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Drosophila genetic interaction network<p>The first computational interaction network built from <it>Drosophila melanogaster</it> protein-protein and genetic interaction data allows the functional annotation of orphan genes and reveals clusters of functionally-related genes.</p>

Abstract

Background: Discovering the functions of all genes is a central goal of contemporary biomedical
research. Despite considerable effort, we are still far from achieving this goal in any metazoan
organism. Collectively, the growing body of high-throughput functional genomics data provides
evidence of gene function, but remains difficult to interpret.

Results: We constructed the first network of functional relationships for Drosophila melanogaster
by integrating most of the available, comprehensive sets of genetic interaction, protein-protein
interaction, and microarray expression data. The complete integrated network covers 85% of the
currently known genes, which we refined to a high confidence network that includes 20,000
functional relationships among 5,021 genes. An analysis of the network revealed a remarkable
concordance with prior knowledge. Using the network, we were able to infer a set of high-
confidence Gene Ontology biological process annotations on 483 of the roughly 5,000 previously
unannotated genes. We also show that this approach is a means of inferring annotations on a class
of genes that cannot be annotated based solely on sequence similarity. Lastly, we demonstrate the
utility of the network through reanalyzing gene expression data to both discover clusters of
coregulated genes and compile a list of candidate genes related to specific biological processes.

Conclusions: Here we present the the first genome-wide functional gene network in D.
melanogaster. The network enables the exploration, mining, and reanalysis of experimental data, as
well as the interpretation of new data. The inferred annotations provide testable hypotheses of
previously uncharacterized genes.
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Background
Understanding how a metazoan organism functions requires
knowledge of the biochemical, cellular, and overall pheno-
typic effects of all genes. Despite considerable effort, direct
experimental evidence supporting the participation of genes
in biological process(es) exists for only a modest proportion
of the full complement of metazoan genes (as reflected by
Gene Ontology (GO) annotations [1]; see Materials and meth-
ods section for details). For instance, of the nearly 29 K (K =
1,000) genes in mouse, there is experimental evidence sup-
porting the functional annotation of less than half, or approx-
imately 12 K genes. Similarly, for Caenorhabditis elegans,
experimental evidence exists for about a third (approximately
7.5 K) of its approximately 20 K genes. Even the most experi-
mentally amenable and well-characterized eukaryotic organ-
ism, Saccharomyces cerevisiae, though not a metazoan, still
has over 1 K of its 6 K genes lacking functional annotation [2].

Both new and improving synthetic and analytic genome-scale
technologies can help us determine the biological process(es)
of unannotated genes, as well as provide new insight into
annotated genes. Some of these approaches include yeast-
two-hybrid (Y2H) screens to detect physically interacting
proteins, expression profiling to detect transcript coexpres-
sion, modifier screens to identify genetic interactions, RNA
interference screens to measure the genetic effects of gene
knockdowns, genome tiling path arrays and next-gen
sequencing to discover transcribed genomic elements, and
ChIP-Chip and ChIP-seq to identify protein-DNA interac-
tions. While these assays have the advantage of being high-
throughput, distinguishing the biologically relevant relation-
ships from noise within a single experiment is not a straight-
forward task. This, together with their sheer volume, makes
interpretation challenging.

Methods to derive functional annotation from the available
corpuses of data have been developed [3,4] and those that
focus on data integration are among the more successful [5-
9]. Integrating different types of genomics data has been
shown to reveal relationships between genes not distinguish-
able within single datasets [10,11]. In the context of genomics
data, the overarching theme of an integrative model is to dis-
till the available data down to a value indicative of a gene pair
being functionally related. These methods, pioneered by
Troyanskaya et al. [5], Jansen et al. [8], and Lee et al. [12],
were heavily based on Bayesian networks to bring together
weighted gene-gene relationships across heterogeneous data-
sets. Here, and inspired from this previous work, a functional
relationship between genes represents the likelihood that two
genes are involved in the same biological process. Integrative
models have been successfully used to construct molecular
networks (that is, transcriptional regulation and metabolic)
[13,14], predict genetic interactions in yeast [15], predict phe-
notypic effects in worm [16], provide new gene candidates in
human disease [17-20], and make novel predictions of gene
function [6,12,21-27]. The number of organisms with well-

annotated genomes and sufficient experimental data to build
integrated networks is limited. Thus, networks constructed
from genome-wide data have been restricted to: bacteria
[14,25], S. cerevisiae [5,12,26,28,29], C. elegans [16,30],
mouse [31,32], and human [18-20,27]. Drosophila is among
the most well-annotated organisms, and the amount of exper-
imental and computational data for it is on par with worm,
yeast, and mouse [33,34]. Although there exist repositories
for flies that provide sophisticated query capability, namely
FlyBase [35] and FlyMine [36], as well as ongoing attempts at
mining disparate sources of fly data [21,37,38], an integrated
system that can be interrogated ad hoc to easily deal with
large sets of Drosophila genes has not been available until
now.

As one of the preeminent model organisms, Drosophila has
been the object of study for more than a century [39]. This
research has not only increased our understanding of the
organism itself [40,41], but more importantly increased our
knowledge of molecular mechanisms in biology in its broad-
est sense, particularly in the fields of genetics, development,
evolution, and molecular biology. Drosophila has the richest
set of sequenced genomes for a metazoan genus [42,43] and,
along with C. elegans and human, will have the most compre-
hensive inventory of metazoan genomic elements stemming
from the modENCODE [44] and ENCODE projects [45].
Despite these resources, there exist many genes for which
biological process(es) are unknown. At the time of this study
(v5.3 of the D. melanogaster genome [46]) there is direct
experimental evidence supporting the biological process GO
annotations (hereafter referred to as GO:BP) for less than half
(approximately 42%) of the more than 15 K protein-coding
genes (counted from curator reviewed GO evidence codes).
These annotations are mostly based on genetic evidence,
(that is, mutant phenotypes, genetic interactions, and RNA
interference knockdown phenotypes). In addition to experi-
mental evidence, roughly 26% of the genes have GO:BP terms
that are inferred from electronic annotation methods
(inferred from electronic annotation (IEA) GO evidence
code). Considering all the available methods to determine in
which biological process(es) a gene participates, we under-
score the fact that nearly one-third of Drosophila protein-
coding genes (> 4.6 K) remain unannotated.

In this study, we bring together experimental data to build the
first integrated functional gene networks in Drosophila. We
focus specifically on building functional relationships
between pairs of genes that are likely to participate in the
same biological process and are supported by experimental
evidence. We adapt the approach developed by Marcotte and
colleagues [12,16,28] to integrate three experimental classes
of data, in particular, genetic interactions, protein-protein
interactions, and microarray gene expression. We demon-
strate that the integrated networks perform well at recapitu-
lating known functional relationships and outperform
networks built exclusively from individual types of data (that
Genome Biology 2009, 10:R97
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is, just microarray data). We then utilize the functional rela-
tionships in the network to predict GO:BP annotations for
unannotated genes using the Markov random field (MRF)
method [47] and demonstrate that this approach performs
well at predicting annotations through tenfold cross-valida-
tion. We use this method to infer high confidence GO:BP
terms for 483 uncharacterized genes, and evaluate these pre-
dictions with respect to the available independent evidence.
Finally, we use the constructed network to reanalyze gene
expression data related to nutritional deprivation. We show
that the network can be used to discover clusters of function-
ally related genes amongst genes that were identified to be
differentially expressed.

All data are made available through supplemental material
[48].

Results
Types of data and datasets
This study includes three classes of data: genetic interactions
(GIs); protein-protein interactions (PPIs); and microarray
(MA) expression data. All reported GIs were downloaded
from FlyBase [46] and each GI was weighted equally. PPIs
were extracted from the following databases: BIND [49], DIP
[50], DroID [51], BioGRID [52], and IntAct [53]. The union of
the PPIs across these databases was taken and separated
based on the assay type, namely direct assay (that is, co-
immunoprecipitation, biochemical assay), high-confidence
Y2H (high-confidence as defined by Giot et al. [54]), and pos-
itive Y2H. A total of 18 published MA experiments were used
(see Figure S1 at [55]). These 18 experiments can be divided
into individual subcomponents, often reflecting several time-
course studies done under the umbrella of one published
experiment. Thus, these 18 experiments were broken into 34
individual datasets. The 34 datasets were evaluated using log-
likelihood scores (LLS) and several other filters detailed in
the 'Calculating the likelihood that gene pairs participate in a
common biological process' and Materials and methods sec-
tions. From these results, we determined that 20 of the 34
datasets provided LLSs meeting our evaluation criteria;
therefore, only these 20 MA datasets were included in the
construction of the integrated networks. In total, 24 datasets
were used in this study, including all GIs, three classes of
PPIs, and 20 MA datasets (see Table S4 at [55] for the number
of conditions per MA dataset). The datasets are summarized
in Table 1, and further details of the acquisition and process-
ing of these datasets are provided in the Materials and meth-
ods section.

We restricted our use of the GO to the category of biological
process (GO:BP). Unless specified, we also required any
GO:BP annotations to be examined by a human curator as
described on the GO website [56]; therefore, the GO evidence
codes of IEA, ND (No biological data available), and NR (Not
recorded) were removed. Please refer to the Materials and

methods section for details on how annotations are handled
given the structure of the GO.

Shared biological processes across datasets
Understanding the degree of overlap in biological processes
amongst the datasets is integral in determining how the infor-
mation contained in each dataset should be integrated. We
explored this overlap by measuring how well a dataset con-
nects genes involved in the same annotated GO:BP. The GI
and PPI datasets are each a compendium of all reported inter-
actions, many from largely unbiased screens, that is, Y2H and
modifier screens; therefore, we would expect these datasets to
provide links between genes across a diverse range of biolog-
ical processes. On the other hand, individual MA datasets
measure gene expression across distinct biological conditions
such as time, space, genotype, or stress/treatment. Therefore,
we would expect that within each MA dataset, genes with cor-
related expression profiles will reflect the biological processes
that are affected under the experimental conditions. For
instance, we expect that genes involved in immune response
will show expression changes upon infection with bacteria or
fungus, as studied in De Gregorio et al. [57]. In order to eval-
uate the datasets, we first counted the number of gene pairs
that were co-annotated with the same GO:BP term. This
count was done for each dataset where gene pairs were meas-
ured as: statistically significant Pearson correlation coeffi-
cients for MAs; all GIs; or all PPIs. The results of performing
this test for all GO:BP terms across the GI, PPI (direct assay,
high-confidence Y2H, and Y2H are combined in this case),
and 20 MA datasets are shown in Figure 1 (see Additional
data file 1 for the data used to create Figure 1).

A large number of statistically significant GO:BP terms were
revealed across all the datasets, with some terms being nearly
ubiquitously significant. In other words, genes annotated
with a particular GO:BP term were much more highly con-
nected than expected at random for almost all datasets. The
example of cell cycle related GO:BP terms is marked in green
in Figure 1. This is a specific example where functional con-
nections between cell cycle-related genes can be strengthened
by looking across multiple datasets. Additionally, there are
processes that are only found in MA datasets and not in GIs
or PPIs; for example, processes involved in oxidative metab-
olism, namely electron transport and oxidative phosphoryla-
tion (Figure 1, marked in brown). Conversely, we also see
GO:BP terms that are uniquely significant to a particular
dataset. For instance, De Gregorio et al. [57] and Wertheim et
al. [58] performed MA experiments to explore the gene
expression responses of flies upon infection with bacteria and
fungus, and parasitoid wasps, respectively, and we see that
these two datasets are highly significant for immune response
GO:BP annotations (Figure 1, marked in purple), while the
other MA datasets are largely not well-represented in this
class of GO:BP terms. Similarly, Magalhaes et al. [59] sam-
pled gene expression related to axon guidance and we see that
this dataset is highly significant for developmental biological
Genome Biology 2009, 10:R97
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Table 1

Datasets

Source Dataset Pass filter? Genes Relationships

Genetic interactions

FlyBase All reported GIs N/A 2,878 6,941

Protein-protein interactions

BIND, DIP, IntAct Direct assay N/A 935 1,234

DroID, BioGRID High-confidence Y2H N/A 4,543 4,590

Positive Y2H N/A 6,183 19,584

Microarray

Hooper et al. [100] All conditions Yes 10,460 3,289,275

Chintapalli et al. [102] All conditions Yes 10,054 3,618,216

Parisi et al. [92] All conditions Yes 9,922 5,656,854

Edwards et al. [99] Line1 Yes 8,403 8,072,394

Line2 Yes 8,296 8,118,665

All conditions Yes 0 0

Altenhein et al. [98] All conditions Yes 8,341 1,030,457

Gof No 0 0

Lof No 0 0

Hild et al. [97] All conditions Yes 8,214 677,746

Qin et al. [94] All conditions Yes 6,734 4,187,496

Tomancak et al. [103] All conditions Yes 6,288 2,626,310

Magalhaes et al. [59] All conditions Yes 5,718 1,102,629

De Gregorio et al. [57] All conditions Yes 5,698 1,561,265

Bacteria Yes 4,920 237,361

Fungus No 0 0

Spaetzle No 0 0

Relish No 0 0

Spaetzle &relish No 0 0

Sandmann et al. [101] All conditions Yes 5,474 1,238,924

Arbeitman et al. [61] All conditions Yes 4,354 1,769,479

Embryo Yes 4,126 1,271,286

Larva No 0 0

Pupal No 0 0

Adult male No 0 0

Adult female No 0 0

Sorensen et al. [96] Heat Yes 4,219 690,181

No heat Yes 4,083 701,546

All conditions Yes 0 0

Beckstead et al. [95] Third instar Yes 4,015 1,000,994

Estrada et al. [93] All conditions Yes 2,978 657,929

Wertheim et al. [58] All conditions Yes 2,280 551,684

Beckstead et al. [95] Ecr No 0 0

Li et al. [91] All conditions No 0 0

List of all datasets used in this study. The unit of data which we call a dataset is contained in the 'dataset' column. The filtering criteria apply to the 
microarray data as described in the Materials and methods section. The number of unique genes and functional relationships that a dataset 
contributes to the integrated network are listed. A '0' indicates that the dataset was not used for integration. There are two examples, Edwards et al. 
[99] (all conditions) and Sorensen et al. [96] (all conditions), where the dataset passed the filter but was not used in the integration. This is because 
all components in these experiments passed the filter criteria, but to remove redundant data, the subcomponent datasets were taken in favor of the 
dataset defined over the full set of conditions.
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processes, particularly neurogenesis (Figure 1, marked in yel-
low). Overall, the GIs and PPIs have the greatest proportion
of significant GO:BP terms, while MA datasets vary in the
number and kind of GO:BP terms that are statistically signif-
icant. Finally, while some GO:BP tend to be common to sev-
eral of the MA datasets, it is clear that none of the MA datasets
provide fully redundant information. This is to be expected
given the wide range of biological conditions surveyed in the
experiments, and indicates that the data are not strongly
biased towards a limited range of biological processes.

These results show that no individual dataset fully represents
all biological processes and we see that the datasets both com-
plement and supplement each other, suggesting that integra-
tion can be used to more accurately group genes that share
biological processes.

Calculating the likelihood that gene pairs participate in 
a common biological process
While the GI, PPI, and MA data each provide evidence for
gene pair involvement in a common biological process, each
type of data has a different measure. GIs and PPIs are
reported as Boolean, while the correlations between gene

expression profiles in MA experiments are continuous (Pear-
son correlation coefficient [-1, 1]). We utilized the LLS
approach, developed by Lee et al. [12,28], to convert the gene
pair measures from each dataset to a common scale. The LLS
(Equation 2) reflects how well the relationships in a given
dataset agree with GO:BP annotations (see Materials and
methods section for details). This approach achieves two
important objectives. First, since we are calculating the LLS
with respect to GO:BP annotation, this score reflects the like-
lihood that any two genes connected within a dataset share a
common biological process. Second, because the LLSs for all
the classes of data are calculated with respect to the same
benchmark set of GO:BP terms, each dataset can now be
directly compared.

LLSs were calculated for all 24 datasets. We treated all
reported GIs as Boolean and then calculated a single LLS of
2.661 for the entire dataset. Although the PPI data are
reported as Boolean interactions, assay types differ in relia-
bility [60]. We expect direct assay (that is, co-immunoprecip-
itation, biochemical assay) to be the most reliable, followed by
high-confidence Y2H (as defined in Giot et al. [54]), then
Y2H; therefore, we calculated separate LLSs for each class.

Significant GO:BP terms across datasets.Figure 1
Significant GO:BP terms across datasets. Visualization of how well a dataset connects genes annotated with the same GO:BP term. The dataset names are 
listed on the left (see Table 1 for citations) and GO:BP terms are listed across the top. All datasets shown are used in the weighted sum (WS) integration. 
From black to red represents the least significant to the most significant GO:BP terms within a dataset as measured through statistically significant 
coherence (see the Materials and methods section). Both GO:BP terms and datasets were hierarchically clustered and visualized using TM4 MEV [112]. 
The colored blocks on the top of the figure highlight similar GO:BP terms selected to show different patterns of significance across the datasets. Marked 
in brown are oxidative metabolism GO:BP terms, which are significant in most MA datasets but absent from the genetic interaction and protein interaction 
datasets. Marked in green are cell cycle GO:BP terms, which are well represented across most datasets. Marked in yellow are development and 
neurogenesis GO:BP terms, which are overrepresented in the Magalhaes et al. [59] dataset (a microarray experiment on axon guidance). Marked in purple 
are immune response related GO:BP terms, which are well represented in the DeGregorio et al. [57] and Wertheim et al. [58] datasets, both of which 
tested gene expression of immune response.
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Our expectations were borne out with a LLS of 2.389 for
direct assay, 1.045 for high-confidence Y2H, and 0.630 for
Y2H. As mentioned, the similarity measures for MA data are
continuous correlation coefficients. We expect that gene pairs
with the most similar expression profiles will have the highest
likelihood of sharing a biological process, and the gene pairs
with the least similar expression profiles (coefficient of 0) will
have the lowest likelihood of sharing a biological process.
Therefore, for each MA dataset, we rank ordered the gene
pairs with statistically significant correlation coefficients,
divided the ranked list into sequential bins of one thousand,
then calculated the LLS for each bin. As expected, most MA
datasets showed a trend towards increasing LLS as correla-
tion values increased. An example can be seen in Figure 2,
which reflects this calculation for the Arbeitman et al. [61] fly
life-cycle timecourse (see Figure S1 at [55] for all additional
plots). Interestingly, the most positively correlated and statis-
tically significant gene pairs, in the interval [0.3,1], show a
trend of increasing LLS with increasing correlation, while the
most negatively correlated and statistically significant gene
pairs, in the interval [-1,-0.3] (absolute value in Figure 1),
show a trend of flat to decreasing LLS with more inversely
correlated gene pairs. This trend was observed for all the MA
datasets. Given the poor performance reflected by the LLSs,

we removed negatively correlated gene expression profiles
from the integration process and only considered positively
correlated MA gene pairs. For each of the LLS versus positive
correlation plots, a polynomial regression was calculated to
model the overall trend (blue curve in Figure 2). All pairwise
correlation values were then assigned a LLS computed from
the regressed curve. LLSs across all microarray datasets
range from 0.1 to 2.3. The LLSs calculated for GI, PPI, and
MA data indicate that each of these types of data provide evi-
dence for GO:BP annotation shared between gene pairs. We
therefore aimed to utilize the LLSs with the expectation that,
by integrating across all data, we should observe stronger evi-
dence of shared biological processes between two genes than
can be detected in individual types of data.

Integrating the data to construct functional gene 
networks
Our analysis of the overlap between datasets indicated that,
for most biological processes, multiple datasets provided sup-
porting information, but no single dataset provides the pre-
ponderance of information. (see the 'Shared biological
processes across datasets' section and Figure 1). Based on this
observation, we expected that the weighted sum (WS)
approach, which has been shown to be effective in integrating
data in yeast [12,28], worm [16], and mouse [31], would be
equally as effective an approach to integrating fly data. In
order to test this, we constructed integrated functional net-
works using the WS method developed by Lee et al. [12,28].
The WS approach mathematically integrates (through
weighting) the LLSs for gene pairs across the multiple data-
sets into one measure reflecting our confidence that a gene
pair is functionally related.

The WS calculation was performed by first rank ordering the
LLSs for a gene pair, then summing the scores (Equation 4).
Included in the WS calculation is the parameter, M, that
down-weights subsequently ranked LLSs for a gene pair,
where M  1. Increasing the value of M results in greater
emphasis being placed on the datasets that provide the great-
est likelihood that the members of a gene pair are functionally
related. We evaluated the performance of networks con-
structed with a range of values for the M parameter (from 1 to
approaching infinity (M  ), where M   effectively only
considers the greatest LLS for a gene pair). We also tested the
naïve approach of summing across all LLSs. By varying the
values of M, we assessed the network's performance on tasks
described in more detail below to search for an optimal M
value.

We additionally evaluated the performance of integrated net-

works with varying network sizes (number of edges in a net-

work). We were interested in the networks' ability to

recapitulate known functional relationships between genes

reported in the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways database [62]. We selected the KEGG path-

Log-likelihood score calculated for a microarray datasetFigure 2
Log-likelihood score calculated for a microarray dataset. The log-
likelihood score (LLS) compared to the significant correlation coefficients 
for the Arbeitman et al. [61] microarray dataset. Statistically significant 
correlation coefficients are rank ordered and separated into bins of 1,000 
gene pairs. For example, the right-most black dot represents the top 1,000 
ranked gene pairs by correlation coefficient. The black dots are positively 
correlated gene pairs, while the red circles are the absolute value of the 
negatively correlated expression profiles. The blue line is the polynomial 
model fit to the data and used to transform all correlation coefficients to 
LLSs.

Arbeitman et al.
Genome Biology 2009, 10:R97
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way database for this evaluation since, despite being biased

towards biochemical pathways and not entirely independent

of GO annotations, it is nevertheless the most appropriate,

large, and high-confidence set of annotated functional rela-

tionships available for Drosophila. Networks were con-

structed by rank ordering the WS scores for all gene pairs and

then progressively lowering the threshold on the WS score to

add edges to the network. Figure 3 shows the performance of

the WS integration related to network sizes as measured

through KEGG pathways coherence, a measure of how tightly

a set of genes are connected in a network (see Materials and

methods section for details). The dots in Figure 3 represent

the average coherence values measured over network size

intervals, while the solid lines represent the average coher-

ence values minus the coherence of random sets of genes. The

solid lines thus represent the true gain in coherence with

increasing network size that is not due to noise. Two impor-

tant trends are evident. First, the networks constructed with 1

<M <<  are more effective at constructing coherent net-

works than the naïve approach or where M  . Further eval-

uation revealed an optimized M parameter of M = 1.8.

Second, Figure 3 shows two points at the network sizes of 20

K and 200 K edges where the slope of the lines flatten. These

points reflect the two network sizes that show the greatest

KEGG pathway coherence related to network size. We have

therefore focused further analysis on 20 K and 200 K net-

works constructed using M = 1.8. We designate these in the

form  to account for both the value of M (Equation

4) and the size of network (where the net size is in thousands

of edges). Both  and  are supplied at [63,64]. Also,

the full set of integrated data with over 25 million gene pairs

and their associated WS scores covering approximately 85%

of the protein-coding genes in v5.3 of the D. melanogaster

genome are supplied at [65].

Validation of integration
Although data can be integrated, the derived relationships
must be vetted. Validation of the integrated gene network
data was done in two ways. First, we evaluated how well the
integrated network recovered relationships in individual
KEGG pathways. Second, we compared the integrated net-
work to networks built from different, individual datasets to
test whether integrating the data results in improved per-
formance.

All KEGG pathways containing at least 10 D. melanogaster

genes were tested against . In total, 63 KEGG pathways

were tested. Of these, 59 are statistically significant at a cor-

rected P-value < 10-20 as quantitatively assessed using permu-

tation testing and single sample Wilcoxon signed-rank test

(see Table S5 at [55] for more details). The number of coher-

ent KEGG pathways and the degree of statistical significance

N netsize
Mparam

N 20
1 8. N 200

1 8.

N 200
1 8.

Average KEGG pathway coherence for integration evaluationFigure 3
Average KEGG pathway coherence for integration evaluation. The average coherence of 25 KEGG pathways over different weighted sum (WS) 
integrations at increasing network sizes (number of edges). The dots represent the actual measured values averaged over 25 KEGG pathways, while the 
lines represent the difference between the actual measured values and random coherence at an equivalent network size. The coherence is measured over 
networks of increasing size up to one million gene pairs. The grey dashed lines mark the network sizes of 20 K and 200 K, which are the points where the 
slope (gain in coherence) flattens.

Average KEGG Pathway Coherence

vs. Network Size
Genome Biology 2009, 10:R97
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of these pathways provide evidence that the derived func-

tional relationships are biologically meaningful.

We next tested whether the network constructed using inte-
grated data outperforms networks constructed from separate
classes of data and individual datasets. We compared the fully
integrated gene network to a network built from integrated
MA data while ignoring GIs and PPIs, a network built from
exclusively GIs and PPIs while ignoring MA data, and a net-
work of only PPIs. We also examined the relative contribution
of individual MA datasets. Across the range of network sizes
examined (1 K to 1,000 K; the GI and PPI network and the PPI
network have maximum sizes of 32,240 and 25,408, respec-
tively) the average coherence measure (across 63 KEGG path-
ways) of the fully integrated network was greater than that for
the networks based on any subset(s) of data (Figure 4a). This
is evident at a network size of 20 K where the fully integrated
network (GI, PPI, MA) performed the best (area under the
curve (AUC) = 0.1020), followed by the GI and PPI network
(AUC = 0.0777), and then a step down to the MA only network
(AUC = 0.0396). The KEGG pathway coherence for the net-
works built using the various datasets and summarized as the
AUC at network sizes 20 K and 200 K is provided in Table S6
at [55]. We also see that networks built using the integrated
framework outperformed networks based on the individual
component datasets. For instance, the integrated MA net-
work performed better (AUC = 0.0396 at 20 K) than all net-
works based on individual MA datasets (maximum AUC =
0.0314 at 20 K), and much better than the average individual
microarray dataset network (AUC = 0.018 at 20 K). In sum-
mary, these data indicate that the integrated network per-
forms best in terms of recapitulating known functional
relationships across the range of KEGG pathways tested.

We also examined the performance of networks based on the
coherence of the various combinations of data with respect to
the 63 individual KEGG pathways examined. Given that the
fully integrated network performed best when measured
against all 63 pathways, we would expect this to be the case
for many individual pathways; this was, indeed, the case. For
example, the 'purine metabolism' KEGG pathway shows that
most of the individual datasets contribute to the coherence
and the fully integrated network performs best (Figure 4b).
However, it is also clear that the performance of the different
datasets varies across different KEGG pathways. For
instance, the coherence among genes in the 'Hedgehog sign-
aling' KEGG pathway is based largely on GI and PPI data (Fig-
ure 4c), whereas the MA data contribute most of the
coherence among genes in the KEGG category 'ribosome'
(Figure 4d). There were also cases where networks based on
individual datasets outperformed the fully integrated net-
work. This is the case for the 'phenylpropanoid biosynthesis'
KEGG pathway, where several individual MA datasets pro-
vide greater coherence than the fully integrated network (Fig-
ure 4e). While these examples serve to illustrate the ways in
which the datasets vary in their performance across specific

biological processes, the observed patterns do not fall simply
into distinct classes. Plots of all 63 KEGG pathways can be
found in Figure S2 at [55] and are summarized in Table S6 at
[55]. While the fully integrated network performs best across
a wide range of biological processes, the contribution of indi-
vidual datasets varies across biological processes and there
are processes that may be better studied with a subset of data.

General network properties

 contains 5,021 unique genes and  contains 9,528

unique genes. It should be noted that these networks include

any genetic element defined as a 'gene' in FlyBase [46], and

consequently includes some elements that have yet to be

mapped to the genome (for example, modifier mutations).

The inclusion of these elements does not adversely affect the

construction of the network; however, it should be kept in

mind that while some may represent new genes, many are

likely to be alleles of existing genes. Roughly 25% of the genes

in  and 13% of the genes in  are of this nature.

These genes contribute to 9% of the edges in  and 1.2%

of the edges in . The underlying data used to draw an

edge in the networks can be any combination of the three

types of data (MA, PPI, and GI). In other words, an edge in the

network can be based on MA data, MA and GIs, just PPIs, and

so on. The composition of the functional relationships

between genes can be seen in Figure 5, where the colors in the

pie charts correspond to the edge colors in Figure 6, an image

of  visualized in Cytoscape [66]. Overall, in , 34.8%

of the edges are supported exclusively or partially by GI data,

6.8% are supported exclusively or partially by PPI data, and

82.2% are supported exclusively or partially by MA data.

Thus, while the GI and PPI data constitute a very low propor-

tion of the available genomics data, a much greater propor-

tion of these data was used in constructing this network.

Specifically, for , 100% of the GI data were used, 5% of

the PPI data were used, and 0.004% of the possible edges

from MA data were used. As many of the gene pairs used to

construct  are supported by PPIs and GIs, these data are

also in ; therefore, the edges gained from increasing the

size of the network from  to  are from MA data.

This can be seen where  has 60.8% of the edges derived

solely from MA data and as the network increases to ,

the number of edges drawn exclusively from MA data

increases to 95.8%.
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Since the relationships between genes in the integrated net-

work reflect the likelihood that two genes participate in a bio-

logical process, we expect that genes involved in the same

biological process will cluster together. Manual inspection of

 and  reveals both many connections between

gene pairs and gene clusters that are consistent with prior

knowledge. In order to examine the most prominent exam-

ples, we scored and ranked highly interconnected subnet-

works within  using Cytoscape [66] and the graph

clustering algorithm and visualization tool MCODE [67].

Manual inspection of these subnetworks revealed that the

annotated genes within them are largely annotated with com-
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Coherence of types of data and datasets on individual KEGG pathwaysFigure 4
Coherence of types of data and datasets on individual KEGG pathways. Examples of how types of data and individual datasets compare to the fully 
integrated network as measured through coherence of KEGG pathways [62]. The average coherence of a given dataset is calculated for a set of genes 
defined by a KEGG pathway at increasing network sizes up to one million edges. (a) The average coherence over 63 tested KEGG pathways. The full 
integration of genetic interactions, protein interactions, and microarray data performs best compared to all other data sources and individual datasets. (b) 
A specific example where the fully integrated network performs better than all other individual datasets and in relation to the 'purine metabolism' KEGG 
pathways. (c) Ribosomal constituents are highly coherent in the microarray data, with many individual microarray datasets performing well. In this 
instance, not taking into account the genetic interactions and protein interactions performs better than the fully integrated network. (d) An example of 
where the genetic interactions and protein interactions contribute nearly all of the coherent relationships for the 'Hedgehog signaling' KEGG pathway. (e) 
An example of where the integration method performs worse than several individual microarray datasets for the 'phenylpropanoid biosynthesis' KEGG 
pathway. See Table 1 for citations for the datasets.

(c)(a)

(e)(d)

(b)

Hedgehog Signaling Pathway
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mon, or closely related, GO:BP terms. (Cytoscape [66] for-

matted session files, including MCODE clusters, are provided

at [63,64]. We have also utilized Java Web Start to make the

Cytoscape sessions directly accessible through an internet

browser [48].) As an illustration, a subnetwork enriched for

genes encoding nuclear ribosomal proteins includes a total of

68 genes, of which 64 encode ribosomal proteins, one

encodes a translation initiation factor (Eukaryotic initiation

factor 4A [FlyBase:FBgn0001942]), and two encode transla-

tion elongation factors (Elongation factor 1 [Fly-

Base:FBgn0028737], and Elongation factor 2b

[FlyBase:FBgn0000559]). A striking feature of the most

highly interconnected subnetworks is that they are largely

enriched for genes that participate in basic cellular processes

such as ribosome biogenesis, the ribosome, proteolysis, mito-

chondrial electron transport, intracellular protein transport,

and cell division, which is consistent with the tight clusters in

integrated gene networks in yeast [12,26,28], worm [16],

mouse [31,68], and human [27]. Since the functional relation-

ships in the network are based mostly on MA data, this sug-

gests that ubiquitously expressed genes - often referred to as

'housekeeping' genes - are, in fact, coordinately and tightly

regulated with distinct expression patterns reflecting their

respective biological processes. In addition to expected con-

nections, the network also includes many previously

unknown (or previously unnoticed) functional connections,

including novel connections between previously studied

genes, connections between unannotated and annotated

genes, and connections between unannotated genes. For

instance, the gene Receptor of activated protein kinase C 1

(Rack1 [FlyBase:FBgn0020618) is present in the ribosomal

proteins cluster already mentioned. Of the 68 genes in this

cluster, Rack1 is the only gene not annotated with GO:BP

terms related to translation. Neither the molecular function

('protein kinase C binding' [GO:0005080]) nor the mutant

phenotype (larval lethal and defective oogenesis in germline

clones) suggest an involvement in ribosome function [69],

but the functional relationships in  suggest a role in the

ribosome. This inference is strongly supported by the findings

that, in yeast and mammals, highly conserved orthologous

proteins are physically associated with the ribosome [70-72].

The preceding examples serve to illustrate that the network

can be used to identify functional relationships between

groups of interconnected genes as well as the immediate

neighbors of any given gene. This in turn provides a means of

analyzing new genome-wide datasets with respect to gene

function and to infer the annotation of previously unanno-

tated genes. In the following sections we utilize the integrated

functional gene network to infer the GO:BP annotations of

previously unannotated genes, and explore the use of the net-

work in reanalyzing a genome-wide dataset.
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Composition of edges in the integrated networksFigure 5

Composition of edges in the integrated networks. Relative contribution of the different types of data to the integrated network of (a)  and (b) 

. The teal color represents edges that are drawn solely on microarray data. Dark blue represents edges drawn from genetic interactions only and 

green from protein interactions only. Orange represents edges drawn from both protein interactions and microarray data. Edges drawn from both genetic 
interactions and microarray data are in red. Purple represents edges supported by both genetic interactions and protein interactions. Lastly, the light blue 
represents edges supported by genetic interactions, protein interactions, and microarray data. The colors correspond to the edges in Figure 6.
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Inferring biological process gene annotations

Both the  and  networks contain a mixture of

annotated and unannotated genes. Specifically, there are

2,544 annotated and 2,477 unannotated genes within ,

and 3,691 annotated and 5,837 unannotated genes within

. A total of 2,673 unique GO:BP terms are associated

with the 2,544 annotated genes in , and 2,998 unique

GO:BP terms are associated with the 3,691 annotated genes in

. Taken together, the functional relationships within

the network and the gene-GO:BP annotations provide a

means to make de novo GO:BP predictions on un- and under-

annotated genes. A recent assessment of gene function pre-

diction methods using heterogeneous data sources (a compe-
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 integrated networkFigure 6

 integrated network. Screenshot of  visualized in Cytoscape [66]. The edge colors correspond to Figure 5, where, for example, the teal edges 

are built from only microarray data and the red edges are built from genetic interaction and microarray data.
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tition among seven groups) demonstrated that reasonably

accurate predictions can be made for a metazoan [24]. How-

ever, this study also showed that predicting GO:BP terms is

more difficult than predicting GO cellular component or

molecular function terms - with an average of 21% precision

at 20% recall for biological process terms, an average of 32%

precision at 20% recall for cellular component terms, and an

average of 42% precision at 20% recall for molecular function

terms [24]. This assessment provides a useful benchmark for

gene function prediction in Drosophila. Based on the func-

tional gene network derived from heterogeneous fly data, we

explored whether we could make reasonable GO:BP predic-

tions for un- and under-annotated genes.

We calculated the probabilities of gene-GO:BP associations
based on the MRF method as described by Letovsky and Kasif
[47] (see Materials and methods section). Three key aspects
of the network topology and gene-GO:BP term associations
are considered: the frequency of a GO:BP term with respect to
the tested network; how often genes with the same GO:BP
annotation(s) are connected; and the immediate neighbors of
the gene whose function is being predicted. Taken in concert,
the probability for a gene being annotated with a GO:BP term
was calculated using Equation 5. Prediction evaluation was
done through tenfold cross-validation. All D. melanogaster
genes with known GO:BP annotations were divided randomly
into ten equally sized groups and GO:BP terms were held-out
from one of the ten groups of genes. The LLSs were recalcu-
lated from scratch using the annotations from the other nine
groups. An integrated network was constructed under the WS
framework (M = 1.8) and GO:BP terms were predicted using
the MRF method. This procedure was repeated ten times. In
the following two sections we use this evaluation to address
two questions. First, can we establish a threshold for the pre-
diction posterior probability, denoted tp, that provides rea-
sonable de novo predictions? Second, do the predictions from
the integrated network outperform predictions made from
networks built from individual types of data?

Determining prediction thresholds
We first explored the performance of the MRF GO:BP predic-
tions at various thresholds of tp. In order to do this, we calcu-
lated the precision and recall of the predicted gene-GO:BP
annotations with respect to the held-out gene-GO:BP annota-
tions. It has been observed that measurements of perform-
ance on predicted GO terms tend to be quite conservative
[24]. This stems from the fact that gene annotation is far from
being complete, and the extent to which genes are under-
annotated, with as yet undiscovered pleiotropic functions, is
not known. This under-annotation will lead to an underesti-
mate of true positives and likely an overestimate of false pos-
itives, which will result in a lower measure of precision.
Nevertheless, while these performance measures need to be
interpreted in light of the fact that they are inherently con-
servative, they do provide a useful relative measure of per-

formance. Here, a predicted gene-GO:BP annotation was
called a true positive if the predicted term matched the held-
out term, or the parent or child of the held-out term as
defined in the GO. A predicted gene-GO:BP annotation was
called a false positive if the predicted term did not match a
held-out term on that gene, or a parent or child term. Lastly,
a false negative was called for all held-out gene-GO:BP asso-
ciations where we did not predict a term. In addition to meas-
uring precision and recall in relation to all the held out gene-
GO:BP annotations, we also measured the precision and
recall with respect to the genes with held-out annotations. In
this case we called a gene prediction a true positive if at least
one predicted annotation for the gene is a true positive gene-
GO:BP prediction. A false positive gene prediction was called
if predictions were made for the gene but none were correct.
Lastly, a false negative gene prediction was called if the gene
had held-out GO:BP terms but we did not make a prediction
for the gene.

Figure 7 shows precision (Figure 7a) and recall (Figure 7b) as
a function of tp. These plots show the general trend that
increasing tp increases the precision and decreases the recall
of gene-GO:BP predictions. In contrast, precision related to
gene predictions stays relatively flat over increasing tp. This
indicates that, for the predictions made for a gene, at least one
has a high likelihood of being true regardless of tp, but the
likelihood that any individual GO:BP prediction is true
increases with increasing tp. We report a precision for gene-
GO:BP predictions of 23% at 20% recall. This is comparable
to the average of 21% precision at 20% measured over seven
different groups predicting GO:BP annotations for mouse
[24]. While it should be noted that there are slight differences
in both the input data and the way precision and recall were
measured, this comparison serves to illustrate that precision
of our predictions is similar to that achieved for another
metazoan.

After establishing the precision and recall for predictions with
the integrated networks, we address the first question of
establishing a threshold on tp that produces reliable predic-
tions. In order to quantify the similarity between the held-out
and predicted annotations in the tenfold cross-validation, we
used a measure of semantic similarity (SS) and calibrated this
measure against a benchmark dataset. In the context of this
study, SS provides a quantification of the degree of similarity
between two sets of GO:BP terms taking into consideration
the structure of GO. The measure of SS was calculated using
the program G-SESAME (Gene Semantic Similarity Analysis
and Measurement Tool) developed by Wang et al. [73]. The
scale ranges from [0,1], where 0 indicates that two sets of
GO:BP terms are unrelated, and 1 indicates two sets are the
same. As an example, Figure 8a illustrates the overlap of two
sets of terms within the structure of the GO where SS = 0.45.
In order to calibrate this scale with respect to a known bench-
mark, we examined the distribution of SS scores between all
pairs of genes with reported GIs (Figure 8b). Since GIs are
Genome Biology 2009, 10:R97
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reliable indicators that two genes function in a common bio-
logical process - both experimentally and also shown through
the LLS - this provided a useful reference set. The median SS
of gene pairs with reported GIs is 0.45, which we adopted as
a reasonable cut-off for our analysis. We then used G-SES-
AME to measure the SS between known GO:BP annotations
compared to the predicted GO:BP terms. This was performed
for the tenfold cross-validation of both network sizes, 20 K
and 200 K, where M = 1.8 over tp  [0, 1].

These results can be seen in Figure 8c, where the general
trend shows that increasing tp also increases the proportion of
genes with predictions that have a SS > 0.45 when compared
to the held-out annotations for the same set of genes.

Summaries of GO:BP predictions that were made using both

 and  are shown in Figure 8d. We can see that at a

tp > 0.5, there are an average of 10.5 GO:BP predictions made

on 941 genes for  and an average of 12.7 GO:BP predic-

tions made on 3,816 genes for . Extrapolating from the

SS results shown in Figure 8c, at a tp > 0.5 for , roughly

61% of genes have a set of GO:BP predictions with SS > 0.45,

so we would expect about 574 genes (941 × 0.61 = 574) to have

a set of GO:BP predictions with SS > 0.45. See Additional data

files 2 and 3 for predictions from both integrated networks.

Integrated network increases the performance of predicted 
annotations
To address the second question of whether an integrated net-
work built from all three types of data (GI, PPI, and MA) out-
performed networks built from individual types of data, we
evaluated the predictions in terms of precision and recall with
respect to the held-out GO:BP annotations (see Materials and
methods section). This was done for three networks built
from the following data: fully integrated (GI, PPI and MA); GI
and PPI only; and MA only. The integration of the GI and PPI
only and MA only data was constructed for networks of 20 K
and 200 K gene pairs using the WS framework where M = 1.8.
When using the fully integrated network, increasing the value
of tp resulted in concomitantly increasing precision and
decreasing recall. Comparing the results from the three dif-
ferent networks reveals that integrating across all three types
of data, on average, outperforms the other two integrated net-
works (Figure 4; Figure S2 at [55]). The network constructed
from GI and PPI data performs better than the network con-
structed from MA data only for precision and recall with
respect to GO:BP terms and precision with respect to genes;
however, the MA integration performs better at recalling
genes. These results are shown in Figure 9, where the exam-
ple (tp  0.5 at a network size of 20 K edges) is a fair represent-
ative of the entire set of evaluations. It should also be noted
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Precision/recall of GO:BP predictionsFigure 7
Precision/recall of GO:BP predictions. Precision and recall plots evaluating GO:BP predictions on unannotated D. melanogaster genes using the MRF 
method. The black color reflects predictions made from a network size of 20 K and the red color reflects predictions made from a network size of 200 K. 
For the tenfold cross-validation, (a) precision and (b) recall are shown in relation to the prediction probability (tp). Both precision and recall were 
measured in relation to all GO:BP predictions and also in relation to the gene (see Materials and methods section for distinction).
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that we tested the precision and recall of random predictions,
where a GO:BP prediction from the MRF method was
replaced with a random GO:BP term at the same level in the
GO hierarchy. These random predictions performed very
poorly and consistently returned less than 1% for both preci-
sion and recall. These results demonstrate that the fully inte-
grated network does, in fact, provide more reliable
predictions than either of the other networks.

Qualitative assessment of GO:BP predictions
In order to provide a qualitative assessment of the GO:BP

predictions, we manually inspected the set of predictions

made on genes without experimental evidence for any GO:BP

annotation. Predictions from  (tp  0.5) resulted in

roughly 3,000 gene-GO:BP predictions over 941 unique

genes. Of the 941 genes, we excluded 458 that could either not

be localized to the v5.3 D. melanogaster genome or had at

least one known GO:BP annotation (not IEA, NR, or ND).

Thus, the set of gene predictions consisted of 1,148 gene-

GO:BP predictions over 483 unique genes that could be local-

ized to the genome and did not have any experimental anno-

tation (10% of unannotated Drosophila genes).

These predictions were then examined in light of electroni-
cally inferred GO:BP terms, molecular function GO and cellu-
lar component GO annotation and also an updated version of
gene annotation from v5.7 of the D. melanogaster genome.
We also considered the best non-Drosophila sequence
matches to the NCBI nr database, along with the respective
annotations of these sequences. Over the entire set of 1,148
gene-GO:BP predictions, we found roughly 18% have sup-
porting evidence concordant with our predictions (Additional
data file 4). The next two paragraphs provide a few examples
of the types of supporting relationships within this 18%.

In our set of predictions, there are several examples of well-
studied genes that provide inadvertent cases of well-sup-
ported validation. For instance, there are examples of genes
whose annotation was not recorded in v5.3 of the D. mela-
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Semantic similarity and GO:BP predictionsFigure 8 (see previous page)
Semantic similarity and GO:BP predictions. Series of plots relating the semantic similarity (SS) for tenfold cross-validation to establishing a threshold for 
the prediction probability, tp. (a) An example illustrating the SS calculation. The nodes represent GO:BP terms, where the topmost node is the root. The 

red edges are 'is-a' and the blue, dashed edges are 'part-of' relationships in the ontology. Green nodes represent terms that are known and held-out for 
one gene, while the orange nodes are examples of predicted terms for the same gene. The half orange, half green node is an example where the predicted 
term perfectly matches a held-out term. The light blue nodes are the ancestor terms that fall within the path to the root, but are not annotated to either 
of the genes in this example. The SS of (a) is measured to be 0.45 through G-SESAME [73]. (b) Also, SS = 0.45 is the median SS value when measured over 
all reported and annotated genetic interactions. With respect to the GO:BP predictions, SS was measured by comparing the set of predicted terms to the 
set of held-out terms. (c,d) The black color reflects predictions made from a network size of 20 K and the red color reflects predictions made from a 
network size of 200 K. (c) The proportion of genes at a given threshold tp that show a SS measure of > 0.45. (d) The number of predictions made for both 

integrated networks,  and . The top plot in (d) shows the total number of genes with at least one prediction in relation to tp and the bottom 

bar graph shows the average number of GO:BP terms predicted per gene at a given tp.
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Comparing precision/recall for different data sourcesFigure 9
Comparing precision/recall for different data sources. An example of 
precision and recall calculated on the tenfold cross-validation where the 
prediction probability is tp  0.5. The colors represent three different 
networks, all with 20 K edges. Blue represents the network built from only 
microarray data, red represents the network built from only genetic 
interactions and protein interactions, and green represents the fully 
integrated network using genetic interactions, protein interactions, and 
microarray data. The whiskers show the standard deviation of the 
precision and recall over the tenfold cross-validation. The squares are the 
precision and recall measures with respect to the GO:BP terms, while the 
circles are precision and recall as measured for genes (see Materials and 
methods section for distinction). Predictions of random GO:BP terms are 
made and the precision and recall are shown as the squares and circles 
with a plus in the middle.

genes

GO:BP terms

genes random

GO:BP terms random

full network

microarray

gi & ppi

Precision vs. Recall
Evaluating Networks Built 

from Different Data
Genome Biology 2009, 10:R97



http://genomebiology.com/2009/10/9/R97 Genome Biology 2009,     Volume 10, Issue 9, Article R97       Costello et al. R97.16
nogaster genome, such as Cenp-C [FlyBase:FBgn0086697]
and crossveinless [FlyBase:FBgn0000394]. Cenp-C is known
to be a component of the centromere at mitotic anaphase
[74], which we predicted to be involved in 'mitotic sister chro-
matid segregation' [GO:0000070]. Another example is cross-
veinless, which is known to function in bone morphogenetic
protein (BMP) signaling required for wing crossvein develop-
ment [75,76]. We correctly predicted the GO:BP terms 'imag-
inal disc-derived wing vein morphogenesis' [GO:0008586],
'regulation of BMP signaling pathway' [GO:0030510], 'torso
signaling pathway' [GO:0008293], and 'regulation of trans-
forming growth factor  receptor signaling pathway'
[GO:0017015]; however, we also, and potentially errone-
ously, predicted 'blastoderm segmentation' [GO:0007350]
and 'terminal region determination' [GO:0007362].

Further confirmation of prediction quality comes from unan-
notated genes with additional supporting evidence that is
consistent with our predictions. For instance, CG5525 [Fly-
Base:FBgn0032444] was predicted to be involved in 'protein
folding' [GO:0006457] where tp = 1. Within the data used
from v5.3 of the D. melanogaster genome, there was no
experimental evidence for any GO:BP terms, but 'protein
folding' [GO:0006457] was inferred from electronic annota-
tion and this gene was also annotated with the cellular com-
ponent GO term 'chaperonin-containing T-complex'
[GO:0005832], inferred from sequence similarity. Addition-
ally, the top BLAST hits (default settings) are chaperonin
genes from Culex pipiens and Aedes aegypti. CG5525 is an
example where the network prediction is consistent with gene
function predicted from sequence similarity. As a final exam-
ple, Nuf2 [FlyBase:FBgn0031886] was predicted to be
involved in 'M phase' [GO:0000279] where tp = 0.986. From
the v5.3 annotations, this gene was inferred through elec-
tronic annotation to be involved in 'immune response'
[GO:0006955]. However, when checked against the updated
annotation of v5.7, Nuf2 was annotated with 'chromosome
segregation' [GO:0007059], 'mitotic metaphase plate con-
gression' [GO:0007080], and 'mitotic spindle organization
and biogenesis' [GO:0007052], all of which are implied from
a mutant phenotype. Nuf2 is an example where the prediction
was validated through experimental evidence that became
available after our predictions were made.

Overall, GO:BP predictions have been evaluated using preci-
sion/recall and SS in tenfold cross-validation. We then used
these data to extrapolate the expected number of reasonable
predictions that were made using the fully integrated net-
works. We have also evaluated the predictions qualitatively
and shown that roughly 18% have independent evidence that
supports the predictions. As a complete analysis, this suggests
that the GO:BP predictions are valid.

Function prediction on genes with novel sequence features
The GO:BP predictions are based on the functional relation-
ships drawn from the integrated gene networks. The con-

struction of these relationships does not directly take into
account any sequence-based information. Traditionally,
function prediction methods have relied heavily on sequence
and structural similarity [3,4]. As a comparison, we used
sequence similarity to infer GO:BP terms for the set of 483
genes for which we have made high-confidence network-
based predictions. The translated proteins from these genes
were used to search the NCBI nr database using BLASTp (E-
value < 10-6). All BLAST hits to Drosophila proteins were
removed, matches under 40% identity were removed, then
the top 10 hits were taken for each gene. Any associated
GO:BP annotations (including IEA, NR, or ND) for the top ten
hits were then transferred to the D. melanogaster gene. We
were able to transfer GO:BP annotations for 224 of the 483
genes. Interestingly, when the GO evidence codes of IEA, ND,
and NR were removed, the number of genes with any trans-
ferable annotation dropped to 98 of the 483. The D. mela-
nogaster genes for which we predicted GO:BP terms using
the integrated data appear to be in a class of genes where pre-
diction of biological processes based solely on sequence simi-
larity performs poorly. This is not surprising given the wide
scoping meaning of biological process versus sequence fea-
tures, which often reflect a molecular function, that is, kinase
domain or DNA binding domain. Thus, gene prediction utiliz-
ing integrated gene networks is a complementary method to
make predictions for the class of unannotated genes where
traditional function prediction methods perform poorly.

Interpreting new datasets
Genome-wide functional genomics experiments typically
yield lengthy lists of genes that are often difficult to interpret.
Common approaches to investigate the biological meaning of
these gene lists include GO term enrichment analysis and
gene set enrichment analysis (GSEA) (reviewed in [77,78]).
Both approaches are dependent on the completeness and
quality of the pre-existing reference data: gene annotations in
the case of GO term analysis, and gene sets in the case of
GSEA. Given that our functional gene network includes pre-
viously unannotated genes and clusters together with genes
with shared biological processes, we expect that it can be used
for improved interpretation of existing and new genome-wide
datasets. In order to test this conjecture, we selected a micro-
array dataset (not used in the construction of the network)
and reanalyzed the data with respect to the integrated Dro-
sophila gene network. We used data from Teleman et al. [79],
who examined genes regulated in response to nutrient depri-
vation in D. melanogaster larvae. In particular, we focused on
the genes that were found to be significantly differentially
expressed (DE) in the muscle tissue of starved larvae.

We first examined whether the network might be used as an

aide for classifying DE genes into functional categories. Tele-

man et al. [79] identified 1,943 genes that were statistically

DE in larval muscle tissue in response to starvation. Of these,

300 genes were classified according to their annotated func-

tions and are explicitly discussed in the text and figures
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(referred to here as DE-categorized) and the remaining 1,700

genes were not assigned to the categories discussed in the

manuscript (referred to here as DE-uncategorized). The DE-

categorized genes were assigned to 16 categories, the promi-

nent ones encompassing carbohydrate metabolism, lipid

metabolism, mitochondrial biogenesis and function, cellular

translational capacity, and cuticle proteins [79]. In order to

visualize the functional connections among all of the DE

genes, we mapped them onto  and identified 530 genes

sharing 1,536 edges within the network (single gene networks

were removed). Inspecting this network revealed three obser-

vations (Figure 10a). First, a large number of genes grouped

together into distinct clusters, and these clusters are largely

concordant with the categories reported in Teleman et al. [79]

(we highlight a few of the prominent categories in Figure 10a).

For instance, of the 20 DE-categorized genes in the ribosomal

protein category that were found in the network, 19 are tightly

clustered (blue in Figure 10a). It should be noted that this was

not the case for all categories. For instance, only half of the

DE-categorized genes in the cuticle protein category were

clustered together in the network. Second, the network clus-

ters include DE-uncategorized genes interconnected with the

DE-categorized genes. For instance, a single tightly intercon-

nected subnetwork that includes 11 DE-categorized genes in

cellular respiration also includes an additional 12 DE-uncate-

gorized genes. Third, there is at least one tightly intercon-

nected subnetwork that is composed almost exclusively of

DE-uncategorized genes. The annotated genes in this subnet-

work are enriched for terms related to ribosome biogenesis;

however, many of the genes in this subnetwork are unanno-

tated. Thus, the functional gene network revealed that many

more DE genes can be grouped into the identified categories

and also suggests the existence of at least one additional clus-

ter of genes with the putative function of ribosome biogenesis,

which is entirely consistent with the functions studied in Tele-

man et al. [79].

We next examined whether the network could be used to

expand the list of genes found to be differentially regulated.

To do this, we focused on the set of DE-categorized genes

reported in Teleman et al. [79] as being associated with signal

recognition particle (SRP) function. We used the 14 such

genes that could be found in the network as a query set to

retrieve tightly connected genes from  (see Materials

and methods section for details on the search algorithm). This

retrieved 56 additional genes selected solely on the connec-

tions present in . This network of 70 genes is shown in

Figure 10b and the genes are designated as follows: the set of

14 query genes defined in Teleman et al. [79] (shown in Fig-

ure 10b as diamond nodes), 30 DE-uncategorized genes

(shown in Figure 10b as circular nodes), and an additional 26

genes that were not determined to be DE in response to star-

vation [79] (referred to here as non-DE genes and shown in

Figure 10b as hexagonal nodes). Of the 56 genes added

through the integrated network, 18 are annotated as being

involved in protein secretion, including the SRP, ER translo-

con, signal peptidase complex, cargo receptors, and COPI and

COPII vesicle components. Interestingly, the annotated set of

18 additional genes largely encode components of the COPI

and COPII vesicles (for example, CG10882 [Fly-

Base:FBgn0031408], Arf72A [FlyBase:FBgn0000115],

Arf102E [FlyBase:FBgn0013749], Cop [Fly-

Base:FBgn0028969], Cop [FlyBase:FBgn0040512], 'Cop

[FlyBase:FBgn0025724], Cop [FlyBase:FBgn0008635],

Cop [FlyBase:FBgn0028968], Sec13 [Fly-
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Network analysis in coordination with microarray dataFigure 10 (see previous page)
Network analysis in coordination with microarray data. Analysis combing the integrated Drosophila gene network and microarray data from Teleman et al. 

[79]. (a) The network represents the differentially expressed genes in starved versus fed larval muscle tissue that could also be found in . Several 

examples of categories of genes listed in Teleman et al. are highlighted: cuticle, cellular respiration (Cell. Resp.), signal recognition particle (SRP), 
mitochondrial ribosomal proteins (mRP), ribosomal proteins (RP), and tRNA synthetases (Aats). The clustering of genes is a result of the integrated 
network and was done irrespective of the gene expression data from Teleman et al. (b) The subnetwork is the network built from a seeded set of SRP-

related genes as defined by Teleman et al. and derived from  (see Materials and methods section for seeded network construction). Gene 

expression ratios reflect wild-type larval muscle tissue upon starvation over wild-type larval muscle tissue under normal feeding conditions, where green 
represents genes down-regulated upon starvation and red genes up-regulated upon starvation. All nodes with a dark outline are differentially expressed 
(DE) genes as defined in Teleman et al. The diamond nodes are the seed genes, the circle nodes are genes reported as DE in Teleman et al. but not used as 
seed genes, and the hexagon nodes are genes not reported as DE by Teleman et al. The genes in the network in (b) were then treated as a gene set and 
used as input to GSEA [81]. (c) The enrichment plot for all genes in the network in (b). Additionally, we performed an GSEA analysis on the genes in the 
network in (b) that did not include the seed genes (which corresponds to the set of genes that are circle and hexagon-shaped). (d) The enrichment plot 
for this set of genes showing that the network places together similarly regulated genes that are still significantly enriched even when the set of genes 
defined in Teleman et al. were excluded. See Figure S3 at [55] for more detail on the global performance of gene sets. The gene set representing (d) 
corresponds to the purple line in Figure S3a at [55].
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Base:FBgn0024509], Sec31 [FlyBase:FBgn0033339], and

Cop [FlyBase:FBgn0025725]) [80]. (See Additional data file

5 for further annotation information on this cluster of 70

genes.) Using GSEA [81], we tested whether this expanded set

of 56 genes was collectively enriched for downregulated

genes. Both the full set of 70 genes (Figure 10c) and the subset

of 56 (Figure 10d) show a significant enrichment score at a

false discovery rate of < 10%. Thus, using the functional gene

network, we identified an additional 56 genes that are inter-

connected in the functional gene network and are collectively

significant in GSEA. This example serves to illustrate that the

functional gene network can be used effectively to interpret

functional genomics datasets. We performed this same anal-

ysis for all the categories defined in Teleman et al. [79] and

consistently found that the gene sets identified using the

functional gene network generally performed as well, if not

better, than gene sets identified in the original study or those

constructed according to GO or KEGG (Figure S3 at [55]).

Discussion
The focus of this work is to produce a resource that provides
the most comprehensive set of experimentally supported
functional relationships between fly genes. Thus, we present
the first, comprehensive functional gene networks for D. mel-
anogaster by integrating experimentally disparate sources of
data. The integrated networks are a community resource that
benefits researchers in three ways. First, we have distilled a
major portion of the extant fly data (over 48 million individ-
ual measurements) into functional relationships between
genes. The WS value of a functional relationship is easily
interpretable as the measure of confidence that a gene pair is
involved in a shared biological process based on the experi-
mental evidence; however, trying to make sense of the same
individual datasets outside the integrative framework is not
easily manageable. Second, the functional relationships are
built on experimental evidence, which can be easily retrieved
to determine the dataset(s) underlying the connection. Third,
and as demonstrated in this study, the functional relation-
ships drawn between genes are biologically supported
through computational validation. Thus, the networks can be
used to derive experimentally testable hypotheses related to
gene function.

Understanding the function of every gene in the genome is a
central goal of modern biology and integrated networks are
another resource that draws a connection from gene to func-
tion. To demonstrate the utility of the integrated functional
gene networks, we must show that they provide higher quality
information than any individual dataset. We have demon-
strated this by showing that KEGG pathways are, on average,
more coherent within the integrated network compared to
any individual dataset or type of data (Figure 4; Table S6 at
[55]). We have also shown that edges drawn between gene

pairs in the network are consistent with our biological expec-
tation by revealing highly interconnected subnetworks of
genes that are consistent with a common biological process.
We then used the networks to predict GO:BP terms for un-
and under-annotated genes. From these predictions we have
shown that the integrated networks outperform individual
types of data in both precision and recall, and we can predict
GO:BP terms that are semantically similar to known annota-
tion. These observations support the idea that integrated
functional gene networks can be used to draw more reliable
connections between genes and function. Finally, we showed
how the integrated gene network can aide in the analysis of
microarray data to uncover relationships that would have
been missed without the network.

Additionally, we have shown that there is a class of genes
where sequence similarity performs poorly for predicting
GO:BP terms. Since sequence information is not included in
the construction of the integrated functional gene networks,
these networks provide another source of confident relation-
ships that can be used to predict biological processes on this
class of genes. Function prediction using gene networks com-
plements sequence-based prediction methods. Although we
only discuss the most confident GO:BP predictions for 483
genes, we also make predictions that cover more levels in the
GO hierarchy and predictions for genes with already known
and experimentally supported annotations. These predic-
tions constitute the first genome-scale attempt to use an inte-
grated set of experimental data to make biological process
predictions for D. melanogaster genes. These predictions are
another source of data to aide in identifying the associated
biological process(es) of the one-third of D. melanogaster
protein-coding genes that are currently unannotated.

The functional gene networks are a resource for exploring

functional relationships among genes at both the local and

global levels. The network sizes 20 K and 200 K were selected

to maximize the number of connected genes that are involved

in the same biological process while minimizing the overall

number of edges.  is restricted to the most highly sup-

ported functional relationships at the expense of including

fewer genes and edges. Consequently, users interested in

exploring high confidence relationships including specific

genes of interest are advised to query  first. On the other

hand, the  has a lower threshold that allows for an

increased number of genes and connections to be made that

are heavily based on microarray data. Thus,  is useful

for exploring functional relationships at a more global level

supported by gene expression data, as well as identifying rela-

tionships between genes that may not be present in .
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The integrated networks built from fly data tend to perform
well at drawing connections between genes involved in core
biological processes and components, such as cell cycle, cata-
bolic processes, the ribosome, and the proteasome. This same
trend also holds in the integrated networks built from yeast
[12,26,28], worm [16], mouse [31,68], and human [27] data.
Issues with repeatability and false positive rate have been
raised with genome-scale data, particularly with microarray
[82] and yeast-two-hybrid [60,83] assays. Integrative meth-
ods mitigate the effect of one data source determining a con-
nection between a gene pair by requiring multiple
independent datasets to support the relationship between
two genes. Finding core biological processes consistently
clustered together across different species, which are derived
from different experimental datasets, instills confidence that
the relationships are both biologically real and computation-
ally detectable.

Integrative methods are not without their biases. Annotation
of genes with GO terms are biased towards well-characterized
genes and well-studied processes. For example, 'eye morpho-
genesis' [GO:0048592] is a widely studied process in Dro-
sophila and is associated with over 200 genes, while 'muscle
morphogenesis' [GO:0048644], which is at the same level in
the GO hierarchy, is annotated to only four genes. Though the
number of genes involved in eye or muscle morphogenesis are
not expected to be equal, it is likely they would be on par with
each other. Certainly we expect there to be more than four
genes involved in muscle morphogenesis. Most integration
methods, including the one implemented here, require a
gold-standard set of comprehensive and biologically vali-
dated gene-gene pairs. Genes sharing GO annotation terms
have been used as this gold-standard and the biases reflected
in annotation will thus be reflected in the final product of data
integration methods. Though some biological processes will
certainly be underrepresented, integrative methods have
been highly productive in constructing networks that both
capture the current state of biological knowledge and expand
upon this knowledge by drawing connections between genes
of unknown function.

Clearly, the quality, scope, and types of experimental data
used are key factors in the integrative framework, and incor-
porating new data, as well as refining the selection of input
data, offers the opportunity to improve and tune future net-
works. This study focuses on producing a comprehensive glo-
bal functional gene network using available GI, PPI, and MA
datasets for Drosophila. These datasets were selected based
on their ability to connect genes that are involved in the same
biological process. Overall, the extant GI data provided the
greatest likelihood of gene pairs being functionally related,
followed closely by direct assay PPI and the most highly cor-
related gene pairs within several MA datasets (indicated by
the calculated LLS). The LLSs for MA data drop as the corre-
lation coefficients within the datasets drop, but the reported
values are commensurate with high-confidence Y2H and Y2H

PPIs. Thus, while these classes of data did not contribute
equally, all three provide high quality information used in
constructing the global integrated networks. However, there
are many datasets available that were not incorporated into
the current version of the networks. There are several reasons
for this. First, we tested the usefulness of fluorescent in situ
hybridizations [84] and transcription factor binding sites
[85,86] as input data, but these data did not meet the evalua-
tion criteria under the LLS framework. Second, there are
datasets, such as RNA interference screens [87], that are not
easily translated into a measure that can be used under the
LLS framework. Third, this study focuses on experimentally
supported datasets; therefore, computational methods to
relate genes [88-90] were ignored. Better utilization of these
data sources will likely contribute to increased quality of func-
tional relationships assigned between genes. Additionally, the
ongoing modENCODE [44] projects promise an unprece-
dented increase in high-resolution functional genomics data.
Functional gene networks offers one route to help interpret
these forthcoming data. On the other hand, we do note that
networks constructed using subsets of the data can outper-
form the global network in identifying relationships among
genes in specific KEGG pathways (Figure 4e). Thus, refine-
ment of the current framework, using only selected subsets of
the available data, should make it possible to build networks
more representative of specific biological processes. Building
integrated networks in relation to a particular biological proc-
ess would likely yield functional relationships more closely
related to the specified biological process.

Conclusions
We have integrated heterogeneous datasets to produce the

first comprehensive functional gene network in D. mela-

nogaster. We have shown that the functional relationships

between genes are highly consistent with KEGG pathways

and use these results to construct the two networks  and

. We have demonstrated that edges drawn between

gene pairs are consistent with our biological expectation by

revealing highly interconnected subnetworks of genes that

are nearly completely consistent with a common biological

process. We also show how the network can be used to

enhance the interpretation of microarray data by both discov-

ering clusters of genes that are co-regulated and identifying

candidate unannotated genes tightly coordinated with a

known and co-regulated biological process. The full set of

integrated data and networks built from these data (  and

) are made available. We also provide GO:BP predic-

tions for 2,154 genes in  and for 5,107 genes in .

This community resource can be accessed online [48].
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Materials and methods
Data acquisition, cleaning, normalization, filtering
Genetic interactions
GIs were downloaded as a pre-computed file from FlyBase,
version FB2007_02 [46]. Interactions containing a gene not
belonging to D. melanogaster were removed (that is, trans-
genic construct from D. simulans). All reported interactions
(6,941) were given the same weight, a value of 1.

Protein-protein interactions
All PPIs - D. melanogaster-specific where possible - were
downloaded from the following databases: BIND [49], DIP
(version Dmela20071007) [50], DroID (September 2007)
[51], BioGRID (version 2.0.32) [52], IntAct (September
2007) [53]. The varying protein IDs across all datasets were
mapped to v5.3 FlyBase gene identifiers. Any IDs that did not
unambiguously map to a single FlyBase gene ID were
removed. The union of reported interactions across all the
datasets was taken. The experimental method used to detect
an interaction was also considered. If a reported interaction
was detected through multiple experimental methods, the
most reliable method was ascribed to the interaction. The
order for reliability is as follows: direct assays (that is, co-
immunoprecipitation, biochemical assay) > high-confidence
Y2H (high-confidence as reported in Giot et al. [54]) > Y2H.
In total, there were 25,408 reported PPIs among pairs of D.
melanogaster proteins. These include 1,234 determined by
direct assays and 24,408 Y2H interactions. The Y2H assays
were subdivided into 4,590 high-confidence interactions and
19,584 positive interactions.

Microarray gene expression
The following raw MA datasets were downloaded from Gene
Expression Omnibus (GEO): [GEO:GSE94] [61],
[GEO:GSE541] [91], [GEO:GSE442] [92], [GEO:GSE3854]
[93], [GEO:GSE5430] [94], [GEO:GSE3057] [95],
[GEO:GSE3069] [95], [GEO:GSE5147] [96], [GEO:GSE695]
[97], [GEO:GSE3257] [98], [GEO:GSE5404] [99],
[GEO:GSE6515] [59], [GEO:GSE6186] [100]; [ArrayEx-
press:E-TABM-57] [101], [ArrayExpress:E-MAXD-6] [58];
and supplemental pages De Gregorio et al. [57], Chintapalli et
al. [102], and Tomancak et al. [103]. These data used two dis-
tinct platforms; two channel cDNA or oligonucleotide spotted
arrays, and single channel Affymetrix short oligonucleotide
arrays. All data normalizations were performed in the R sta-
tistical programming environment [104]. The datasets
selected were required to have at least five conditions to make
reliable correlation measures. We also did not use any data-
sets that were Drosophila cell lines.

Two channel experiments were normalized using local
regression within the OLIN package [105]. OLIN was run
with default parameters, scaling turned on, and flagged spots
were ignored for any calculations. The results of the full OLIN
normalization are log-transformed ratio values for each gene
on each individual MA slide.

The Affymetrix arrays were normalized using the Affy [106]
and GCRMA [107] R packages. Affinities for all oligonucle-
otide sequences were calculated and the 'fullmodel' GCRMA
normalization was run, resulting in log-transformed expres-
sion values for each probe set on each array.

All spots or probe sets were mapped to the v5.3 D. mela-
nogaster genome assembly and annotation. Genome
sequence files were downloaded from FlyBase under the
FB2007_02 release [46]. Primer-based platforms required
two rounds of BLAST; one round to match the primers to the
genome (BLASTn; E-value < 10-2) and the second round to
match the amplicon product to the genome (BLASTn; E-value
< 10-6). Physical coordinates from the forward and reverse
primers were checked for strandedness and to make sure the
PCR product would be under 1,000 nucleotides. The segment
of DNA between the forward and reverse primers (including
the primers) was taken as the amplicon product for that
primer pair and searched back against the genome to ensure
the amplicon did not align to any other region outside the
intended segment, potentially leading to cross-hybridization.
cDNA-based arrays required the cDNA sequence be aligned
against the genome to test for potential cross-hybridization.
Any amplicons or cDNAs with a second best BLAST hit with
80% sequence identity were flagged and removed. Unique
BLAST hits mapping to exons of v5.3 annotated genes were
assigned the corresponding FlyBase gene ID, otherwise the
spot was flagged and removed.

Sequence files for both Affymetrix Drosophila array plat-
forms (versions 1 and 2) were downloaded from the Affyme-
trix website [108]. They contain a unique sequence for each
probe set, which is searched (BLASTn; E-value < 10-6) against
the genome to test for potential cross-hybridization. A seg-
ment of DNA associated with a probe set was assigned a v5.3
FlyBase gene ID if the BLAST result showed a putative hit to
at least one or part of one exon from one gene. A probe set was
not assigned a gene ID and flagged if the BLAST result was
ambiguous, meaning the second best BLAST hit was greater
than 80% sequence identity, or the query sequence did not hit
at least one exon.

For either MA platform, gene expression profiles were con-
structed using the calculated expression values for a gene
across the tested conditions. If a gene expression profile had
greater than 25% absent/removed expression values, that
gene's profile was removed, otherwise missing values were
inferred using KNNimpute [109].

We defined an MA dataset to be the full, published unit of
data, and, where possible, datasets were additionally defined
as the subcomponents of the published dataset. For example,
the Arbeitman et al. [61] study contains six datasets; all pub-
lished conditions, embryo, larva, pupa, adult male, and adult
female. See Table 1 for the breakdown of all datasets.
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Gene expression profiles that did not change over the course
of a dataset - referred to as 'flat' - were filtered out. This was
done on a gene by gene basis by taking the difference between
the maximum and minimum expression values across all con-
ditions in one dataset. For the Affymetrix platform, if the dif-
ference between the maximum and minimum expression
values was less than 50, then that gene and corresponding
expression profile was removed. For the two channel experi-
ments, if the difference between the maximum and minimum
log ratio value was less than.5, then the gene and correspond-
ing expression profile was removed.

Genome annotations: Gene Ontology terms
The count of genes annotated for the organisms discussed in
the introduction were downloaded from the GO website [56].
The annotation counts were limited to the biological process
component of the GO. Additionally, the evidence codes IEA,
ND, and NR were ignored.

Specific to Drosophila, gene annotations for GO:BP terms
were taken from the FB2007_02 version of FlyBase [46].
These data provide a mapping from a FlyBase gene ID to the
GO:BP term ID(s). GO:BP terms with the following evidence
codes were removed: IEA, ND, and NR. The structure of the
GO is a directed acyclic graph, meaning each term has a par-
ent term(s) (the root term is the only exception) and each
term potentially has a child term(s). As described in Lord et
al. [110], a connection was drawn in the ontology for the link
types 'is-a' and 'part-of', then each gene was propagated from
its annotated position on the GO to the root. Thus, the
number of genes associated with any particular term, ti, in the
GO includes the genes annotated to ti and additionally sub-
sumes any genes that are annotated to the child term(s) of ti.

Additional data
It should be noted that we also evaluated two additional,
potential data sources, which include matches to transcrip-
tion factor binding sites [85,86] and fluorescent in situ
hybridizations [84]; however, these data were not included as
they did not meet our evaluation criteria (data not shown).

Microarray profile correlation, statistical significance
In total, 34 MA gene expression datasets were collected, nor-

malized, and filtered. We define these 34 datasets as D = {D1,

D2,...,D34}. The Pearson correlation coefficient was calculated

for all gene pairs in a dataset Di  D, For n genes in Di = {g1,

g2,...,gn}, each gj  Di is a vector of expression values

 across m conditions. The Pearson

correlation coefficient between gx, gy  Di, where 1  x  n and

1  y  n was calculated as:

Calculating the correlation between all gx, gy  Di results in a
distribution of correlation values. Since the majority of corre-
lations do not reflect a functional linear relationships
between two genes, only statistically significant correlations
were used. Significance of the correlations were assessed
through permutation testing. Within each condition of a par-
ticular dataset, gene expression values were shuffled, thus
randomizing the correlation measures for each gene. From
the shuffled data, 20% of the genes were selected at random
and the pairwise Pearson correlation coefficient calculated
for this subset of genes. This process was then repeated five
times to create a stable empirical null distribution of correla-
tion coefficients. Any correlation coefficients with a P-value <
0.01 on the two-tail null distribution - corresponding to posi-
tive and negative correlation values - were considered for fur-
ther analysis.

Calculating significant biological processes across 
datasets
A total of 22 individual datasets were tested for over-repre-
sentation of GO:BP terms (details on the GO:BP terms dis-
cussed above): all reported GIs; all reported PPIs (direct
assay, high-confidence Y2H, and Y2H combined); and for
each of the 20 MA datasets used, gene pairs with significant
coexpression correlations as defined in the previous section.
(Methods to arrive at 20 MA datasets are discussed below in
the 'Integration' section.) For each individual dataset, the
number of gene pairs annotated to the same GO:BP term were
counted. GO:BP terms were only considered if they were
annotated to at least 10 and less than 300 D. melanogaster
genes. The lower cutoff of 10 genes was set in order to calcu-
late reliable statistics and the upper cutoff of 300 was set to
not bias the analysis to highly annotated terms. The cutoff of
300 was determined by the information content (IC) meas-
ured over all GO:BP terms meeting the criteria mentioned in
the previous paragraph. The IC for ti is calculated as IC(ti) =
ln(P(ti)), where P(ti) is the probability that ti is annotated to a
gene. P(ti) is calculated by finding the fraction of times ti is
annotated to a gene compared to the total number of possible
annotations. The total number of possible annotations is the
count of genes annotated at the root, since the root term sub-
sumes all gene annotations. A qualitative assessment of IC
measures on GO:BP terms showed a reasonable cutoff corre-
sponding to 300 annotations.

Each GO:BP term used in this analysis has an associated
number of x genes. To test the significance of a particular
GO:BP term within a particular dataset (Figure 1), an empiri-
cal null distribution was constructed. For each GO:BP term
with x associated genes, a random set of x genes was selected
from the dataset being analyzed, and the number of connec-
tions between this set of x random genes was determined.
This procedure was repeated 100 times. In all cases the
counts were normally distributed. Significance of the number
of connections between the x genes tested was performed
through a right-tailed, single-sample t-test. This resulted in a
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matrix of 22 datasets by 1,133 GO:BP terms, where the values
in the cells of the matrix are P-values. This matrix was hierar-
chically clustered on both dimensions using TM4 MEV
[111,112] with average linkage and Euclidean distance. Visual-
ization of the clustered matrix was also done in TM4 MEV.

Integration methods
Log-likelihood score
The general procedure for integrating gene-gene relation-
ships across all datasets was adapted from Lee et al. [12,28].
Datasets and the functional relationships drawn between two
genes were scored in relation to GO:BP annotation, where the
annotations met the same criteria as mentioned in the previ-
ous section. The LLS was calculated for each dataset as fol-
lows (we will use the same notation as Lee et al. [12,28]; in
particular ~ denotes 'not'):

D represents a dataset of gene pairs and can be PPI, GI, or
MA. I represents the set of gene pairs that were annotated and
shared at least one GO:BP term, while gene pairs in ~ I were
annotated, but there was no overlap between the GO:BP
terms annotated to individual genes in a pair. Both I and ~ I
are counts taken across all genes in the v5.3 D. melanogaster
genome. P(I) is the probability of a gene pair sharing at least
one GO:BP annotation, and P(~ I) is the complement. The
probability of finding an annotated gene pair sharing at least
one GO:BP term restricted to the gene pairs within dataset D
is P(I|D), and P(~ I|D) is the complement. In the case of MA
data, D represents the dataset after being filtered for signifi-
cant correlation values and removing 'flat' expression pro-
files.

LLS for genetic interactions
A LLS was calculated for the entire GI dataset. Each reported
gene pair was weighted equally; therefore, a gene pair within
the GI dataset was assigned a LLS score calculated from the
entire dataset, where LLS = 2.661.

LLS for protein-protein interactions
The PPI data were separated into three subsets reflecting the
expected reliability of the experimental methods to detect
interacting proteins. A LLS was then calculated for each sub-
set. Protein pairs within a subset were assigned their respec-
tive LLSs. The first class of PPIs reflected interactions
reported in a Y2H assay, where LLS = 0.630. The second class
reflected interactions defined as high-confidence Y2H, where
LLS = 1.045. The most confident class of experimental tech-
niques (noted 'direct assay') included co-immunoprecipita-
tion, affinity methods, biochemical assays, and mass
spectrometry, where LLS = 2.389.

LLS for microarray datasets
As described in Lee et al. [12,28], gene pairs from each indi-

vidual MA dataset (filtered on significant correlations and

'flat' profiles) were first ordered according to their correlation

coefficients and then separated into bins of 1,000 gene pairs,

where the first bin contains the most significant positively

correlated gene pairs. A LLS was then calculated for each bin

and plotted against the mean correlation value  for bin i

(Figure 2). From this plot, we fit the polynomial equation

, using the lm() function in R. A

separate curve was fit for both positively and negatively cor-

related data. Every point along the curve for a positive corre-

lation was greater than a LLS of 0, while every curve fit to the

negative correlations had at least some portion that fell below

a LLS of 0. Therefore, only the significant positively corre-

lated data were considered in evaluating each MA dataset.

From all fit curves, a measure of the fraction of variance

explained by the model was calculated as:

where fi is the ith fitted value of the model, yi is the fitted value

plus the residuals for the ith bin, and  is the average of yi

over all i bins. Additionally, the value for r2 was adjusted for

the number of coefficients in the model. Datasets that had an

adjusted r2 < 0.5 were removed from further analysis. Also,

datasets were required to have a positive linear trend. After

applying these criteria to all MA datasets, 20 of the 34 passed

and were used in this study, whereas 14 of the 34 did not meet

these criteria and were removed (Table 1; Figure S1 at [55] for

all datasets). In two cases (Sorensen et al. [96] and Edwards

et al. [99]), all datasets related to one experiment passed the

above criteria. To remove the redundancy with these two

cases, the datasets constituting the subcomponents of the

experiment were chosen over the full set of conditions. Specif-

ically, the Sorensen et al. [96] control timecourse and heat-

shocked timecourse were used and the dataset consisting of

all conditions was not used. Within the Edwards et al. [99]

datasets, two lines of flies were tested, so line 1 and line 2 were

used and the full set of conditions was not used.

The positively correlated gene pairs in the 20 datasets passing
the above criteria were rescored and assigned a LLS according
to the fit polynomial equation. This rescoring transformed a
gene pair's correlation coefficient into a LLS.

Weighted sum
The weighted sum (WS) was adapted from Lee et al. [12,28]
and was calculated as follows:
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LLS values for a gene pair across all k datasets were ordered
from largest to smallest LLSi  LLSi+1, i; 0  i  k 1, M is a free
parameter and can be adjusted to increase or decrease the
contribution of subsequently ranked LLSs. It should be noted
that ignoring the denominator (i·M) and simply summing all
LLSs across the k datasets is akin to a naïve Bayesian integra-
tion. This assumes uniform priors on each of the k datasets.
Although, this method of integration is not completely Baye-
sian as the values being summed are LLSs and not probabili-
ties. The opposite of ignoring the denominator is to set M 
. This causes the WS calculation to consider only the 0th

ranked LLS (that is, WS = LLS0). To test a range of integration
scores, WS calculations were made for all gene pairs where M
 {1,2,5,10,100}, M  , and also for the naïve method. These
seven WS calculations were selected to cover a range of differ-
ent weighting schemes.

The KEGG pathways were used to validate functional rela-
tionships in the integrated network [113]. To test the overlap
between KEGG and GO, we compared gene-gene associations
derived from KEGG pathways and the set of GO:BP annotated
gene pairs used in our analysis. This comparison revealed
that roughly a quarter of the gene pairs from KEGG pathways
are also present as gene pairs in GO:BP.

Gene IDs for each KEGG pathway were mapped to the v5.3

genome annotation. The genes in each pathway were tested

against a network through the measure of coherence. The net-

work is a graph and can be defined as G�V, E� with V vertices

(genes) and E edges (functional relationships). The set of

KEGG pathways is defined as K = {K1, K2,...,Kn}, where Ki is

the set of genes defined by KEGG pathway Ki. The greatest

connected component for Ki, noted , was determined

by the greatest number of genes in Ki present and creating a

connected component in G�V, E�. The coherence for Ki was

then calculated as . Twenty-five pathways were

selected to evaluate the WS integrated networks (Figure 3; the

25 pathways are marked with asterisks in Table S5 at [55]).

The 25 KEGG pathways were selected because they consist-

ently showed the highest coherence amongst all the KEGG

pathways tested.

The scores for each of the seven WS calculations were rank
ordered, then networks were built starting from the top 1,000
scoring gene pairs in increasing intervals to networks of one
million edges. The average coherence of the 25 pathways over
each of the size intervals was measured (Figure 3). The curves

in Figure 3 were then used to determine the smallest network
size that provides a high overall coherence across KEGG path-
ways, since the average coherence varies as a function of the
size of the network. We identify the points on the curve where
the gain in average coherence flattens as the size of the net-
work increases. These points of the curves occur at network
sizes of 20 K and 200 K. These two network sizes are used
throughout the rest of this study.

After establishing the network sizes, we aimed to optimize the
M parameter in the WS score to provide the greatest average
KEGG pathway coherence. Since most of the coherence was
gained by the network size of 200 K gene pairs, this network
was used to evaluate seven WS integration schemes. This was
done by measuring the AUC. Large gains of KEGG pathway
coherence in the smaller sized networks results in a higher
AUC, while slow or little gain in coherence results in a low
AUC. Thus, the AUC (Figure 3) is a means of assessing how
well a WS integration method recovers KEGG pathway rela-
tionships. By iteratively testing networks built with increas-
ing M values from 1, we determined the WS integration where
M = 1.8 maximized the AUC for the network size of 200 K
edges.

All KEGG pathways having at least ten D. melanogaster
genes were tested individually against the WS network, where
M = 1.8 at a size of 200 K edges. In total, 63 pathways were
tested. Statistically significant coherence measures were eval-
uated through permutation testing; an empirical null distri-
bution of coherence values was calculated by randomly
sampling 1,000 times a set of genes equivalent to |Ki|. A sin-
gle-sample Wilcoxon ranked-sum statistic was used to meas-
ure the significance of Ki when compared to the null
distribution. P-values were adjusted using a Bonferroni cor-
rection.

Markov random field method to predict GO:BP
We employed the MRF method implemented by Letovsky and
Kasif [47] to predict gene function utilizing an integrated net-
work and known GO:BP terms (excluding IEA, ND, and NR
evidence codes). The probability for a gene being annotated
with a GO:BP term can be calculated as follows (note that the
equations are taken from Letovsky and Kasif [47] and further
detail can be found in their manuscript):

where Li, t is a Boolean random variable dependent on gene i
and term t, Ni is the number of genes directly adjacent to i,
and ki, t is the number of genes directly adjacent to i that are
annotated with term t. The authors also make the assumption
that the degree distribution of nodes labeled with t is not sig-
nificantly different than the overall degree distribution. While
this assumption does not hold for all terms t in our study, it
does for the majority; therefore, we also make this assump-
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tion. Ultimately, the authors develop the probabilistic neigh-
borhood function:

where ft is the frequency of term t in the network, p0 is the

probability that any given gene in the network annotated with

term t is NOT connected to another gene annotated with term

t, while p1 is the probability that any given gene in the network

annotated with term t IS connected to another gene anno-

tated with term t.  can be described as the ratio of the

weighted frequency of the presence of term t annotated to the

neighbors of gene i over the weighed frequency of the neigh-

bor genes not annotated with term t. The ratio relies on the

binomial distribution .

The MRF method produces a probability for a gene by GO:BP

term basis and was run on the networks of size 20 K and 200

K.

Prediction evaluation (precision/recall)
The GO:BP predictions were evaluated using tenfold cross-
validation. All genes annotated with GO:BP terms were ran-
domly divided into ten equal sets, G = {G1, G2,...,G10}. The fol-
lowing methods are performed for each of the ten sets in G.
The annotations for all the genes in set Gn (where n = {1, ...,
10}) were masked from their corresponding genes. The LLS
and WS integration, where M = 1.8, were recalculated for each
dataset. Note that just the annotations are removed from the
set of genes, but the genes remain in the analysis. The newly
calculated WS relationships were rank ordered and networks
with the top 20 K values and 200 K values were built. These
two networks along with the GO:BP annotations from sets
{G1, ..., G10}-{Gn} were then used as input to the MRF predic-
tion method. Predictions were made on all genes in the net-
work and measures can be used to evaluate the performance
of predictions in relation to the held-out annotations for Gn.

Two methods were used to evaluate the GO:BP predictions

made on the genes in Gn. First, the precision ( ) and

recall ( ) were calculated with respect to GO:BP terms

and also with respect to the genes (tp = true positives, fp =

false positive, and fn = false negative). The second method

measured the semantic similarity (SS) between the known set

of annotations for a gene and the predicted terms for that

gene.

Precision and recall with respect to the GO:BP terms were cal-
culated as follows. A true positive prediction was called if the
predicted term exactly matched a known, held-out term, or

the known term's parent(s), or the known term's child(ren) (±
1 level in the GO with respect to one GO term). A false positive
was called if the predicted term did not match a known, held-
out term or a parent or child of the known term. A false nega-
tive was called for any known, held-out annotation not called
a true positive. It should be noted that we also tested a more
stringent criterion of requiring predictions to exactly match
known GO:BP terms and a less stringent criterion where pre-
dictions can match ± 2 levels in the GO hierarchy. The evalu-
ation method we used is a fair balance between the more and
less stringent criteria and the precision/recall values followed
the same trends for each of the three tested criteria.

A measure of precision and recall was also calculated in rela-
tion to the gene. Extrapolated from the evaluation methods of
GO:BP terms, we counted a true positive gene prediction if a
gene had at least one true positive GO:BP term prediction. In
other words, a true positive gene was called if the intersection
between previously known, held-out terms and predicted
terms was at least 1. A false positive gene was called if GO:BP
terms were predicted on a gene, but none matched the
known, held-out terms (intersection of 0) and false negatives
were called on genes that had known, held-out GO:BP terms,
but a GO:BP prediction was not made on the gene.

Prediction evaluation (semantic similarity)
In addition to precision and recall, we calculated SS between
the set of held-out terms and predicted terms for the same
gene. We employed the SS calculation developed by Wang et
al. [73]. Briefly, each GO term is assigned a semantic value
based on the term's location in the GO hierarchy and the rela-
tionship types between ancestor GO terms 'is-a' and 'part-of'.
The SS between two GO terms was calculated by considering
the location of both terms in the ontology and the relation-
ships between the ancestor GO terms jointly. SS between two
sets of GO terms, which is representative of the annotations of
two genes, was calculated by iteratively comparing each GO
term from the held-out set to the GO terms from the set of
predicted terms, and vice versa. This method calculates a sin-
gle SS measure on the interval [0,1] for each annotated gene
pair compared.

To determine a reliable SS threshold, we measured the SS
between all reported GI gene pairs where each gene in the pair
was annotated with at least one GO:BP term. GIs provided the
highest LLS for any dataset and, therefore, was used as the
benchmark set for SS scores. The median measure of SS for
GIs was calculated to be 0.45, which we determined to be the
threshold to consider a SS score reliable.

Prediction evaluation (comparison with sequence similarity)
The translated protein sequences for each of the 483 genes
tested were downloaded from FlyBase FB2007_02 [46]. The
sequences were searched against the NCBI nr database using
BLASTp with an E-value cutoff of 10-6. Sequence hits with less
than 40% identity were removed. Also, all sequences from the
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Drosophila genus were removed. The top 10 BLAST hits for
each of the 483 genes were taken and the GO:BP annotations
for these BLAST hits were downloaded from the GO database
[56]. The mapping between BLAST results and GO term
annotations was done through UniProt IDs. All GO:BP anno-
tations were directly transferred to the D. melanogaster gene
from the top ten BLAST hits.

Analysis of Teleman et al. gene expression data
Processed gene expression data from Teleman et al. [79] were
downloaded from ArrayExpress [114] under accession
number [ArrayExpress:E-TABM-375]. Normalization and fil-
tering was done following the methods in Teleman et al.
Expression ratios for replicate spots were averaged.

Subnetwork construction algorithm
The goal of the subnetwork construction algorithm is to build

a tightly connected subnetwork around a set of query genes.

This was done by first defining a set of query genes, Q. This set

is user defined and in this case is a set of genes that share a

common biological process. We are given a graph G = �V, E�,

where vi V and vi, vj E. In this analysis, G =  and Q 

V. We want to find a new set of genes, Q', that contains all vi

that meet the following criteria: vi  V, vi  Q, vi, vj  E, vi, vk

 E, vj  Q, and vk  Q. In other words, we want to find all

nodes in G that are not already present in Q and have an edge

between at least two nodes in Q. This new set of nodes, Q', is

then added to Q (Q = Q  Q'). A second iteration of this pro-

cedure is performed to find a new set Q' in relation to Q. The

two sets are again combined to form the final set Q. The sub-

network G' is returned, where G'  G and G' = �Q, E'�, E'  E.

Gene set enrichment analysis
All genes from the wild-type muscle tissue gene expression
experiment (fed versus starved larvae) were rank ordered
according to their log-transformed ratio values. Gene sets
were defined for the following categories: category 1, the func-
tional categories reported in Teleman et al.; category 2, the
genes from the subnetworks constructed from query seed sets
from category 1; category 3, genes listed in KEGG pathways;
and category 4, the three GO categories of biological process,
molecular function, and cellular component. Gene sets from
category 1 were taken directly from the list of genes reported
in the figures of Teleman et al. Gene sets from category 2 were
defined as the genes present in a seed set (gene set in category
1) in addition to the genes from the network constructed
according to the subnetwork construction algorithm. Genes
that were present in sets from category 1 but not found in the
integrated network were not included in any sets in category
2. Gene sets from category 3 were defined by the genes in
individual KEGG pathways. Gene sets from category 4 were
defined by the genes annotated to individual GO terms. Gene-

GO term sets were parsed directly from all associations
defined by FlyBase (including IEA, NR, and ND) [56].

The GSEA [81] software was run using the 'GseaPreranked'
option, with the rank ordered list of wild-type muscle expres-
sion ratios and all gene sets as input. Gene sets smaller than
15 and bigger than 500 were ignored and default weighting
parameters were used.
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