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Abstract

Background: Mitochondria are highly complex, membrane-enclosed organelles that are essential
to the eukaryotic cell. The experimental elucidation of organellar proteomes combined with the
sequencing of complete genomes allows us to trace the evolution of the mitochondrial proteome.

Results: We present a systematic analysis of the evolution of mitochondria via gene duplication in
the human lineage. The most common duplications are intra-mitochondrial, in which the ancestral
gene and the daughter genes encode mitochondrial proteins. These duplications significantly
expanded carbohydrate metabolism, the protein import machinery and the calcium regulation of
mitochondrial activity. The second most prevalent duplication, inter-compartmental, extended the
catalytic as well as the RNA processing repertoire by the novel mitochondrial localization of the
protein encoded by one of the daughter genes. Evaluation of the phylogenetic distribution of N-
terminal targeting signals suggests a prompt gain of the novel localization after inter-compartmental
duplication. Relocalized duplicates are more often expressed in a tissue-specific manner relative to
intra-mitochondrial duplicates and mitochondrial proteins in general. In a number of cases, inter-
compartmental duplications can be observed in parallel in yeast and human lineages leading to the
convergent evolution of subcellular compartments.

Conclusions: One-to-one human-yeast orthologs are typically restricted to their ancestral
subcellular localization. Gene duplication relaxes this constraint on the cellular location, allowing
nascent proteins to be relocalized to other compartments. We estimate that the mitochondrial
proteome expanded at least 50% since the common ancestor of human and yeast.

Background

Mitochondria, next to their widely recognized function in res-
piration and ATP production, also play a role in key cellular
processes such as lipid metabolism, synthesis of steroid hor-
mones, regulation of apoptosis [1] and calcium signaling [2].
Instrumental to mitochondrial function is the proteome of

the organelle, consisting of an estimated 1,500 proteins in
human [3]. Recently, owing to advanced proteomics tech-
niques, major progress has been made in elucidating the con-
tent of the mammalian mitochondrial proteome. The
integration of many types of experimental data and computa-
tional predictions resulted in a list of mitochondrial proteins
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approaching saturation, with a reasonably small false discov-
ery rate of 10% [4]. At the same time analyses of the list of pro-
teins revealed that only a minor fraction of the present day
mitochondrial proteome, less than 20%, shows convincing
evidence of having originated from the alpha-proteobacterial
ancestor [5-7]. This brings the origin of the large majority of
mitochondrial proteins into question and suggests that other
cellular compartments may have been a source for new mito-
chondrial proteins. We can examine this hypothesis by com-
paring organellar proteomes between species.

Detailed, large-scale studies of the inter-species evolution of
subcellular localization have begun only recently and have
shown conservation between Schizosaccharomyces pombe
and Saccharomyces cerevisiae [8]. There are a number of
specific discoveries that indicate that present-day localiza-
tions for mitochondrial enzymes and complete pathways do
not necessarily reflect their evolutionary origin and there is
evidence for the relocalization of multiple metabolic path-
ways between subcellular compartments. For example, a cit-
rate synthase has been relocalized from mitochondria to the
peroxisome in S. cerevisiae [9], and most of the proteins that
were derived from the ancestor of the mitochondria are not
mitochondrial in present day species [6]. It has been observed
that Frataxin and Isu1P, which are involved in the iron-sulfur
cluster assembly in mitochondria, are localized mainly in the
cytosol of the microsporidian species Trachipleistophora
hominis [10]. After the whole genome duplication event in the
ancestor of S. cerevisiae a great majority of duplicated genes
were purged from the genome [11]. Of those retained, at least
25% functionally diversified via a localization change, altering
their amino acid composition, interaction partners and level
of expression [12]. But what are the quantitative trends in the
evolution of mitochondria in the lineage leading to human?

The composition of the human and mammalian mitochon-
drial proteome has received great attention in the past years
[13-17]. Most recently, probabilistic integrative strategies,
which are less plagued with false discoveries specific to any
single approach, have allowed the estimation of the mamma-
lian mitochondrial proteome at a level nearing saturation [4].
Next to the human mitochondrion, a wealth of data is availa-
ble specifically on the localization of mitochondrial proteins
in various species: S. cerevisiae [18,19], Arabidopsis thaliana
[20] and Tetrahymena thermophtla [21]. More than 500 pro-
teins have been found in the mitochondria of the ciliate T.
thermophila and the estimate for yeast reaches approxi-
mately 1,000 proteins [19]. The mammalian mitochondrion
is larger still and leads to the question: which biological proc-
esses and molecular functions of proteins were introduced to
the organelle? Furthermore, how and when were these inte-
grated? We examine the evolutionary history of gene families
that contain mitochondrial proteins to answer these ques-
tions.
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The phylogenomic evidence indicates that the mitochondrial
proteome expanded not only by duplications of mitochon-
drial proteins, but also by relocalizations of paralogs to the
organelle, when a copy of a non-mitochondrial protein
became targeted to the mitochondrion. We also found that
the dates of the appearance of mitochondrial targeting signals
indicate that the relocalization of proteins followed promptly
after gene duplication.

Results

Human nuclear-encoded mitochondrial proteins were col-
lected from MitoCarta, the state-of-the-art compendium for
the mammalian mitochondrial proteome, created using a
combination of experimental identification, bioinformatics
analysis, and literature curation [4]. The mitochondrial pro-
teome of S. cerevisiae, containing published experimental
data [18,22-24] was obtained from the MitoP2 database [25]
together with the most comprehensive yeast mitochondrial
proteome dataset to date [19]. For the dataset of non-mito-
chondrial proteins required for our analysis, we used proteins
known to localize to 1 of 24 other subcellular compartments
(see Materials and methods for details).

Conservation of mitochondrial localization among
one-to-one orthologs

We first ask to what extent mitochondrial localization is con-
served between man and yeast for unambiguous one-to-one
orthologs that have not been duplicated since the common
ancestor of the two species. Mitochondrial localization
appears to be very well conserved, with a few notable excep-
tions. From 143 one-to-one orthologous pairs localized to
mitochondria in either of the two species, we find that 124
proteins (87%) are found in this organelle in both species and
only 19 proteins localize to mitochondria in one species, but
not the other (13%; Table S1 in Additional data file 1). Of the
19 differentially localized proteins, 17 are localized to mito-
chondria in human and not in yeast, with experimental evi-
dence supporting the localization for all but one protein
(Table S1 in Additional data file 1). The two remaining yeast
proteins (SEN2 and DNM1), unlike the 17 human mitochon-
drial proteins, do not enter the yeast mitochondrion, but
instead attach to the outer membrane [26,27]. We can infer
the ancestral localization of the human mitochondrial pro-
teins by using the A. thaliana mitochondrial proteome. Of all
143 unambiguous human-yeast orthologs, 27 proteins were
found in plant mitochondria in a liquid chromatography-tan-
dem mass spectrometry study [20], a number that includes
only 1 of the 19 differentially localized proteins. With this lack
of corroborated mitochondrial localization in the outgroup
species, we propose that a gain of mitochondrial localization
in the human lineage, rather than a loss in the yeast lineage,
has been the main cause of this disparate localization.

A search for a discernible functional coherence among the
retargeted proteins revealed the relocalization of a multi-pro-
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tein functional module in human. Three enzymes participat-
ing in ornithine metabolism can be found in mitochondria in
human and ureotelic mammals, but not in yeast: OTC,
CPSase I and P5CS. Of these, OTC and CPSase I are part of the
urea cycle whose evolutionary relocalization has been
reported extensively [28,29].

At least 8 of the 17 proteins relocalized in human were con-
comitantly found in other subcellular compartments of the
mammalian cell as indicated in the published literature based
on small-scale experiments (Table S2 in Additional data file
1). It should therefore be noted that complete relocalizations
to the mitochondria that also involve the loss of the ancestral
localization are even more rare than proteins that gain mito-
chondrial localization without the loss of the ancestral one.
Apparently, a protein tends to gain a novel localization with-
out losing the ancestral subcellular localization - for example,
by adding a mitochondrial targeting signal to one of its iso-
forms, as in the case of dUTP pyrophosphatase (DUT) and
peroxiredoxin-5 [30,31]. Although interesting in themselves,
these observations emphasize that relocalizations of products
of single copy genes between subcellular compartments are
rare and limited to a relatively small set of cellular functions.

Increase of the human mitochondrial proteome via
intra-mitochondrial protein duplication

Investigations of the subcellular localization of one-to-one
orthologs do not explain the expansion of the mitochondrial
proteome. We therefore examined the evolutionary history of
duplicated genes containing mitochondrial paralogs. We ana-
lyzed eukaryotic gene trees reconciled with the species phyl-
ogeny to identify gene duplications that followed the
divergence of human and yeast (see Materials and methods
for details). We observed two prevailing ways in which gene
duplications contributed to the expansion of the metazoan
mitochondrial proteome (Table 1). In the first mode, 65 dupli-
cations of nuclear genes encoding mitochondrial proteins
gave rise to a set of 118 mitochondrial proteins, with up to four
proteins per family as in the case of pyruvate dehydrogenases
or ADP/ATP translocases (see Table S3 in Additional data file
1 for the list of proteins). With all human paralogs and the
yeast ortholog localized to mitochondria, the ancestral pro-
tein was most likely targeted to this organelle as well, which is
confirmed by the presence of approximately 50% orthologous

Table |
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proteins in plant mitochondria in the study [20]. Figure 1
shows the specific cellular functions performed by intra-mito-
chondrial protein duplications. A Gene Ontology (GO) analy-
sis reveals enrichment of proteins involved in carbohydrate
metabolism ([GO:5975], P < 2e-4) and various components of
transport ([GO:6810], P < 6e-4, amino acid transport, ion
transport and protein transport complexes embedded in the
inner and outer membranes). Additionally, 11 out of 23 cal-
cium ion binding proteins [GO:5509] originate from intra-
mitochondrial duplications (P < 7e-4; see Table S5 in Addi-
tional data file 1 for the list of all categories). These functional
gene classes are significantly overrepresented relative to the
composition of the whole mitochondrial proteome, and there-
fore reflect a specific characteristic of intra-mitochondrial
duplications.

Increase of the human mitochondrial proteome via
inter-compartmental protein duplication

The second most common type of duplication associated with
increasing the mitochondrial proteome is characterized by
human mitochondrial proteins with a human non-mitochon-
drial paralog (Table 1; Table S6 in Additional data file 1). For
those gene families that have a non-mitochondrial ortholog in
yeast, the most parsimonious scenario suggests a non-mito-
chondrial localization in the common ancestor of human and
yeast, and a subsequent gain of mitochondrial localization.
We hypothesized that these proteins can constitute gains of
mitochondrial localization in the human lineage. To validate
this hypothesis, we inspected the localization of plant
orthologs of inter-compartmental duplications, identifying
only two mitochondrial proteins among 29 orthologs in A.
thaliana. This suggests that the majority of mitochondrial
proteins with a non-mitochondrial paralog were ancestrally
non-mitochondrial and represent gains of mitochondrial
localization in the lineage leading to human. A detailed GO
analysis of the entire set of inter-compartmental duplications
reveals enrichment among biological processes responsible
for molecular functions, such as cofactor binding (P < 2e-3,
[GO:48037]), intramolecular oxidoreductase (P < 5e-3,
[GO:16863]), ceramide kinase (P < 4e-4, [GO:1729]), cata-
Iytic activity in general (P < 2e-3, [GO:3824]), but also the
process of 12S rRNA methylation (P < 4e-3, [GO:154]; Table
S7 in Additional data file 1) necessary for the stability of the
small ribosomal subunit [32].

Duplications in gene families with products localized to the mitochondria

Human localization of gene family

Yeast localization of gene family

Number of families Number of human proteins

Mitochondrial Mitochondrial
Non-mitochondrial

Other

Mitochondrial and non-mitochondrial
Other

53 118
26 101
25 55

'Mitochondrial' denotes mitochondrial localization for all genes from this family in a species; 'non-mitochondrial' indicates a known localization to
another subcellular compartment; 'mitochondrial and non-mitochondrial' indicates families with both mitochondrial and non-mitochondrial paralogs.

See also Table S4 in Additional data file | for other duplication classes.
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Contribution of different duplication types to the function of the mitochondria. Classes significantly overrepresented compared to the mitochondrial
proteome are shown. The height of a bar represents the fraction of proteins that is annotated with a specific category. Three datasets are shown: the
whole mitochondrial proteome (MitoCarta proteins [4]; yellow), intra-mitochondrial (blue) and inter-compartmental (red) duplications. Protein functional
classes are defined by GO functional classification [68]. Benjamini and Hochberg false discovery rate correction was used to derive statistically significant
categories. See Tables S5 and S7 in Additional data file | for the full list.
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Figure 2

Timing of gene duplications of mitochondrial proteins. The solid blue line represents duplicating mitochondrial proteins, while the solid red line
corresponds to duplications of genes followed by relocalization of one of the proteins to the mitochondria. The dashed line denotes protein duplications
in other cellular compartments, outside the mitochondria (all proteins are listed in Table S9 in Additional data file I).
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The assumption that we can use the non-mitochondrial local-
ization in yeast as a proxy for the ancestral localization ena-
bles us to recognize protein retargeting events between
mitochondria and other subcellular compartments, including
the nucleus (8 out of 29 proteins; Table S8 in Additional data
file 1), peroxisome (6 out of 29) and endoplasmic reticulum (5
out of 29 proteins). Four of the six peroxisomal relocalization
events encode proteins responsible for fatty acid beta-oxida-
tion in yeast (PCD1, ECI1, DCI1, POX1) and their duplicated
orthologs are found in human mitochondria.

Relocalized proteins often originate from ancient, pre-
metazoan duplications

Using phylogenetic trees of genes that encode the modern
human mitochondrion, we inferred the timing of duplications
(see Materials and methods). Around 80% of duplications are
equally divided between two evolutionary stages: before the
divergence of bilateria and before the divergence of verte-
brates (Figure 2). Intra-mitochondrial gene duplications were
found to be representative of the general duplication trends
across the whole genome (no statistical difference with the
genome-wide duplication trend, P > 0.6 Fisher exact test). By
contrast, the duplications associated with relocalizations to
the mitochondria happened predominantly in the earlier
stage of evolution, before the divergence of bilateria. At this
evolutionary time point they significantly exceed the genome-
wide fraction of duplications (P < 0.003). Following the mas-
sive duplication events before the radiation of vertebrates
(the 2R hypothesis [33,34]; although alternative hypotheses
exist [35]), mitochondrial protein content continued to evolve
as exemplified by the recent duplication of glutamate dehy-
drogenase [36]. And even though the reference mitochondrial
proteome used in this study is derived from mouse tissues,
and therefore the accurate protein localization data for pri-
mate-specific duplications is limited, we encountered 16 gene
duplications of mitochondrial proteins in primates (Table S11
in Additional data file 1).

Table 2
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Relocalizations promptly follow duplications

An unmentioned assumption in the analysis of inter-com-
partmental protein duplications is that the protein relocaliza-
tion followed shortly after the gene duplication. Even though
the pre-sequence mitochondrial import pathway is only one
of four presently recognized means of protein import
(reviewed in [37]), many mitochondrial proteins contain a
short, amino-terminal localization sequence that is indicative
of this pathway. This sequence feature is amenable to compu-
tational methods [38]. For proteins imported to the mito-
chondria via the pre-sequence pathway, the gain of a novel
localization may be caused by the acquisition of an amino-ter-
minal targeting signal. Indeed, when examining all proteins
with a novel mitochondrial localization, a potential mito-
chondrial targeting signal can be identified in 50% of the pro-
teins, five times more often than in their non-mitochondrial
human paralogs (P < 0.00005, Fisher exact test). Assuming
that in these proteins the targeting signal is responsible for
the mitochondrial localization, we examined whether its
appearance in evolution coincides with the gene duplication,
and thus whether the duplication was concomitant with a
gain of mitochondrial localization.

Among human mitochondrial proteins with a non-mitochon-
drial paralog we find 12 proteins with a recognizable short,
amino-terminal targeting sequence. Despite the limitations
of computational targeting sequence prediction (for example,
[20]) in 9 out of the 12 gene families the phylogenetic analysis
indicates that the mitochondrial targeting signal was gained
in the same era as, or shortly after, the gene duplication
(Table 2).

Tissue-specific expression of novel mitochondrial
proteins

Using mass spectrometry total peak intensity data available
for 14 different mouse tissues [4], we performed quantitative
analysis of tissue-specific protein expression by counting the

Dating of gene duplication of mitochondrial proteins compared to time when the mitochondrial targeting signal appeared in the protein

sequence
Paralogs Duplication before the divergence of Targeting signal found in
TOPIMT, TOPI Vertebrates Vertebrates (Gallus gallus)
TFB2M, DIMTIL Animals Animals (Anopheles gambiae)
NUDTS8, NUDT7 Animals Animals (Drosophila melanogaster)

SIRT3, SIRT2 Coelomata to chordata*
HTRA2, HTRAI Vertebrates

PDEI2, CNOT6 Animals

PECI, CDYL Animals

HINT2, HINTI Animals

GOT2, GOTI Animals

Vertebrates (Danio rerio)
Vertebrates (Danio rerio)
Chordates (Ciona intestinalis)
Animals (Caenorhabditis elegans)
Animals (Drosophila melanogaster)
Animals (Drosophila melanogaster)

The names of genes encoding mitochondrial proteins are highlighted in bold. *While species overlap suggests a duplication at the root of chordata,
the species distribution within the SIRT2 and SIRT3 branches suggest an earlier duplication and multiple losses in many evolutionary branches.
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number of tissues in which the protein was detected (specifi-
cally, the number of tissues with log,, peak intensities of at
least 7). A typical mitochondrial protein is abundantly
expressed and detectable in 12 (median value) out of 14 tis-
sues (Table S12 in Additional data file 1). Only proteins that
underwent inter-compartmental duplications are expressed
in significantly fewer tissues (median 5; P < 0.01 using a two-
sided Wilcoxon rank sum test performed pairwise with other
datasets). These novel mitochondrial proteins (proteins that
possess a non-mitochondrial paralog and a non-mitochon-
drial yeast ortholog) more often exhibit a tissue specific
expression pattern with 45% expressed in three tissues or
fewer (compared to the mitochondrial average of 23%), and
are more rarely widely expressed (in more than 10 tissues;
28% novel mitochondrial proteins compared to 55% on aver-
age) (Figure 3).

Subcellular differentiation via independent gene
duplications

While tracing the history of duplications that extend the mito-
chondrial proteome, one can imagine, in the most drastic sce-
nario, that independent duplications in unrelated lineages
with subsequent parallel relocalizations to mitochondria
could lead to a convergent evolution in the mitochondrial
protein content. Several paralogs present this unusual evolu-
tionary pattern (Table 3). For example, branched-chain-
amino-acid aminotransferase underwent duplication at the
root of vertebrates, in addition to an independent event in
yeast as a result of whole genome duplication. In both species
one copy is targeted to the mitochondria (BCAT2 in human),
the other is cytosolic (BCAT1). In the case of this gene family,
the analysis of distant orthologs for the presence/absence of

0.7

0.6

0.5
c
5 0.4
° O Mitochondrial
© 03 proteome
b= M Intra-mitochondrial

M Inter-compartmental
0.2
0.1
0
t<3 4<t<10 t>11
Number of tissues
Figure 3

Expression profiles of mitochondrial proteins across a range of mouse
tissues. The number of tissues with a detectable protein mass-
spectrometry signal (up to 14 tissues investigated in [4]) is shown. The
height of the bar represents the fraction of proteins - of intra-
mitochondrial or inter-compartmental duplication origins - expressed in a
tissue-specific manner (up to three tissues), widely expressed (in more
than ten tissues) or expressed in a moderate number of tissues. Figure S2
in Additional data file | presents the data in more detail.
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the targeting signal sheds light on the likely ancestral locali-
zation. Using MitoProt IT [39] and TargetP [38] the signal can
be detected in the fly sequence as well as Leishmania major
orthologs, suggesting that the ancestral BCAT protein was
part of the mitochondrial proteome in the ancestor of human
and yeast (Figure 4).

The growth of the mitochondrial proteome by gene
duplication

Knowing the homology of proteins with a determined locali-
zation in human and yeast, we reconstructed the (partial)
protein complement of mitochondria of the common ancestor
of human and yeast, comprising circa 200 proteins in total.
Starting with this ancestral proteome, we counted 128 dupli-
cations of mitochondrial proteins in the human lineage,
including intra-mitochondrial duplications and proteins
novel to the mitochondria (relocalizations following the
duplication of non-mitochondrial proteins). As not all types
of evolutionary events allow us to easily infer the ancestral
localization, this puts a lower bound on the protein count,
concluding that the metazoan mitochondrion in the human
lineage expanded by 64% (128 out of 200) by means of gene
duplication and relocalization since the evolutionary split
with the yeast lineage (see Materials and methods for details).
These counts are likely to be an underestimate of a real mito-
chondrial proteome expansion, as we disregard proteins
without recognizable orthologs in S. cerevisiae that appeared
in the metazoan lineage.

Discussion and conclusions

Our investigation reveals a dynamic mitochondrial proteome
and paints a picture of a eukaryotic organelle with a func-
tional repertoire evolving by gene duplication. In the absence
of gene duplication, we find little room for functional diversi-
fication of the mitochondrial proteome by relocalization of
proteins. The subcellular localization of proteins that did not
duplicate since the divergence of human and yeast is almost
always conserved in evolution, with a few notable exceptions.
In the presence of duplication events the mitochondrion
expanded via two major modes. In the first, more conserva-
tive mode, intra-mitochondrial duplications expanded the
mitochondrial proteome by duplication of proteins that were
already localized to mitochondria. In the second and a more
radical mode of proteome growth, inter-compartmental
duplications expanded the metazoan and human mitochon-
drial proteome by the duplication of non-mitochondrial pro-
teins and redirecting the newly arisen gene products to the
mitochondria.

The two modes of proteome expansion comprise different
functional protein classes. Duplications of genes responsible
for carbohydrate metabolism, calcium ion binding and vari-
ous forms of transport appear to be specific to intra-mito-
chondrial protein duplications, whereas cofactor binding,
intramolecular oxidoreductases, ceramide kinase and rRNA

Genome Biology 2009, 10:R135
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Independent duplications and parallel relocalizations in the human and yeast lineages have happened multiple times during evolution

Human

Yeast

Non-mitochondrial

Mitochondrial Non-mitochondrial

Family Mitochondrial
Thioredoxins TXN, TXN2
Glutaredoxins GLRX2
Isocitrate dehydrogenases [NADP] IDH2
Branched-chain-amino-acid aminotransferases BCAT2

Serine hydroxymethyltransferases SHMT2

TXNDC2 TRX3 TRXI, TRX2

GLRX, GLRXL GRX2 GRXI (nucleus)

IDHI IDPI IDP2, IDP3 (peroxisome)
BCATI BATI BAT2

SHMTI SHMI SHM2

Rows show proteins targeted to mitochondria and their paralogs targeted to other subcellular compartments in both human and yeast. Non-
mitochondrial homologs (both human and yeast) are cytosolic if not indicated otherwise.

methylation functions are more often associated with dupli-
cates that have novel mitochondrial localization.

Intra-mitochondrial duplications that expanded the reper-
toire of transport proteins are exemplified by two duplica-
tions of TIMMS8A/B and TIMM17A/B proteins. Expression of
both paralogs leads to distinct variants of the intermembrane
complexes TIMM8-TIMM13 and Tim23 embedded in the

inner membrane [40-42] (Additional data file 1). The Pyru-
vate dehydrogenase (PDH) complex, which participates in
carbohydrate metabolism (a functional class significantly
enriched among intra-mitochondrial duplications), under-
went intra-mitochondrial duplications at various points in
evolution (E1-beta subunit duplicated before the divergence
of bilateria; E2 subunit duplicated before the divergence of
chordates; E1-alpha subunit duplicated before the divergence

mitochondrial

I—x— BAT2-sc

(BCAT-Im ;

100
(a) @
89 60
100 @CAT2-mD
85
LEBCATme
96 x BCAT1-hs
BCAT1-dr
BCAT1-hs -MKDCSNG- - - - - - - C SAECTIGEGGSK EV VGIFKAKDE | VIlPAT | [ZK EKIPDPNN - [EVFGT V/F MLIMVEWS S E FGW
BCAT2-hs - YYD AN TR A S SISFKAADLQILEMTQKPHKKPGPGEP LV FGKRF MLMVEWN - Bk Gw
(b) BAT1-sc - - IRTEFIWRANA TIGAP LDA SKILK IFIRNPNP- SKPRPNEELVFGQT F MLT | PWSAK EGW
=3 7 MT LAPLDASKVKIITTTQHA- SKPKPNSELVFGKISF ML AI A EKGW
BCAT-Im ML L sRRWHE QA SAARGERAPVVEFTAAALTKELVADPPPLP- PMKGVAFGT LETPHMY | IDEN- BGRW

Figure 4

Evolution of mitochondrial localization for the branched-chain-amino-acid aminotransferases family. (a) Gene tree generated by PhyML [70] for
vertebrates, yeast and outgroup species that speciated before duplication events. Bootstrap values (100 repetitions) are shown on the internal branches.
Proteins surrounded by an oval are localized to mitochondria; loss of the mitochondrial localization is marked by a cross. (b) Clustal W [71] alignment of
the amino-terminal region of orthologs. The predicted targeting sequences are highlighted in blue. Abbreviations: hs. Homo sapiens; mm, Mus musculus; dm,

Drosophila melanogaster; dr, Dano rerio; Im, L. major; sc, S. cerevisiae.
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of eutheria). The duplication pattern of post-translational
regulators of the PDH complex differs from that of the com-
plex itself. The inactivating phosphorylation of the PDH com-
plex is carried out by four paralogs of PDH kinase, and all
duplication events occurred before the divergence of the ver-
tebrates. Prior to the catalytic activation, PDH must be
dephosphorylated by one of the two paralogous proteins:
PDP1 (PPM2C) and PDP2. PDP1, in contrast to its paralog, is
activated by calcium ions and, therefore, might mediate the
effects of calcium-mobilizing hormones [43]. It is difficult to
establish the evolutionary origin of a domain responsible for
the binding with Ca2+, as the binding site is created upon the
formation of a complex with the E2 subunit of the PDH com-
plex and requires the lipoyl groups of E2 [44]. Nevertheless,
the calcium-dependence of PDP1 is consistent with a trend
present in mitochondrial proteins. We identify duplications
of Ca2+-binding mitochondrial solute carriers [45], as well as
proteins responsible for calcium-sensitive mitochondrial
trafficking along microtubules [46,47]. Overall, 11 out of 23 of
the calcium ion binding proteins originate from intra-mito-
chondrial duplications that occurred at the root of vertebrates
(P < 7e-4, [GO:5509]).

In general, it appears that the regulation of cellular complexes
is more evolutionarily recent than the complexes they control.
That the duplications of the PDH complex occurred before
the vertebral duplications of their regulators, kinases and
phosphatases, is not a unique case. Also, the soluble mito-
chondrial matrix deacetylase SIRT3 has a relatively recent
origin, and was shown to augment Complex I activity by bind-
ing with the 39 kDa subunit of Complex I, NDUFAg [48]. It is
known that the growth of many mitochondrial protein com-
plexes occurred early in evolution, with mitochondrial Com-
plex I and the mitochondrial ribosome expanding
significantly at the root of eukaryotes [49-51]. Interestingly,
regulators of activity of the complexes via phosphorylation
and dephosphorylation (as for PDH) or deacetylation (Com-
plex I) did not appear concomitantly in evolution and were
not adapted from existing regulators, but emerged long after
the metazoan diversification.

When analyzing duplications of proteins that expanded the
mitochondrial proteome, it would be interesting to know the
selective forces driving duplication events. We show that the
novel mitochondrial localization that is detectable at the
sequence level has been gained rapidly after the duplication
event. On the one hand, we know that only a small fraction of
duplicated genes is retained in the genome in the long term,
and this holds also for large-scale genomic events such as
whole genome duplication [52]. On the other hand, the acqui-
sition of an amino-terminal targeting signal coinciding with
the gene duplication event could provide the rationale for the
retention of the duplicated gene. As the change of localization
alters the role of a protein in the cell, it could be accompanied
by further functional diversification. This diversification may
be extensive, even for relatively recent duplications, as in the
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case of HTRA2 protease (Table 2). The membrane-bound
HTRAZ2, unlike its secreted paralogs, promotes or induces cell
apoptosis through caspase-dependent and -independent
pathways [53] and its loss of function mutations cause neuro-
degeneration and Parkinson's disease [54].

Analysis of the timing of duplication events reveals that the
majority of inter-compartmental duplications occurred fur-
ther back in time than the genomic trend would suggest and
that they contributed little to the expansion of the mitochon-
drial proteome in the vertebrate lineage. The fact that most
inter-compartmental duplications occurred before animals
diverged suggests that cellular differentiation is partly
responsible for inter-compartmental duplications. We pro-
pose that the inter-compartmental duplicated proteins could
have helped to satisfy the variable energy demands that
emerging metazoan tissues presented. There is some anecdo-
tal evidence that could support this hypothesis. For example,
the pattern of tissue-specific expression of TOP1MT (Table 2)
has adapted to meet the requirements for higher mitochon-
drial activity in specific organs - for example, skeletal muscle,
heart, and brain [55]. Additionally, we observed that inter-
compartmental duplications/relocalizations are character-
ized by a more narrow, tissue-specific expression than aver-
age mitochondrial proteins (see Table S12 and Figure S2 in
Additional data file 1).

Our quantitative results of the evolution of the mitochondrial
proteome match anecdotal evidence for the role of inter-com-
partmental duplications in the expansion of the proteomes of
other eukaryotic organelles. Some pathways and key enzymes
were known to have duplicated between plastids and other
cellular compartments [56], as observed in the case of sulfate
assimilation and cysteine biosynthesis found in the chloro-
plasts, cytosol and mitochondria of plants [57]. In addition,
the evolutionary history of 12 Calvin cycle enzymes shows
that plant proteins encoded by the nucleus have relocalized to
alternative compartments, regardless of their origin, cyano-
bacterial or otherwise [58].

With 87% of mitochondrial proteins preserving their ances-
tral compartment between human and yeast, a gene duplica-
tion event appears to be a necessary prerequisite to release
the localization constraint, allowing nascent proteins to be
retargeted to distinct compartments. We therefore conclude
that non-mitochondrial protein duplications followed by the
gain of a novel mitochondrial localization comprise a qualita-
tively and quantitatively important mode of expansion of the
mitochondrial proteome.

Materials and methods
Mitochondrial proteomes
Mammalian nuclear-encoded mitochondrial proteins were
downloaded from MitoCarta, the state-of-the-art compen-
dium of the human mitochondrial proteome established
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using combination of experimental identification, bioinfor-
matic analysis, and literature curation [4]. We mapped 1,001
human orthologous proteins onto Ensembl identifiers using
human-mouse ortholog lists from Ensembl v44 (April 2007)
[59] and Mouse Genome Database [60]. For yeast, to assure
specificity of its mitochondrial proteome, a reference set was
downloaded from the MitoP2 database [61]. This set of 545
proteins contains published experimental data based on var-
ious studies [18,22-24] and was subsequently manually
curated. To exclude non-confirmed mitochondrial proteins,
for which a mitochondrial localization was only predicted or
derived from early high-throughput studies, we also required
mitochondrial proteins to be present among 851 proteins
from the most comprehensive dataset of the yeast mitochon-
drial proteome to date [19]. The proteomes selected as
described assure few false positive proteins, but do not com-
pletely cover mitochondrial protein content. Because of the
incomplete coverage, the absence of evidence for mitochon-
drial localization cannot be taken as evidence for the absence
of mitochondrial localization. For the non-mitochondrial
proteins set, only proteins localized to other eukaryotic sub-
cellular compartments were taken into account. This
included proteins explicitly assigned to 24 non-mitochondrial
compartments as annotated in GO of human genes (see Table
S10 in Additional data file 1 for the full list of the compart-
ments), analogous to the non-mitochondrial reference data-
set from [62].

Gene trees of mitochondrial proteins

To take into account the evolutionary history of every protein,
including gene losses and duplications, we performed analy-
sis of individual gene trees reconciled with the species phylog-
eny, as provided by the Ensembl team [59]. The
phylogenomic Ensembl pipeline provides a dataset of gene
trees across multiple species, constructed using both dS, dN
(substitution rates), nucleotide and protein distance meas-
ures [63]. These data, together with the standard species tree,
informs the gene tree construction performed by the Tree-
BeST program [64] (L. Heng, AJ Vilella, E Birney, R Durbin,
in preparation). First, all protein coding genes are queried
using WUBLASTP against the whole protein database. Subse-
quently, a graph of proteins is constructed, with edges created
for best reciprocal hits or when score(P1, P2)/max(score(P1,
P1), score(P2, P2)) >0.33. Connected components of the
graph are extracted and aligned subsequently with MUSCLE
[65]. The back-translated multiple alignment is passed to the
tree constructing program, TreeBeST, together with the spe-
cies tree for the reconciliation and the duplication calls on
internal nodes, as the coverage of genomes in the Ensembl
database provides topologically based timings in order to
label duplication events [63]. All human gene trees with a
mitochondrial gene product (mitochondrial proteins in either
human or yeast) were downloaded from Ensembl database
v44 [59]. When integrating datasets from human and yeast
for 50% human genes and 46% yeast proteins, we did not
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detect homologs in the other species, representing a likely
gene loss or gain in one of these lineages.

Unambiguous one-to-one orthologs between human
and yeast

The trees for gene families were separated at the speciation
branches into opisthokont orthogroups and the number of
paralogs in human and yeast lineages was counted. One-to-
one unambiguous orthologs were represented by trees with a
single gene in both lineages.

Gene duplications

For each gene family of n genes, we infer n-1 duplications,
each duplication corresponding to an internal tree node. The
dating of the duplication was inferred from the analysis of the
tree topology, as annotated by the Ensembl team. We use
rooted trees of homologous genes, where branching points
are labeled with the inferred time of duplication. For exam-
ple, a gene tree ((GeneA, GeneB):Euteleostomi,(GeneC,
GeneD):Euteleostomi):Chordata yields a single chordate
duplication that is followed by two vertebrate duplications.
For the inter-compartmental duplication a divergence time of
a mitochondrial and a closest non-mitochondrial paralog was
inferred from the internal node giving rise to the duplication.
To asses the quality of gene duplication calls, we used the
duplication consistency score [63]. The score measures the
intersection of the number of species post-duplication over
the union; one expects that most duplications should have the
gene persisting in an equally likely manner in subsequent lin-
eages [63]. All of the three duplication datasets (intra-mito-
chondrial, inter-compartmental or duplications outside
mitochondria) had similar, high consistency scores, with
median values of 0.85, 0.86, 0.85, respectively (Figure S1 in
Additional data file 1). The datasets tested with two-sided
Wilcoxon rank sum test do not exhibit statistically significant
differences (P-value > 0.65).

Differential localization

Of the differentially localized one-to-one orthologs, we find 17
proteins localized to mitochondria only in human and 16 of
these are either reference mitochondrial proteins known
from the literature or were experimentally verified in the
Pagliarini et al. study [4]. For families with gene duplications
and differentially localized human paralogs, localization was
predicted computationally for only three mitochondrial pro-
teins, with the remaining proteins validated experimentally
in the Pagliarini et al. study by either green fluorescent pro-
tein marker (4 proteins), proteomics approaches (7 proteins)
or being part of a mammalian mitochondrial reference set
based on the literature curation (15 proteins).

A. thaliana orthologs

Of the one-to-one human-yeast orthologs, 104 possess an
ortholog in plants (determined using the homologene data-
base [66] and 27 were found in mitochondria in Heazlewood
et al. [20]. With regard to intra-mitochondrial duplications,
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47 plant orthologs were found, 23 of which are in the mito-
chondria.

Estimation of the expansion of the mitochondrial proteome

We identified 122 unambiguous one-to-one nuclear encoded
gene products with a reliable mitochondrial localization in
human and yeast (Table S1 in Additional data file 1), with 17
differentially localized orthologs likely to be mitochondrial
gains in the human lineage (see Results). Genes that under-
went duplications originated from at least 66 ancestral
opisthokont genes (for which we can find at least one protein
from the family in mitochondria of both human and yeast;
family counts are 53 + 8 + 4 + 1 from Table S4 in Additional
data file 1, with each family stemming from a single ancestral
gene), or 78 if we add families with uncertain common ances-
try (mitochondrial only in human; an additional 12 families).
This, together with one-to-one orthologs, gives 188 to 200
ancestral proteins. Given the present human mitochondrial
protein compendium, restricted to proteins with an ortholog
in yeast with a known localization, we arrive at 128 to 140
mitochondrial acquisitions in the human lineage. Given 188
to 200 ancestral mitochondrial proteins and 128 to 140 gains
in the metazoan evolutionary branch, we estimate an expan-
sion of the mitochondrial proteome between 64% (128/200)
and 74% (140/188).

Dating mitochondrial relocalization

For the prediction of the amino-terminal targeting signal in
the protein sequences, Target P was used [67] for all known
isoforms of a given gene. It is important to mention that the
pre-sequence analysis programs do not use homology to
known mitochondrial proteins or mitochondria-specific
domains as an indicator of presence/absence of targeting sig-
nal.

Gene Ontology analysis

GO [68] analysis was performed using the BINGO package
[69] using Benjamini and Hochberg false discovery rate cor-
rection; corrected P-values are specified in Additional data
file 1.

Abbreviations
GO: Gene Ontology; PDH: pyruvate dehydrogenase.
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