and
from all TFs (76th percentile). At least one TF from
every module shows significantly large distortion com-
pared to all heterochronic genes or all regulatory factors
(P < 0.05); however, only one of these TFs (Cin5) is
among the top 50 of all heterochronic genes genome-wide
(rank-46 by distortion; Table S9 in Additional file 1).
There do not appear to be differences in the distortion of
these TFs among modules (ANOVA, P = 0.2). Thus, quan-
titative, heterochronic changes in the expression patterns
of module-specific regulatory factors may drive divergence
in CDC-transcriptome dynamics. While transcription fac-
tors were the only class of regulatory factors considered
here, our results do not exclude the likelihood that addi-
tional factors, such as post-transcriptional RNA-binding
proteins [47] or post-translational factors (kinases, methyl-
transferases, chromatin modifying enzymes, and so on)
[48,49], also contribute to the timing control of modular
gene expression.

Genes with complex heterochrony associate with multiple
timing patterns
While we found 1,828 genes that strongly associate
within individual timing modules (module-specific
genes), another 1,887 genes (31%) instead show strong
associations across timing modules (between-module
genes); these between-module genes may exhibit a com-
plex pattern of heterochrony. Our hypothesis of modu-
lar timing control suggests that negative pleiotropic
effects due to changes in control may be minimized for
genes with complex heterochrony by combinatorial reg-
ulation, using TFs with different timing patterns rather
than the same timing pattern. First, we found no TF
that significantly associates with the 1,887 genes with
complex heterochrony compared to module-specific
genes (FDR < 0.1). We also evaluated whether the num-
ber of module-specific TFs regulating a gene with com-
plex heterochrony correlates with the number of timing
modules represented by these TFs and obtained a rank
correlation of 0.71 (P < 10-10). While some correlation
is expected by chance, we found only three genes
(Erg11, Sis1, and YMR196W) that are strictly regulated
by multiple TFs from the same timing module (three
TFs for each), suggesting that this type of regulation
may be rare. Thus, genes that associate with multiple
timing modules tend to be regulated by multiple differ-
ent timing patterns. This suggests that complex patterns
of heterochronic divergence could be generated combi-
natorially while minimizing negative pleiotropic effects.

Discussion
Transcriptome divergence in the yeast cell-division cycle is
highly time-dependent. While within-species divergence in

genome-wide gene expression levels is consistent with
strong stabilizing selection at each timepoint of the cell-
division cycle, a large fraction of genes show significant
divergence in their dynamical patterns of expression. In
addition, the magnitude, direction, and degrees of freedom
of transcriptome covariation change across the cell-divi-
sion cycle, concordant with time-specific changes in regu-
latory complexity. While we could not test explicitly for
the evolutionary mode of expression dynamics, we found
that the major directions of within-species covariation
associate with specific functional categories at different
timepoints but not with neutrally-evolving genes; these
directions do not predict the direction of between-species
divergence for our outgroup S. paradoxus; and the S. cere-
visiae laboratory strain shows extensive divergence in
expression dynamics, comparable to S. paradoxus. These
results suggest considerable potential for non-neutral evo-
lution of expression dynamics, despite strong stabilizing
selection on mean expression levels.
Since widespread divergence in transcriptome

dynamics might be explained by extensive qualitative
changes in gene coregulation, we assessed the similarity
of gene coexpression structure across strains. Consistent
with this possibility, we found significant divergence in
genome-wide and modular coexpression structure,
across the entire cell-division cycle and in a time-depen-
dent manner. However, divergence in temporal coex-
pression does not assure divergence in coregulation; two
genes may be coregulated yet exhibit distinct temporal
expression trajectories (or vice-versa, for example,
Figure 6B). Therefore we evaluated the possibility of
heterochronic divergence, relating genes by shared
changes in expression timing, rather than by similarity
of expression levels (that is, coexpression). The majority
of genes show timing changes consistent with hetero-
chronic divergence, suggesting that evolution of the
yeast CDC-transcriptome may be characterized as pre-
dominantly heterochronic rather than heterometric.
Genome-wide heterochronic divergence implies

changes in the control of genome-wide timing patterns.
However, changes in timing control (just like changes in
coregulation) are expected to have negative pleiotropic
consequences in natural populations, such as our yeast
strains, given a global, cascading regulatory architecture.
We hypothesized that negative pleiotropic effects could
be minimized if regulatory architecture is instead orga-
nized into distinct timing modules which could exhibit
different timing patterns. In support of this hypothesis,
we found significant modularity in the genome-wide
patterns of heterochrony, evidence supporting the
coherence of timing modules as functionally integrated
units, and dozens of transcription factors that are signif-
icantly associated with controlling these timing modules.
Thus, widespread divergence in yeast transcriptome
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dynamics may be explained by heterochronic divergence
in the temporal expression patterns of module-specific
regulatory factors that in turn affect the timing of down-
stream gene expression events. Our results suggest that
the short-term evolution of yeast regulatory architecture
may entail preferentially quantitative changes in regula-
tion, consistent with the established relationship
between trans regulatory variation and expression diver-
gence within species [9-13] and conservation of tran-
scription factor binding patterns between species [22].
Although our evidence supports the role of transcription
factors specifically in driving heterochronic divergence,
additional factors that regulate either the production or
degradation of mRNA transcripts are likely to play a sig-
nificant role. Future studies incorporating additional
yeast strains or higher resolution time series data may
facilitate identification of additional module-specific reg-
ulatory factors and help to reveal the fine-scale structure
of timing control in the yeast cell-division cycle.

Conclusions
Our data suggest a new view of molecular cell pro-
cesses as a collection of dynamically-autonomous event
timelines whose modularity allows divergence in gene
regulation, while alleviating system-wide negative
effects of regulatory change. Control of gene expression
may utilize a general architecture comprised of multi-
ple discrete event timelines that serve as a basis set of
timing patterns. Interactions among module-specific
regulatory factors may determine individual event time-
lines, and superposition different timelines may gener-
ate combinatorial complexity in regulatory patterns.
This modular dynamical architecture may facilitate the
generation of complex regulatory variation via changes
in the scheduling and coordination of discrete event
timelines, while buffering variation in individual gene
expression. In this way, the architecture of genome-
wide timing control may bias a population’s evolution-
ary dynamics.

Materials and methods
Yeast strains
The ten natural S. cerevisiae and S. paradoxus strains
are heterothallic haploid MATa derivatives of homothal-
lic diploids. Woodland isolates were previously collected
from state parks in Pennsylvania and New Jersey, USA
[50] (Table S1 in Additional file 1). Laboratory strain
YPS183 (HOΔ:kanMX, leu2Δ) derives from BY4741.
Mating-type switching was prevented by homologous
recombination of a Kanamycin resistance cassette at the
HO endonuclease locus (YDL227C). The 23 mutation
accumulation lines (provided by C. Zeyl [51]) are diploid
and were propagated asexually for 600 generations from
a Y55 ancestor (leu2Δ).

Synchronization and sampling of yeast cultures
Strains were inoculated from frozen stock and cultured
overnight in synthetic dextrose (SD) minimal medium at
30°C (225 rpm). The next day cultures were diluted into
fresh SD and upon reaching a culture density of OD ≈
0.25, a -factor mating pheromone was added to a final
concentration of 4 μM. Cultures were then incubated
approximately 75 min. until arrested and synchronized
in late G1. The state of synchronization was determined
by the appearance of < 10% shmoos and < 10% budding
cells, visualized by light microscopy (100 ×, oil). Cul-
tures were released from arrest by removing a-factor:
2 × wash with 4°C S medium (SD without dextrose) and
resuspension of cell pellets with fresh 18°C SD medium.
Approximately 25 ml aliquots of each culture were dis-
tributed into 18 flasks and incubated at 18°C (225 rpm).
Incubation of cultures at 18°C in SD medium more than
doubles the CDC-period, allowing a more accurate com-
parison of measurements across strains by reducing
temporal sampling variation.
The sampling time course consisted of 18 samples,

taken at average intervals of 19 min. (real time), starting
at 0 min. (time of release from arrest) and ending at 345
min. The first sample (0 min.) was taken after all flasks
were returned to the incubator. Upon sampling, each
culture was placed on dry ice, mixed with 20 ml of -20°
C 100% EtOH in a 50 ml Falcon tube, inverted, and
placed immediately into a -80°C freezer.

Microarray processing and analysis
Total RNA was extracted from each frozen cell culture
sample using Qiagen’s RNeasy Kit, following manufac-
turer’s instructions. cDNA was prepared from 15 μg of
each RNA sample using SuperScript III reverse tran-
scriptase (Invitrogen) and compared directly to unsyn-
chronized S. cerevisiae cDNA (YPS183 cultured at 30°C
in YPD until reaching OD600 1.1) on 2-channel spotted-
oligo glass microarrays in a common reference design.
Invitrogen AlexaFluor 555 and 647 fluorophores were
used to label each cDNA sample. Hybridized slides were
incubated for 24-65 hours at 42°C. Slides were prepared
for scanning by serial incubation in wash buffers
and dried using both a vacuum and high-purity, filtered
N2 gas.
Samples were hybridized to two dye-swapped microar-

rays. Unsynchronized MA line transcriptomes were pro-
duced with the same design. Corning UltraGAPS glass
slides, spotted with the Operon AROS for Saccharo-
myces cerevisiae, V1.1, were used for all hybridizations.
Each microarray targets 6388 protein-coding genes
using two replicate spots per oligo, yielding four techni-
cal expression measurements per gene, strain, and time-
point. In total 378 time-series and 45 unsynchronized
microarrays were produced for natural and MA lines,
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respectively. Data were quantified, filtered, and normal-
ized, yielding expression measurements for 5879.9 genes
per strain on average (92.4%). Measurements show a
grand mean standard error (SE) of 0.175. Using two
microarrays of the same strain independently cultured,
synchronized, and sampled at 63 min., biological repli-
cate measurement error was estimated as 0.554 (SE).
Microarray data are available from the NCBI GEO data-
base under accession number [GEO:GSE24237] and
from the authors’ web site [52].
A set of 91 transposable (Ty) element genes were

excluded from the final data collection. The remaining
6,263 gene expression trajectories were imputed for
missing data and calibrated to a common CDC-period
of 267 min. using budding index measurements. A com-
mon set of 6,082 genes have CDC expression for all ten
natural strains. Custom software written in Python, R,
SAS, and Mathematica was used to carry out computa-
tional analyses as described in the Supplemental Materi-
als and methods.

Additional material

Additional file 1: Supplemental materials and methods; text,
figures, and tables. This file contains 10 texts, 33 figures, and 12 tables.

Additional file 2: Yeast heterochronic network. This spreadsheet
details the 5,393 significant gene-gene heterochronic interactions, 1,828
module-specific genes, and 1,887 genes with complex heterochrony.

Abbreviations
CDC: cell-division cycle; FDR: false discovery rate; FWER: family-wise error
rate; LDA: linear discriminant analysis; LFA: latent factor analysis; MA:
mutation accumulation; PCA: principal component analysis; RMSE: root mean
squared error; SD: synthetic dextrose; SE: standard error; SVD: singular value
decomposition; TF: transcription factor.
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