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Abstract

Molecular networks are being used to reconcile genotypes and phenotypes by integrating medical
information. In this context, networks will be instrumental for the interpretation of disease at the

personalized medicine level.

Genes and proteins do not function in isolation in the cell,
but are integrated into a global network of interactions
between cellular components. Even if current networks
mainly describe protein-protein interactions, other
biological relations, including gene regulation, control by
small RNAs, enzymatic reactions and other interactions, are
progressively being integrated. The complete network of
interactions, along with addition of the fundamental
dimensions of time and space, will ultimately provide a
complete picture of cellular functions.

As phenotypic disorders can arise from abnormalities in
genes, knowing the functions of the corresponding proteins
can provide clues to understanding the molecular basis of
disease, especially of complex diseases such as diabetes and
cancer. High-throughput genomic analyses have been
applied to study these complex multifactorial diseases. They
produce a tremendous amount of raw data that are, how-
ever, difficult to interpret due, for instance, to problems of
reproducibility, functional interpretation and statistical
shortcomings, which have often led to controversial findings
[1]. To better interpret such high-throughput genomic
experiments, ways of integrating network information - for
example, on protein-protein interactions - have been
developed.

We will first discuss how mapping disease genes or proteins
into their corresponding interaction networks can facilitate

the study of their cellular functions. We will then consider
the use of network analysis and bioinformatics to integrate
high-throughput information on networks of interactions to
better understand the functional cellular defects underlying
complex multifactorial diseases. Finally, we consider how
molecular networks could be used to link disease genotypes
and phenotypes, and propose the use of networks to
integrate scattered information - connecting genomic know-
ledge, detailed molecular information and precise medical
descriptions of diseases, and ultimately taking into account
an individual’s genetic background to provide effective
personalized medicine.

Unraveling disease from a network perspective

A large number of gene variants are known to cause
phenotypic disorders in humans. The Online Mendelian
Inheritance in Man (OMIM) database [2] stores information
on more than 2,000 genes related to such disorders. These
disease-causing genes have been historically identified by
linkage analysis of affected families and mutational screen-
ing. When the relationship between a particular disease and
a small set of gene variants (or a single variation) is well
characterized, protein functions can then be deciphered to
provide direct insight into the molecular basis and
progression of the disease, and, ultimately, to identify valid
targets for therapy. For instance, the identification of the
enzyme deficiency responsible for the metabolic disease
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phenylketonuria, which causes mental retardation, led to the
adoption of a specialized diet that reduces the impact of the
gene defect.

Functionally similar proteins tend to be connected in
molecular networks - for instance, by being involved in the
same molecular complexes [3]. Therefore, the analysis of the
network surrounding disease proteins can provide clues
about their functional roles in the cell. This assumption was
behind an interaction screen for the poorly understood
huntingtin protein, in which a polyglutamine tract expan-
sion induces Huntington’s disease. A number of protein
partners related to transcriptional regulation and DNA
maintenance were identified, predicting the involvement of
huntingtin in these processes [4]. Similar studies have
constructed molecular networks around other known
disease genes, such as ataxia-causing genes [5], and even
around virus proteins to pick up their interactions with host
proteins and reveal a host-pathogen hybrid protein-
interaction network [6]. Overall, deciphering the molecular
networks surrounding disease proteins might reveal patho-
genic mechanisms, new candidate disease proteins and
modifiers of phenotype, and so expand the list of potential
therapeutic targets [4,5] and the possibility of multi-targeted
therapy [7].

As interacting proteins are functionally close, one can hypo-
thesize that mutations in linked genes might lead to similar
clinical manifestations or phenotypes. A bioinformatics
study in yeast showed that among many possible functional
links (for example, gene interactions, gene coexpression, co-
citation in the literature), stable protein interactions, and in
particular protein complexes, are the best predictors of
phenotypic similarities in growth rates [8]. In humans, the
inherited ataxias, a set of neurodegenerative disorders
manifested by a loss of movement coordination and sharing
some phenotypic traits, have also been studied through a
protein-interaction approach. The deciphering of the
protein-interaction network around genes already known to
be directly involved in more than 20 inherited ataxias shows
that most of the corresponding proteins interact with each
other, either directly or indirectly [5]. Hence, ataxia-causing
genes are functionally related at the cellular level (for
example, the corresponding proteins interact or participate
in the same complex).

Obviously, this wealth of information about the molecular
basis of diseases could not have been reached by studying
the functions of isolated proteins. Altogether, these results
show that disorders with similar phenotypes may be the
consequence of mutation in genes that are related by their
cellular function. This conclusion is complemented by the
finding that a ‘disease network’, in which two genes are
related if they are known to be responsible for the same
disease, overlaps significantly with a protein-interaction
network [9]. Molecular networks, and in particular
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protein-interaction networks, could thus provide a valuable
framework for relating genotypes and disease phenotypes.

The link between protein interactions and phenotypic
similarities can also be exploited to predict new candidate
disease proteins; mutations of proteins in the network
neighborhood of a disease-causing protein are more likely to
cause a similar disorder. An integrated network of gene
coexpression combined with other high-throughput datasets
(for example, direct protein-protein interactions, membership
of protein complexes, genetic interactions) has been con-
structed around four known breast cancer proteins in order to
obtain insights into cancer mechanisms and to identify new
cancer-associated proteins. The hyaluronan-mediated motility
receptor (HMMR), a protein that may be involved in centro-
some function, was found to be closely linked in this
integrated network to one of these cancer genes, BRCA1, and
thus is predicted to have a role in breast cancer [10].

Similar prediction methods can also be applied to lists of
candidate genes - for instance, the genes in a disease locus
identified by linkage analysis of cancer-prone families. If one
of the genes mapped to the locus interacts with a protein
known to cause the disease, then it is predicted as the best
disease candidate [11]. This principle can be refined by
comparing the disease phenotypes induced by the different
proteins of the complex containing the disease candidate
[12], or by computing a correlation between phenotype
similarities and closeness - a measurement of topological
proximity in the molecular-interaction network [13].

All the methods described above rely on previously known
disease-causing genes, either to study their cellular functions
in the cell or to predict other genes that will lead to similar
phenotypes when mutated. However, complex disorders
cannot be adequately described as lists of implicated genes
and require different conceptual and technical approaches.

From high-throughput data to networks for complex
diseases

The importance of analyzing information in terms of
networks is most obvious for the study of complex diseases,
such as cancer or diabetes, in which illness is caused by the
combined actions of multiple genes, the individual’s genetic
background and environmental factors. The frequency and
penetrance of complex diseases vary greatly among
individuals. For instance, mutations in slightly different sets
of genes can converge onto similar phenotypes, whereas the
same set of mutated genes can lead to significant phenotypic
differences in different individuals. Furthermore, many
mutated genes show very little effect independently, but
behave cooperatively to predispose to disease, a phenome-
non called epistasis. Deciphering the impact of epistatis on
complex disease phenotypes represents a current challenge
in human genetics [14].
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Information for complex diseases provided by high-throughput projects and gene variation databases

(a) Disease Project Reference
Cancer Cancer Genome Project [70]
The Cancer Genome Atlas [16]
Cancer Genome Anatomy Project [17]
The International Cancer Genome Consortium [71]
Cancer Genetic Markers Susceptibility [72]
Diabetes Diabetes Genome Anatomy Project [18]
Alzheimer’s disease Alzheimer’s Genome Project [73]
Autism The Autism Genome Project [19]
Schizophrenia The Schizophrenia Genome Project [74]
(b) Variation Database
Polymorphisms HapMap [75]
Polymorphisms HGVMap [76]
Cancer mutations Cosmic [77]
Genome-wide association studies Genome-wide association studies catalog [78]

Despite their huge impact on public health and massive
investment in research, the causes, progression, and
mechanisms of complex disorders and the impact of
treatments on them still remain largely unknown [15].
Multidisciplinary projects based on high-throughput
genomic analyses (including massive sequencing,
genotyping, transcriptomic and proteomic experiments)
have been launched to study common complex diseases
(Table 1a). They include cancer (for example, the Cancer
Genome Atlas [16] and the Cancer Genome Anatomy Project
[17]); diabetes (the Diabetes Genome Anatomy Project [18]);
and autism (the Autism Genome Project Consortium [19]).
Such high-throughput studies aim first at elucidating the
causal genetic mechanisms of diseases by examining
different genetic characteristics in a large number of sick
and healthy individuals (for example, gene mutations,
chromosomal abnormalities, or copy-number variation).

Disease loci can be identified in the first instance by high-
throughput linkage analysis of disease-prone families, an
approach that has been applied, for example, to autism [20]
and schizophrenia [21]. For autism, linkage analysis in more
than 1,400 families highlighted the chromosomal region
11p12-p13 and neurexin, a protein involved in synapto-
genesis, as candidate loci [20]. Disease-associated loci can
also be identified by whole-genome association studies,
which systematically assay for genetic variation such as
single nucleotide polymorphisms (SNPs) across the genome
[22]. This type of association study can be applied to both
affected and healthy cohorts, or in relation to particular

phenotypes, such as disease susceptibility (for example,
diabetes [23]), or to study individual responses to drugs.
Finally, genetic variations can be identified through compre-
hensive resequencing studies. This approach has been
applied to identifying cancer-related mutations in colon and
breast tumors, leading to the identification of around 8o
DNA alterations in a typical cancer [24]. A number of
databases provide information on genetic variations asso-
ciated with disease (Table 1b).

Complementary high-throughput studies, commonly called
functional genomic experiments, aim to go beyond the
identification of variants and regions associated with disease
phenotypes; they intend to decipher the molecular processes
underlying illness. They can, for example, assess gene
expression through transcriptomic approaches [25] or use
proteomics to assay for the presence of the corresponding
proteins in cellular fractions, and so gain information about
protein activity and localization [26].

In most cases, high-throughput approaches to complex
diseases do not provide lists of directly altered genes or
proteins but genomic and proteomic information for groups
of genes that are likely to be related to the pathology under
study. Cancer gene-expression profiling illustrates this well,
as numerous microarray-based studies have proposed gene
markers, or signatures, related to clinical phenotypes (for
example, metastatic capability or survival rates): for in-
stance, a six-gene signature involving proteins mainly
functioning in cell adhesion and/or signal transduction has

Genome Biology 2009, 10:221

Baudot et al. 221.3



http://genomebiology.com/2009/10/6/221

recently been implicated in the prediction of breast cancer
metastasis into the lung [25]. However, such experiments
are barely reproducible, leading to inconsistencies in signa-
tures between different experiments and, more importantly,
they do not reveal the underlying molecular mechanisms
accounting for the signatures.

In such high-throughput experiments, the molecular mecha-
nisms are typically analyzed through functional bio-
informatics analysis, mainly based on Gene Ontology (GO)
annotations of proteins (for example, FatiGO [27]), which
can highlight molecular processes shared by the genes in a
disease signature. However, this approach has several short-
comings: nonspecific terms tend to be overrepresented (for
example, ‘extracellular matrix’, ‘cell communication’ and
‘cell growth’ in the invasive front of colorectal metastasis
[28]), interesting proteins can be superficially annotated,
and GO can lack direct associations with pathways and
disease. In view of these limitations, some authors have
proposed strategies focused on a priori defined gene sets
(for example, gene-set enrichment analysis [29]), such as
genes belonging to a particular signaling pathway, that
search for global trends in their expression levels - for
example, all the genes are upregulated in a given disease. A
recent high-throughput resequencing study for human
pancreatic cancer revealed a shift from a gene-centric view,
with the identification of many genetic alterations, to a
pathway-centric view, with the description of core pathways
enriched in mutations [30]. The pathway-centric view fits
with a current consideration of complex diseases as pathway
diseases more than gene diseases [31]. This shift in the
analysis provides more biologically consistent results and
can be extended to related problems, such as disease classifi-
cation [32], assessment of progression [33] or evaluation of
chemotherapy resistance [34] in cancers.

Unfortunately, the majority of human genes are not assigned
to well-characterized pathways [35]. This limitation can be
overcome by analyzing molecular interactions between
proteins. Indeed, public databases, such as the BioGRID
database [36], store a lot of interaction data, even for
proteins that are poorly described at the molecular and bio-
chemical levels. These interactions can not only complement
pathway-based approaches, but also provide information on
other biological processes and regulations in which proteins
are involved. In the context of high-throughput studies of
complex diseases, networks can provide valuable indica-
tions. For instance, subnetworks important for breast cancer
metastasis can be identified by mapping changes in gene
expression onto a protein-interaction network. These sub-
networks are used to provide metastasis markers, with the
advantage that subnetwork markers are potentially more
robust than single gene signatures [37]. In the same way,
global pathway consistencies and activities distinguish
between different breast cancer subtypes such as estrogen-
receptor positive/negative status [38].
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Variation in coexpression between proteins and their inter-
action partners has also been assessed to predict the out-
come of disease. In breast cancers, expression of the DNA-
damage repair protein BRCAL1 is strongly correlated with the
expression of its interaction partners in tumors from
patients with a good outcome, whereas it is uncorrelated
with their expression in tumors from patients with a poor
prognosis [39]. The value of molecular network integration
is not restricted to microarray analyses. For example,
integration of microRNA profiling and proteomic analyses
has been used to reveal three subnetworks involved in
different aspects of osteoarthritis, a multifactorial disease
characterized by destruction of the articular cartilage [40].
Finally, with regard to genotyping studies, in which
thousands of variations appear for each particular indivi-
dual, networks offer a way of interpreting the significance of
these variations at the molecular level. For example, the
connectivity provided by a molecular network can shortcut
the huge combinatorial space of possible gene-gene epi-
stasis, a problem currently addressed by expensive compu-
tational approaches [14].

Integrating clinical and genomic information into
networks

The high-throughput studies of disease discussed above
mainly emerge from a culture of molecular biology and are
still rather disconnected from the medical field. It is clear that
to gain insights into complex diseases, new approaches will
have to go beyond simple phenotypic descriptions and use
more precise clinical information. We would like to argue
here that networks can play an instrumental role in the
integration of medical information required for the trans-
lation of high-throughput genomics into a greater understand-
ing of disease and, ultimately, into personalized medicine.

Molecular networks have been used to link disease geno-
types. An initial set of published studies has pioneered the
inclusion of disease descriptions with high-throughput
genomic data. For example, Butte and Kohane [41] applied
text-mining strategies to organize microarray experiments
into similar disease classes, according to the Unified Medical
Language System Metathesaurus terms (UMLS; a compen-
dium of ontologies) associated with their experimental
annotations. Box 1 lists the main standards for disease
description and databases of disease phenotypic informa-
tion. Specific associations between individual genes and
diseases, principally extracted from OMIM [2], have been
exploited to study relationships between phenotype and
underlying molecular mechanism. Using this approach, Van
Driel et al. [42] showed that disease-related proteins are
correlated with various attributes, including their organiza-
tion in protein interactions. They established phenotypic
and disease similarities between protein pairs by comparing
their corresponding Medical Subject Heading (MeSH)
biomedical terms extracted from the OMIM descriptions of
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Box 1. Sources of standard disease phenotype terminology
International standards for describing disease phenotypes

The World Health Organization’s International Classification of Diseases (ICD) is a widely used standard
terminology for classification of diseases and health disorders [46]. The current version is available in more than 30
languages, covers more than 14,000 medical terms and includes adaptations focused on specific health areas such as
oncology, mental disorder or primary care.

The Unified Medical Language System Metathesaurus (UMLS) is also a well-known source of ontology
standards, integrating more than 2 million medical terms, and 12 million relationships between them [43]. UMLS-
associated projects include the Medical Subject Headings (MeSH) thesaurus, a controlled vocabulary used for
cataloging biomedical and health-related documents that provides one of the most popular searching facilities as the
MeSH terms are used to label Medline abstracts. It also contains the Logical Observation Identifiers Names
and Codes (LOINC) [47], a catalogue of universal identifiers designed for the electronic exchange of laboratory and
clinical test results [48].

Another source of standard terminology is the Systematized Nomenclature of Medicine-Clinical Terms
(SNOMED-CT) [49], supported by the International Health Terminology Standards Development Organization
[50]. This computer-readable collection of medical terms covers diverse clinical areas such as diseases, medical
procedures and drugs. SNOMED-CT currently contains more than 310,000 concepts with unique meanings and
formal logic-based definitions organized into hierarchies. SNOMED-CT has already been extended to Spanish, and
translations to other languages such as Danish, French and Swedish are currently taking place, addressing one of the
pressing needs in the multilingual environment of medical records.

Complementary disease-related ontologies are the Human Phenotype Ontology (HPO) [51], with more than
8,000 terms representing individual phenotypic abnormalities [52] and the Disease Ontology (DOID) [53], which
is part of the Open Biological Ontologies Foundry (OBO) [54].

Information on disease phenotypes related to particular genes and proteins

The Online Mendelian Inheritance in Man (OMIM) database stores information such as gene descriptions,
inheritance patterns, localization maps and polymorphisms for more than 12,500 gene loci and phenotypic
descriptions [55].

SwissProt, the key source of information about protein function, even though not specifically dedicated to disease-
related annotations, also includes information linking proteins and associated mutations with pathologies. It
provides a very useful link between MeSH disease terminology and specific proteins [56].

Disease description standardization is also fundamental for the exchange of electronic medical records and for their
interoperability. Major efforts such as Health Level Seven (HL7) [57] and Digital Imaging and Communication in
Medicine (DICOM) [58] protocols provide standards for sharing and retrieving electronic health information and
medical images. A more detailed description of standards for electronic medical charts is provided in specialized
reviews [59].

the corresponding genes. Lage and collaborators [12]
predicted 113 new disease-candidate genes by comparing
their protein-interaction neighborhood with the associated
phenotypes. In this case, the phenotypes were defined by
identifying UMLS terms [43] in the OMIM descriptions.
Each disease was then described as a vector of medical terms
that can be directly compared. These are perhaps the best
current examples of how protein-interaction network data
can be used to interpret phenotypic proximities between

diseases. However, only basic descriptions of the diseases
are used, far from the complete - and individual -
information contained in medical records.

For a greater insight into complex diseases, it will be
necessary to access detailed information such as symptoms,
diagnosis, treatment and disease progression. The main
source of detailed information are patients’ medical records,
authored by physicians. Medical records store private
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Box 2. Biobanks

The efficient mining of large collections of clinical and epidemiological data requires the availability of electronic and
standardized records coupled to organized collections of samples in biological banks (biobanks). The concept of a
biobank covers efforts with different goals and organization, from efforts to obtain samples from the general population,
to collections dedicated to specific diseases, in particular cancer types. Biobanks also vary greatly in the type of sample-
associated information they contain. In some cases this comprises very detailed clinical and epidemiological records, and
in others only basic descriptions of population characteristics. At a very general level, three main types of biobanks can
be distinguished [60].

Population biobanks gather germline DNA from healthy donors representing a particular regional population. Their
major goal is to obtain biomarkers of susceptibility and population characteristics.

Disease-oriented biobanks focus on the identification of disease biomarkers for patient selection. They store
collections of pathological and healthy samples commonly associated with clinical data or trials. Well-known examples
are tumor biobanks.

Epidemiology-oriented biobanks focus on exposure biomarkers. Samples are recruited from healthy exposed
individuals or from case-control studies.

Current efforts in biobank development include the European Biobanking and Biomolecular Resources Infrastructure
(BBMRI), which intends to coordinate biobanks from 19 European countries, including the organization of compatible
infrastructures and annotations [61]. The European Life-sciences Infrastructure for Biological Information project
(ELIXIR [61]), another project of BBMRI, represents an effort to link biological and biomedical databases and
computational resources [61]. In the same way, the NCI Biomedical Informatics Grid project (CaBIG) supports the
integration of medical oncology and cancer research genome projects [62]. The Public Population Project in Genomics
consortium (P3G) gathers together more than 20 international institutions to promote effective collaborations between
biobanks involved in population studies [63].

Examples of specific biobank developments are the Estonian Gene Bank Project [64], the private initiative of deCODE
project in Iceland [65], the Spanish National Tumor Bank network [66], the DNA scanning project in children, in the
Children’s Hospital of Philadelphia (CHOP) [67], the Personalized Medicine Research Project DNA Biobank [68] in the
United States, and the BioBank Japan Project [69].

patient data as well as clinical information on their illnesses.
Unfortunately, the mining of electronic medical records is
exposed to well-known legal difficulties such as intellectual
property and patient confidentiality. Furthermore, the lack
of standardization between hospitals and institutions and
the recruitment of poorly annotated samples make gathering
clinical data a major burden, as demonstrated in large-scale
projects such as the Cancer Genome Atlas [44].

The availability of biological samples, combined with
adequate clinical and epidemiological information, is of
paramount importance in correlating disease phenotypes
with their molecular underpinnings. This is where ‘biobanks’
come in (Box 2). The information recorded in biobank
entries is more accessible to research projects as, in general
they contain less direct personal information. Brief stan-
dardized health summaries describing the minimal, but
relevant, clinical information, without damaging confiden-
tiality and intellectual property rights, can provide an inter-
mediate solution between the extremes of complete medical

records and minimal pathological information associated
with biological samples [45]. In this evolving situation,
biobanks will facilitate the integration of high-throughput
genomic information with disease descriptions using infor-
mation standards and medical ontologies.

In conclusion, the effective translation of high-throughput
genomic data on complex diseases into molecular mecha-
nisms and potential therapies requires taking precise
medical information into account. Molecular networks are
currently being used to interpret high-throughput data
generated in functional genomics or genotyping studies, but
they can also be used as an instrument to interpret pheno-
typic data in molecular terms. Molecular networks are
flexible enough to integrate high-throughput genomic infor-
mation with phenotypic descriptions of complex diseases
(Figure 1). To achieve this goal, however, the networks will
have to be reliable, complete, and combine the various types
of molecular interactions present in living cells. Further-
more, to fully understand disease mechanisms, molecular
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Bioinformatics high-throughput experiments and medical resources can be integrated through molecular networks.

networks will have to switch from their current static
description of interactions to dynamic information, describ-
ing the evolution of the network in time and space. Such
integrated networks will be particularly relevant for complex
diseases, where targeted therapy against single proteins is
not sufficient, and critical therapeutic decisions can be better
taken in the knowledge of integrated molecular profiles.
Finally, molecular networks could ultimately take into
account the mutations and polymorphisms specific to
individual cases. In this vision, the future integration of
information using molecular networks as frameworks is the
basis for the development of personalized medicine.
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