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Small RNA expression in C. elegans development<p>A deep-sequencing approach to profiling gender-specific developmental regulation of small non-coding RNA expression in C. elegans reveals dynamic temporal expression and novel miRNAs and 21U RNAs.</p>

Abstract

Background: Small non-coding RNAs, including microRNAs (miRNAs), serve an important role
in controlling gene expression during development and disease. However, little detailed
information exists concerning the relative expression patterns of small RNAs during development
of animals such as Caenorhabditis elegans.

Results: We performed a deep analysis of small RNA expression in C. elegans using recent
advances in sequencing technology, and found that a significant number of known miRNAs showed
major changes in expression during development and between males and hermaphrodites.
Additionally, we identified 66 novel miRNA candidates, about 35% of which showed transcripts
from their 'star sequence', suggesting that they are bona fide miRNAs. Also, hundreds of novel Piwi-
interacting RNAs (piRNAs)/21U-RNAs with dynamic expression during development, together
with many longer transcripts encompassing 21U-RNA sequences, were detected in our libraries.

Conclusions: Our analysis reveals extensive regulation of non-coding small RNAs during
development of hermaphrodites and between different genders of C. elegans, and suggests that
these RNAs, including novel miRNA candidates, are involved in developmental processes. These
findings should lead to a better understanding of the biological roles of small RNAs in C. elegans
development.

Background
Proper control of gene expression is required for normal
development, health maintenance, and successful reproduc-
tion. Until recently it had been believed that gene regulatory
networks consisted solely of protein-coding genes, and, in
particular, those encoding transcription factors. However,
the complete sequencing of many organisms has revealed that
only a small fraction of most genomes encodes proteins

(reviewed in [1,2]). On the other hand, recent in-depth
genome-wide efforts, including full-length cDNA cloning and
tiling microarray analysis, have shown that a large fraction of
the remaining non-coding regions are much more extensively
transcribed into stable RNAs than previously appreciated
(reviewed in [1-3]). Notably, significant portions of these
transcripts are small, non-coding RNAs, including microR-
NAs (miRNAs) and Piwi-interacting RNAs (piRNAs).
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miRNAs, first discovered in C. elegans [4-6], negatively regu-
late gene expression by binding to complementary sequences
in the 3' untranslated region of their target mRNAs in an Arg-
onaute-protein-dependent manner (reviewed in [7]). Mature
miRNA products, approximately 22 nucleotides in length, are
processed from hairpin-loops of larger primary transcripts.
The importance of these RNAs is evidenced by their evolu-
tionary conservation across species and by the many biologi-
cal events in which they are involved, including cell
proliferation, apoptosis and metabolism (reviewed in [8,9]).

piRNAs, another recently discovered class of small non-cod-
ing RNAs that are 24 to 30 nucleotides in length, were found
in Drosophila, zebrafish and mammals and so named
because they interact with Piwi proteins [10-16]. These pro-
teins, in the Argonaute family, are required for germline
development [17,18] and are important for transposon silenc-
ing in the germline of several different organisms [11,14,19-
21]; this suggests that at least one role of piRNAs is to protect
the germline genome against transposons. Indeed, many
piRNA sequences map to transposon-like repetitive
sequences [22]. Recently, a related class of 21-nucleotide
RNAs starting with a uracil (21U-RNA) was identified in C.
elegans [23]; these RNAs were subsequently confirmed to be
piRNAs [24-26]. Specifically, C. elegans piwi-related gene
(prg) mutants display a dramatic reduction of 21U-RNA
expression and a significant up-regulation of the mRNA of
Tc3 family transposons with concomitant transposition [24-
26].

Previous work has demonstrated that expression of some of
these small RNA genes is tightly regulated during develop-
ment. For example, the expression in C. elegans of the two
founding miRNAs, lin-4 and let-7, are specifically up-regu-
lated at the second larval (L2) and the fourth larval (L4)
stages, respectively, and are necessary for the normal transi-
tion from the first to the second larval stage and from the
fourth larval stage to the adult, respectively. Additionally, a
Piwi-related protein and numerous piRNAs/21U-RNAs were
shown to be most abundant in the young adult stage [24-26].
This implies that Piwi protein and piRNAs/21U-RNAs func-
tion in the control of gene expression, in addition to suppress-
ing transposon activity, in germline development. These
observations suggest that expression of other miRNAs and
piRNAs/21U-RNAs is temporally regulated during develop-
ment. However, few studies have measured temporal pat-
terns in expression of all these small RNAs in parallel.

Here we use recent advances in high-throughput sequencing
technology to quantify the expression of non-coding small
RNAs, including miRNAs and piRNAs/21U-RNAs, and dem-
onstrate dynamic and sex-specific expression pattern
changes during development of C. elegans. Additionally, we
identify many novel miRNA candidates and hundreds of
novel piRNAs/21U-RNAs, as well as longer 21U-RNA tran-
scripts encompassing mature 21U-RNAs. These results

should lead to a better understanding of the expression and
function of small RNAs in C. elegans development.

Results and discussion
To examine the changes in expression levels of non-coding
RNA populations in development and in the different sexes of
C. elegans, and to identify additional non-coding small RNAs,
we generated cDNA libraries of small RNAs purified from six
developmental stages of hermaphrodites (embryo, mid-L1, -
L2, -L3, -L4 and young adult) and young adult males (gener-
ated from a dpy-28(y1);him-8(e1489) strain). Sequencing
these samples using Solexa technology [27] produced
73,678,102 total sequence reads of which 42,005,206
matched to the C. elegans genome (Additional data file 1).
Approximately 60% of the aligned reads in each sample con-
sisted of known miRNAs and 21U-RNAs, while in the remain-
ing set, categorized as 'Other reads' in Figure 1, we detected
many hits to rRNAs (ribosomal RNAs), tRNAs (transfer
RNAs), and snoRNAs (small nucleolar RNAs) (Additional
data file 1; for these non-coding RNAs in C. elegans, see [28]).
As purification was specific for 18- to 30-nucleotide RNAs
during cDNA library preparation, we speculate that most of
these are degradation products. In addition to these known
functional non-coding RNA species, we identified many novel
miRNA candidates and novel piRNAs/21U-RNAs in the
'Other reads' fraction (described below).

Deep sequencing detects the majority of known 
miRNAs
From our libraries, we detected the expression of 133 of the
154 previously annotated C. elegans miRNAs (miRbase
release 11.0; Additional data file 2). While we did not detect 21
of the previously reported miRNAs (we suspect that most of
these undetected miRNAs may not actually encode miRNAs
at all [23,29] or may be annotated incorrectly; detailed results
are shown in Additional data file 3), we did obtain 125 clones
of a very rare miRNA, lsy-6, expressed in only one pair of neu-
rons in the C. elegans head [30]. These findings demonstrate
the significant sequencing depth of our survey. Conversely,
the maximum number of clones we obtained for a single
miRNA was 12,295,951 (miR-58; Additional data file 2),
which highlights the high dynamic range of miRNA expres-
sion that can be surveyed using deep-sequencing technology
such as that from Solexa.

Two miRNAs, miR-58 and miR-1, which showed the highest
expression in our total libraries, were abundantly expressed
in animals of all developmental stages we examined, from
embryo to young adult of hermaphrodites, and in young adult
males (Figure 2). Although the function of mir-58 in C. ele-
gans remains unknown, we speculate that it has a general
housekeeping role. Similarly, C. elegans miR-1 has a broad
and generalized role, as it is involved in the function of neu-
romuscular junctions [31], and a mir-1 homologue in Dro-
sophila has an important role in muscle development [32].
Genome Biology 2009, 10:R54
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Temporal regulation of miRNA expression during 
development
The number of sequence reads for a particular miRNA is
known to be proportional to the molecular abundance of that
species [33]. Thus, the number of sequence reads of each
unique miRNA in each sample is a reasonable measure of
stage-specific expression during development (Figure 3). We
controlled for library differences by normalizing these values
to the total number of reads that matched to the C. elegans
genome in each sample (Additional data file 4). The raw data
for the number of reads is available in Additional data file 2.
Finally, we confirmed by RT-PCR the relative stage-specific
expression levels of the ten known miRNAs with highly
dynamic expression patterns (Additional data file 5).

About 16% of known miRNAs showed major changes in
expression at some point during development (for example,
between embryo and the mid-L1 stage; Figure 3a, b). We
define here 'a major change' as more than a tenfold difference
in the number of reads. For example, the let-7 miRNA exhib-
ited a major increase in expression around the mid-L4 stage,
as did one of the let-7 family members, miR-48, from the mid-

L3 stage (Figures 2 and 3a). Additionally, another well-char-
acterized miRNA, lin-4, showed a large increase in expression
from the mid-L2 stage (Figures 2 and 3a). These observations
correspond to previously published results [34,35] and sup-
port the validity and reliability for our small RNA libraries
and our analysis.

It is interesting that we were able to clone multiple members
of the let-7 and lin-4 families from stages where they were not
previously known to be expressed (Additional data file 4). For
example, we detected small numbers of clones to both let-7
and lin-4 in embryonic stages, many hours earlier than they
had been observed previously. It is unclear if these miRNAs
function during these earlier stages, since no embryonic phe-
notypes are known for let-7 or lin-4 null mutants [6,36]. Con-
ceivably, this could also represent maternal inheritance or a
small bleed-through from the adults to the embryos during
preparation.

Of the 24 miRNAs with major changes in expression, some
had particularly dynamic expression patterns. For example,
miR-71 is dramatically up-regulated from the embryo to the

Proportions of miRNA and 21U-RNA reads at each developmental stage of hermaphrodites and in malesFigure 1
Proportions of miRNA and 21U-RNA reads at each developmental stage of hermaphrodites and in males. Details are shown in Additional data file 1.
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mid-L1 stage and then quickly down-regulated at the mid-L2
stage, and again gradually but significantly up-regulated after
the mid-L4 stage (Figure 3a; Additional data file 5). Given its
temporal regulation, this miRNA might be involved in control
of developmental timing, like lin-4 and let-7. Another inter-
esting case is the expression of miR-77, miR-85, miR-240 and
miR-246, which is very low or completely absent in earlier
developmental stages but increases after the mid-L4 and
young adult stages (Figure 3b; Additional data files 4 and 5),
implying a potential role in adult functions like reproduction,
metabolism or aging. A recent report by Martinez et al. [37]
also mentioned that some of these miRNAs, including miR-
85 and miR-240, are temporally regulated during develop-
ment, mirroring our results. We highlight additional develop-
mentally regulated miRNAs in Additional data file 4.

Male-specific miRNA expression
The different sexes of animals result from different develop-
mental pathways, which specify and maintain cell differenti-
ation of the animal as male rather than female or
hermaphrodite. Males in C. elegans have several distinct fea-
tures and tissues, including mating organs in the tail and a
male-specific germline, generating only sperm. In addition,
males exhibit a smaller overall body size and different behav-
ior compared to hermaphrodites. To assess those miRNAs
preferentially expressed in males or in hermaphrodites, we
generated and sequenced a cDNA library from small RNAs of
young adult males (him-8 (e1489) mutants crossed with dpy-
28 (y1); see Materials and methods). We found that about
12% of known miRNAs exhibited major differences in expres-
sion in hermaphrodites and in males (Figure 4; Additional
data file 4). The correlation between miRNA expression levels
in males and hermaphrodites is shown in Additional data file

The top 20 highest expressed miRNAs in each sampleFigure 2
The top 20 highest expressed miRNAs in each sample. The numbers shown on the right side of the miRNAs represent the percentage of reads of each 
miRNA compared to all miRNA reads in that sample. The founding miRNA genes, lin-4 and let-7, and miR-48, another let-7 family member, are highlighted 
in color and in bold and are expressed at the times expected from the literature.
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6. Interestingly, most of the differentially expressed miRNAs
are more abundant in males than hermaphrodites, which may
reflect their expression in male-specific organs, for example,
the rays used in copulation.

Identification and characterization of novel miRNA 
candidates
In order to identify novel miRNAs, we first filtered out
sequence reads corresponding to all annotated RNA mole-
cules, including miRNAs, mRNAs and other small non-cod-
ing RNAs. We then used the miRDeep program [38] to
predict which of the remaining sequence reads might be miR-
NAs. This analysis revealed 66 novel miRNA candidates
(Additional data file 7). In addition, we found the 'star
sequence' for 24 of these candidates in our sequence reads
(highlighted in red in Additional data file 7). Mature miRNAs
are processed from the stem of a hairpin precursor, and the
star sequence corresponds to the section of this hairpin that
remains hybridized to the mature form (with approximately
2-nucleotide 3' overhangs) throughout much of miRNA bio-
genesis [33]. The presence of these star sequence reads thus

strongly suggests that at least these 24 novel candidates are
bona fide miRNAs. We further examined the expression of
five of these candidates using RT-PCR in both wild-type N2
and alg-1(gk214) mutant backgrounds. It is known that the
two Argonaute family members alg-1 and alg-2 are essential
for miRNA processing, but have no role in the RNA interfer-
ence (RNAi)-mediated silencing pathway including siRNA
(small interfering RNA) production [39,40]. Indeed, mature
let-7 miRNA transcripts were less abundant in the alg-1
mutant background, as were those of all five novel miRNA
candidates tested (Figure 5a). This was also confirmed in the
alg-1 RNAi background (data not shown). These observations
indicate that these five candidates are indeed true miRNAs.
Computationally predicted secondary structures of the pri-
mary miRNA transcripts (pri-miRNAs) of these novel miR-
NAs are shown in Figure 5b.

Furthermore, of the 66 novel miRNA candidates, 20 may fall
into known miRNA families since they had the same core tar-
get-binding ('seed') sequence found in other miRNAs in other
species (Figure 6a; Additional data file 7). One of the novel

miRNAs showing major changes in expression between any two stages during developmentFigure 3
miRNAs showing major changes in expression between any two stages during development. The number of reads of each miRNA was plotted after 
normalization (see Materials and methods). miRNAs expressed in (a) high abundance (more than 10,000 reads at any stage) and (b) lower abundance are 
shown separately. For clarity, miRNAs with fewer than 200 reads are not shown. Emb, embryo; mL, mid-larval stage; yAdult, young adult.
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miRNAs verified by RT-PCR, miR-2209a, has the seed
sequence common to the bantam miRNA family, which is
known to function in apoptosis [41]. Further, we found that
this novel miRNA is clustered on chromosome IV together
with another four novel miRNA members, including miR-
2208b-5p, miR-2208b-3p and miR-2209c (Additional data
file 7). Also, these clustered novel miRNAs had similar
expression patterns, falling into the male-enriched group (see
below; Figures 6b and 7; Additional data file 8). Moreover,
another validated novel miRNA, miR-2212, was genomically
clustered on chromosome X with a known miRNA, miR-1819,
and both showed male-enriched expression (Figures 6b and
7; Additional data files 4 and 8).

miRNA expression cluster analysis
To visualize broad trends in the temporal expression of both
previously identified and our newly identified miRNAs, we
performed a simple hierarchical clustering. (Figure 7). We
found that the 199 miRNAs detectable in our analysis assort
into roughly five groups: those expressed primarily at the
embryonic stage, those enriched in males, and those prima-
rily expressed in early, middle, and late larval development.

Interestingly, we found that genomically clustered miRNAs
are not necessarily co-expressed at the same levels. Some sets
of miRNA map to specific chromosomal clusters, as in the
case of miR-35 to miR-41, which have redundant functions in
embryonic development [42] and are abundantly expressed
in the embryonic stage (Figures 3b and 7). Genomically clus-
tered miRNAs are thought to be transcribed as a single tran-
script and then individual pre-miRNA are subsequently
processed out. We found that although these miRNAs have
generally similar expression patterns during development
(Figure 7), the absolute expression levels are strikingly differ-
ent (Additional data file 4). Perhaps, then, clustered miRNAs
may be differentially controlled at the transcriptional level
and/or during subsequent processing.

Our analysis of the changes of miRNA expression during
development may provide helpful information in identifying
the target genes for these miRNAs. Coupling this data set with
several of the studies describing mRNA expression profiles
during development and aging of C. elegans [43,44] could
provide correlations pointing to potential miRNA-target
pairs, since changes in expression of miRNAs may cause
reciprocal expression patterns of their target genes during
development of C. elegans. (Although miRNAs that form

Differential expression of miRNAs in hermaphrodites and males at the young adult stageFigure 4
Differential expression of miRNAs in hermaphrodites and males at the young adult stage. For clarity, miRNAs with fewer than 50 reads in both 
hermaphrodites and males are not shown.
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imperfect duplexes with their targets inhibit protein produc-
tion in animals, miRNA binding can also result in degrada-
tion of the target mRNA in C. elegans [45]; indeed,
microarray analysis has proven to be an effective way to find
genes modulated by miRNAs [46].)

Expression of piRNAs/21U-RNAs during development 
and in the germline
Another class of C. elegans non-coding small RNAs, 21U-
RNAs, have important functions in transposon silencing in
the germline and maturation of gametes [24-26]. More than
15,000 unique 21U-RNA sequences have been reported in C.
elegans, the vast majority of which map to either intergenic or
intronic regions on chromosome IV [23,25]. As expected from
their function in germline development, our results con-

firmed recent studies that show prominent accumulation of
21U-RNAs in the young adult stage (Figure 1; Additional data
files 1 and 9) [24-26].

To test if there are functional differences with regard to 21U-
RNAs in the sperm, we further examined the expression of
21U-RNA in wild-type hermaphrodites together with males
(dpy-28(y1);him-8(e1489)) at the young adult stage.
Although the overall mapping pattern of 21U-RNAs on chro-
mosome IV seemed unchanged in each strain, their abun-
dance was significantly decreased in males (dpy-28;him-8)
compared to wild-type hermaphrodites (Figure 8 - note that
the scale in wild-type (top) is tenfold greater than that in male
(bottom); Additional data file 9). This reveals that sperm and/
or their progenitors produce a number of the piRNAs/21U-

Validation of the expression of novel miRNAsFigure 5
Validation of the expression of novel miRNAs. (a) Validation of the expression of novel miRNAs by RT-PCR. Error bars represent standard deviation. (b) 
Computationally predicted secondary structure of the primary miRNA transcripts.
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RNAs, but the level may be lower than that in the oocyte
germline in C. elegans.

Approximately 44% of known 21U-RNAs on chromosome IV
are genomically clustered within 10 bp with other 21U-RNAs
(see below), implying that expression of 21U-RNAs in each
cluster is controlled in a similar manner, and one would
expect that these clustered 21U-RNAs might show similar
changes in expression in both male and hermaphrodite germ-
lines compared to 21U-RNAs mapping outside the clusters.
Interestingly, though, we did not detect common patterns in
expression of 21U-RNAs in the clusters; that is, 21U-RNA
abundance was routinely different for 21U-RNAs in the same
cluster, although 21U-RNAs in a genomic cluster appears to
be transcribed from the same strand (data not shown).

Identification and characterization of additional 
piRNA/21U-RNA sequences
In the course of our analysis, we identified approximately
10,000 21-nucleotide sequence reads starting with a uracil
that have not been previously annotated (Additional data file
10). These reads are referred to here as 21nt-U-RNA for
descriptive purposes to differentiate them from previously
identified 21U-RNAs. Of these 21nt-U-RNA sequence reads,
about 40% mapped to chromosome IV while the remaining
approximately 6,100 reads mapped to other chromosomes,
ranging from 7% of reads in chromosome X to nearly 16% in
chromosome I (Figure 9; Additional data file 10). While many
of the 21nt-U-RNA reads on chromosome IV mapped to the
two distinct regions observed for known piRNAs/21U-RNAs,
similar clustering was not apparent on other chromosomes
(Figure 9). To determine whether these sequence reads repre-
sent new members of the piRNA/21U-RNA family, we
searched for characteristic features of previously described

Characterization of novel miRNAsFigure 6
Characterization of novel miRNAs. (a) Sequence alignment of the novel miRNA candidates. Highly conserved 'seed' regions are highlighted in black and 
gray. Novel miRNAs are colored in red. (b) The expression of some novel miRNAs during development. Blue-colored and red-colored bars represent the 
results of quantitative RT-PCR and Solexa sequencing, respectively. The vertical axis indicates the relative expression level. The data were standardized to 
the expression in young adult hermaphrodites as 1. 'Ad' (young adult hermaphrodites) marked with an asterisk were cultured at 23°C, under the same 
condition as males, in order to rule out the possibility that male-enriched expression of these novel miRNAs is due to a higher culture temperature. Since 
Solexa sequencing was not performed for young adult hermaphrodites cultured at 23°C, this was shown as N.D. Error bars represent standard error. E, 
embryo; L, larval stage.
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Expression clustering of known and novel miRNAs; the latter class is labeled in redFigure 7
Expression clustering of known and novel miRNAs; the latter class is labeled in red. Expression levels were normalized per gene (retaining the relative 
shape but not the absolute magnitude of the temporal expression profiles), and the genes and time-points were clustered with complete linkage using the 
centered correlation coefficient. Five high-level clusters emerged and are shown here (The base of the tree, showing the relationships between these 
clusters, is not particularly informative and is not shown.). Emb, embryo; L, larval stage; yAd, young adult.

Relative gene expression

min max(normalized per gene)

Embryonic

 miR-54 
 miR-56 
 miR-124 
 miR-53 
 miR-60 
 547404_mas
 miR-55 
 miR-73 
 miR-51 
 1260661_mas
 miR-52 
 miR-62 
 miR-232 
 miR-787 
 miR-2 
 miR-233 
 miR-2217
 miR-79 
 427628_mas
 miR-1832 
 miR-42 
 miR-67 
 miR-37 
 miR-35 
 miR-36 
 miR-40 
 miR-39 
 miR-41 
 miR-38 
 1671098_adh
 268610_adh
 miR-43 
 miR-74 
 1128878_adh
 1392735_mas
 miR-244 
 miR-792 
 1911250_mas
 837693_adh
 lsy-6 
 70290_mas
 772234_adh
 miR-260 
 209309_mas
 miR-2215
 1181174_adh
 miR-2213
 1277767_adh
 miR-2207
 miR-2218a

Mid development

 miR-1 
 miR-228 
 miR-44 
 miR-45 
 miR-2219
 miR-1829a 
 miR-1832b
 miR-66 
 miR-61 
 miR-1020 
 miR-250 
 miR-795 
 miR-230 
 miR-788 
 miR-1829c 
 miR-1829b 
 347252_adh
 miR-58 
 miR-242 
 miR-248 
 miR-249 
 miR-63 
 686798_adh
 miR-259 
 miR-1824 
 miR-1830 
 764767_adh
 miR-2218b
 miR-46 
 miR-229 
 miR-1820 
 miR-247 
 miR-266 
 1010777_adh
 miR-797 
 63594_mas
 miR-2214

Early development

 miR-245 
 miR-791 
 miR-76 
 miR-1823 
 miR-272 
 1101605_adh
 miR-1821 
 miR-50 
 miR-234 
 miR-236 
 miR-255 
 169025_adh
 miR-1822 
 miR-72 
 miR-793 
 miR-790 
 miR-1022 
 647386_adh
 426009_adh
 miR-49 
 miR-231 
 1032770_adh
 24789_adh
 358157_adh

Late development

 miR-2209b
 651772_adh
 miR-2216
 405191_adh
 748932_adh
 miR-800 
 949690_adh
 miR-239b 
 miR-238 
 miR-794 
 2103433_mas
 miR-227 
 lin-4 
 964568_mas
 miR-78 
 miR-1817 
 miR-1834 
 327617_adh
 miR-246 
 miR-85 
 miR-359 
 miR-240 
 miR-77 
 miR-798 
 miR-786 
 1533251_adh
 miR-237 
 miR-799 
 miR-65 
 miR-64 

 E
m

b
 L

1
 L

2
 L

3
 L

4
 y

A
d

 y
A

d
 

Male enriched

 95481_mas
 miR-254 
 miR-355 
 1619758_adh
 miR-87 
 miR-2210
 2154356_adh
 540532_mas
 miR-1018 
 miR-2209c
 663452_mas
 467565_mas
 1911316_mas
 1883591_mas
 miR-2211
 1742956_mas
 1467045_mas
 miR-360 
 miR-2208b-5p
 miR-2209a
 miR-235 
 miR-1831 
 miR-2208b-3p
 miR-789 
 miR-358 
 miR-357 
 724701_mas
 miR-2212
 miR-784 
 miR-239a 
 miR-75 
 miR-392 
 miR-47 
 miR-2208a
 miR-2220
 miR-796 
 miR-83 
 miR-86 
 miR-57 
 1973091_adh
 miR-251 
 miR-252 
 miR-90 
 miR-253 
 miR-71 
 miR-785 
 miR-1819 
 miR-241 
 miR-59 
 miR-82 
 miR-81 
 let-7 
 miR-48 
 miR-243 
 miR-34 
 miR-84 
 miR-80 
 miR-70 



http://genomebiology.com/2009/10/5/R54 Genome Biology 2009,     Volume 10, Issue 5, Article R54       Kato et al. R54.10
21U-RNAs. Although 21U-RNAs generally share little
sequence identity other than the uracil at their 5' termini and
specific localization on chromosome IV, it has been shown
that the sequences upstream of 21U-RNAs contain an 8-
nucleotide core consensus motif, CTGTTTCA, centered
within a larger motif [23]. About 14% (562), of our 21nt-U-
RNAs on chromosome IV had a complete consensus motif in
their upstream larger motif (the 43-nucleotide regions, -20 to
-63 bp upstream from 5' termini of each 21nt-U-RNA, were
analyzed.), whereas only a few 21nt-U-RNAs on other chro-
mosomes had this 8-nucleotide motif (Additional data file
10). This result is consistent with the chromosome IV-biased
localization of known piRNAs/21U-RNAs. We therefore
believe that the 21nt-U-RNAs reads that map to chromosome
IV and contain the core motif are indeed new piRNA/21U-
RNAs (Additional data file 11; note that 10 of the 562 novel
21U-RNAs (21nt-U-RNAs) map to multiple loci on chromo-
some IV).

While we have not shown that these RNAs associate with Piwi
proteins like PRG-1, we suspect that these are very likely to be
novel piRNAs/21U-RNAs for several reasons: first, these
RNAs are abundantly expressed in the L4 and young adult
stages (Additional data file 12; consistent with known 21U-

RNAs); second, they are transcribed from the same two dis-
tinct regions of chromosome IV as known 21U-RNAs (Addi-
tional data file 12); third, they contain the core motif
associated with bone fide 21U-RNAs; and fourth, most of
them partially overlap with known or other novel 21U-RNAs
(see below). Also, approximately 8% of these novel 21U-RNAs
were detectable in other libraries obtained by 454 sequencing
from different biological sources (ADL and FS, unpublished
result).

Identification of larger reads corresponding to piRNAs/
21U-RNAs
Of the 562 novel piRNAs/21U-RNAs we identified, 438 par-
tially overlap other 21U-RNAs; either of their termini is
located within 10 bp of another 21U-RNA terminus (although
not separated by 10 nucleotides as in the case of Drosophila
piRNAs; Figure 10a; Additional data file 11). Note also that
approximately 43% of the 21U-RNAs on chromosome IV
recently reported in Batista et al. [25] partially overlap (Fig-
ure 10a; Additional data file 9 - reads that overlap other 21U-
RNAs are marked with a dagger). Interestingly, we noticed
longer sequence reads in our libraries that encompassed
mature 21U-RNAs (Figure 10a; a list of all longer transcripts
detected is available in Additional data file 13). In total, 910

Expression of piRNAs/21U-RNAs in hermaphrodite and male germlinesFigure 8
Expression of piRNAs/21U-RNAs in hermaphrodite and male germlines. The vertical and horizontal axes represent the number of reads of 21U-RNAs and 
their position on chromosome IV, respectively. Note the significantly higher expression of 21U-RNAs in wild-type N2 hermaphrodites compared to males 
at the young adult (yAdult) stage. The number of 21U-RNA reads was plotted after normalizing to the total number of reads that matched to the C. elegans 
genome in each sample.
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21U-RNAs were found in such longer reads, which corre-
sponds to about 6% of the previously annotated and novel
21U-RNAs. These 21U-RNAs are marked with an asterisk in
Additional data files 9 and 11. Similar longer reads were also
detected in other small RNA libraries from 454 sequencing
(ADL and FS, unpublished result), suggesting that they are
biological products but not artifacts of Solexa sequencing.
One possible explanation for the presence of longer 21U-RNA
transcripts could be that they are by-products due to errors in
21U-RNA biogenesis - for example, read-through transcrip-
tion and/or aberrant processing. For example, in the case of
miRNAs, we also detected various larger sequence variants in
our libraries (Additional data file 3). Alternatively, they may
represent intermediates in 21U-RNA biogenesis. For exam-
ple, original 21U-RNA transcripts may be longer in length and
are processed to 21 nucleotides by an unknown mechanism.
Indeed, in all cases we examined, the most abundant
sequences were 21 nucleotides in length (Figure 10a; Addi-
tional data file 13), and a significant portion of these longer

transcripts had an extension to their 3' side rather than the 5'
side (Figure 10b). Additionally, the production of these longer
21U-RNA reads also appeared to be temporally regulated dur-
ing development; they were abundant at the later stages of
development, as in the case of 21-nucleotide mature 21U-
RNAs (Figure 10c). Although the mechanism controlling 21U-
RNA expression is still not clear, these observations lead us to
speculate that precursor 21U-RNA transcripts are longer in
length.

Conclusions
Our analysis reveals extensive regulation of small, non-cod-
ing RNAs during development of C. elegans hermaphrodites
and in males, and suggests that these RNAs are involved in
developmental processes. Our results also illustrate the
extreme diversity of miRNA and piRNA expression in C. ele-
gans. In addition, our deep sequencing approach revealed the
presence of tens more miRNAs and hundreds more piRNAs

Characterization of 21nt-U-RNA readsFigure 9
Characterization of 21nt-U-RNA reads. (a) Proportion of 21nt-U-RNA reads in each chromosome (some map to multiple loci; details are shown in 
Additional data file 10). (b) The expression pattern of 21nt-U-RNA reads on each chromosome. Axes are as in Figure 8.
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than were previously known. Since the information content of
the genome is more complex than previously imagined - for
example, most of both strands of the genome appear to be
transcribed in human [47], and approximately 80% of tran-
scripts map to unannotated regions [48] - it seems likely that
additional non-coding RNA genes remain to be discovered
and characterized in other animals as well. For instance, in
our study, numerous sequence variants of miRNAs were
found corresponding to their hairpin sequences, which
include many 'star sequences' (Additional data file 3). Identi-
fication of further transcripts and their biological roles will
lead to a better understanding of animal biology and will shed
light on control of gene expression during development and
disease.

Materials and methods
C. elegans strains and small RNA purification
Wild-type N2 strains were cultured under standard condi-
tions [49] at 20°C and used to prepare RNAs from each devel-
opmental stage (time after stage L1: mid-L1 (4 h), mid-L2 (14
h), mid-L3 (25 h), mid-L4 (36 h); and young adult (48 h).
RNAs enriched for small RNA species (less than 200 nucle-
otides) were prepared using the mirVana miRNA Isolation
kit (Ambion/Applied Biosystems, Austin, TX, USA) with the
small RNA enrichment procedure. For library preparation
from young adult males, dpy-28 (y1);him-8 (e1489) double
mutants cultured at 23°C were used to obtain male popula-
tions after backcrossing six times to wild-type N2, and RNAs
were purified at 40 h after stage L1. him-8 (e1489) mutants
produce XO males and XXX hermaphrodites at 37% and 6%

Characterization of the longer transcripts of 21U-RNAsFigure 10
Characterization of the longer transcripts of 21U-RNAs. (a) A view of the longer and overlapping 21U-RNA reads. The number of reads shown in this 
figure was based on the computational output of the SOAP program [52] followed by removal of redundant sequences, and samples of all six 
developmental stages (embryo to young adult of hermaphrodites) were used as the input. The core consensus motif 'CTGTTTCA' and the mature 21U-
RNA sequences are capitalized and highlighted in blue and red, respectively. (b) The proportion of longer 21U-RNAs of different length. The number of 
reads of each transcript was reflected in the result; for example, the length of an extension in a longer 21U-RNA with 3 bp extension to its 3' side and with 
4 reads was calculated as 12 (3 × 4). (c) The abundance of longer 21U-RNAs during development. The left and right vertical axes represent the number of 
longer 21U-RNA reads (22 to 26 nucleotides) and that of mature 21U-RNAs with longer transcripts detected, respectively.
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frequency, respectively, in addition to XX hermaphrodites
[50]. However, XX and XXX hermaphrodites can not survive
at 23°C in the dpy-28 (y1) background [51], and the resulting
surviving population of dpy-28;him-8 double mutants is
almost all XO males at this temperature. For validating novel
miRNA expression, total RNAs were isolated from N2 wild-
type worms, alg-1 (gk214) mutants and N2 wild-type worms
on both L4440 (empty vector) and alg-1 RNAi at the young
adult stage.

cDNA library preparation and sequencing
cDNA libraries for small RNAs were made from 10 μg of RNA
from an enriched small RNA fraction using the DGE-Small
RNA Sample Prep Kit (Illumina, San Diego, CA, USA) accord-
ing to the manufacturer's instructions. The same amount of
cDNA was sequenced on a Genetic Analyzer from Illumina.
The data from the miRNA reads we mentioned above were
uploaded to the Genome Expression Omnibus database
together with the raw Solexa sequence results
[GEO:GSE13339]. The 66 novel miRNA candidates and the
552 unique piRNAs/21U-RNAs have GenBank accession
numbers (shown in Additional data files 7 and 11).

Quantitative RT-PCR
The expression of some of the known miRNAs were con-
firmed by quantitative RT-PCR using a TaqMan Small RNA
Assay (Applied Biosystems, Foster City, CA, USA) with the
RNAs at concentrations of 0.4 ng/μl (enriched small RNAs)
and 2 ng/μl (total RNAs), according to the manufacture's
instruction. For validating the expression of novel miRNA
candidates, 10 ng/μl of total RNAs was used, and the results
were normalized to the expression level of U18. The results
were further confirmed using independently prepared RNA
samples.

Computational data analysis
The number of sequence reads for miRNAs and 21U-RNAs
was assessed from the raw sequence data from Solexa
sequencing using perfect sequence matching to known miR-
NAs (miRBase release 11.0) and 21U-RNAs [25] (Additional
data files 2, 4 and 9). For examining the proportion of each
non-coding RNA species, including rRNAs, tRNAs, snRNAs,
and snoRNAs, sequence reads that matched to the C. elegans
genome (WS190) were extracted by the SOAP program (a
maximum of 2 bp mismatches were allowed in the alignment)
[52], and the number of sequence reads perfectly correspond-
ing to each RNA species was determined using BLASTN
against a database of non-coding RNAs from WormBase [53].
To compare the differential expression of small RNAs across
development, the number of reads in each sample was nor-
malized to the total number of reads that matched to the C.
elegans genome in each sample. The Cluster 3.0 program was
used to cluster the miRNAs (after normalizing each gene's
expression vector to have a 2-norm of 1). The Java TreeView
program [54] was then used to visualize these clusters. The
miRDeep program [38] was used for finding novel miRNA

candidates, and the RNA fold program was used for predict-
ing secondary structure of primary miRNA transcripts of
novel miRNAs.
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L: larval stage; miRNA: microRNA; piRNA: Piwi-interacting
RNA; RNAi: RNA interference.
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Additional data files
The following additional data are available with the online
version of this paper: the total number of sequence reads and
number of reads of each non-coding RNA species in each
sample (Additional data file 1); raw data showing the number
of miRNA reads in each developmental stage of hermaphro-
dites and in young adult males (Additional data file 2);
sequence variants expressed from miRNA hairpins (Addi-
tional data file 3); normalized data of the number of miRNA
reads by the total number of reads that matched to the C. ele-
gans genome (Additional data file 4); confirmation of miRNA
expression changes during development of hermaphrodites
and in young adult males using quantitative RT-PCR (Addi-
tional data file 5); the correlation between miRNA expression
levels in males and hermaphrodites (Additional data file 6); a
list of novel miRNA candidates (Additional data file 7); the
number of reads of novel miRNA candidates in each sample
(Additional data file 8); the number of known 21U-RNA reads
in each sample (Additional data file 9); sequence of 21nt-U-
RNA reads and their chromosomal position (Additional data
file 10); sequence of novel 21U-RNAs (Additional data file 11);
changes in expression of novel 21U-RNAs during develop-
ment and their position on chromosome IV (Additional data
file 12); a list of all 21U-RNA longer transcripts detected in
our library (Additional data file 13).
Additional data file 1Total number of sequence reads and number of reads of each non-coding RNA species in each sampleThe number of each RNA species that satisfies the following condi-tions was counted after searching by the BLASTN program in the pool of sequence reads that aligned to the C. elegans genome; the length of the query is equal to that of the match and the percentage of identical bases in the match is 100%.Click here for fileAdditional data file 2Raw data showing the number of miRNA reads in each develop-mental stage of hermaphrodites and in young adult malesRaw data showing the number of miRNA reads in each develop-mental stage of hermaphrodites and in young adult males.Click here for fileAdditional data file 3Sequence variants expressed from miRNA hairpinsThe SOAP-processed aligned reads were searched against miRNA hairpin sequences. Each number represents the total number of reads detected in all developmental stages of hermaphrodites and young adult males. Annotated mature miRNAs are marked with a hatch mark and highlighted in red, and annotated novel miRNAs we report here are colored in green.Click here for fileAdditional data file 4Normalized data of the number of miRNA reads by the total number of reads that matched to the C. elegans genomeThe names of miRNAs with more than a fivefold difference in the number of reads at some point during development and/or between genders are labeled in red and their numbers of reads are compared. The miRNAs with lower numbers of reads (less than ten in the sum of reads in any two stages compared) were not high-lighted since their significant changes are not clear due to extremely low reads.Click here for fileAdditional data file 5Confirmation of miRNA expression changes during development of hermaphrodites and in young adult males using quantitative RT-PCRVertical axis indicates the relative expression level. The data from both RT-PCR and Solexa sequencing were standardized to the expression level in the embryonic sample as 1. The results were fur-ther confirmed using independently prepared RNAs.Click here for fileAdditional data file 6The correlation between miRNA expression levels in males and hermaphrodites(a) The correlation diagram of all known miRNAs between males and hermaphrodites. (b) The correlation diagram of miRNAs with relatively low abundance (less than 20 × 104 reads in males, yellow-colored area in (a)). (c) Correlation diagram of miRNAs with lower abundance ((less than 10 × 103 reads in males, red-colored area in (a)).Click here for fileAdditional data file 7Novel miRNA candidatesThe numbers of reads were obtained from all developmental stages of hermaphrodites and young adult males. The bona fide novel RNAs with transcripts from their 'star sequence' are highlighted in red. 'Genomically clustered' is defined here as localization within 1.0 kb on the same chromosome.Click here for fileAdditional data file 8Number of reads of novel miRNA candidates in each sampleData were normalized by the total number of reads that matched to the C. elegans genome. The miRNAs and their number of reads were highlighted in red as mentioned in the legend for Additional data file 4.Click here for fileAdditional data file 9Number of known 21U-RNA reads in each sample21U-RNAs in which we found larger transcripts and overlapping ones within 10 bp of other 21U-RNAs, including novel ones we found, are marked with an asterisk and a dagger, respectively.Click here for fileAdditional data file 10Sequences of 21nt-U-RNA reads and their chromosomal positionsThe presence of the core consensus motif CTGTTTCA was exam-ined in their possible larger motif regions (-20 to -63 bp upstream of the 5' terminus of each 21nt-U-RNA). This list also contains the novel 21U-RNAs shown in Additional data file 11.Click here for fileAdditional data file 11Sequences of novel 21U-RNAsA larger motif of novel 21U-RNAs represents the region -20 to -63 bp upstream of the 5' terminus of each novel 21U-RNA. 21U-RNAs in which we found larger transcripts and overlapping ones within 10 bp of other 21U-RNAs are marked with an asterisk and a dagger, respectively.Click here for fileAdditional data file 12Changes in expression of novel 21U-RNAs during development and their position on chromosome IV(a) Number of novel 21U-RNA reads was plotted after normalizing. (b) Total number of reads shown in (a) that mapped on chromo-some IV.Click here for fileAdditional data file 13All longer 21U-RNA transcripts detected in our libraryThe number of reads was obtained from computational output of the SOAP program followed by removal of redundant sequences, and samples of all six developmental stages (embryo to young adult of hermaphrodites) were used as the input. The sequences of longer transcripts, their nucleotide lengths and the number of reads are highlighted in red.Click here for file
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