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Biomarkers for septicemic melioidosis<p>A diagnostic signature for sepsis caused by <it>Burkholderia pseudomallei</it> infection was identified from transcriptional profiling of the blood of septicemia patients.</p>

Abstract

Background: Melioidosis is a severe infectious disease caused by Burkholderia pseudomallei, a
Gram-negative bacillus classified by the National Institute of Allergy and Infectious Diseases
(NIAID) as a category B priority agent. Septicemia is the most common presentation of the disease
with a 40% mortality rate even with appropriate treatments. Better diagnostic tests are therefore
needed to improve therapeutic efficacy and survival rates.

Results: We have used microarray technology to generate genome-wide transcriptional profiles
(>48,000 transcripts) from the whole blood of patients with septicemic melioidosis (n = 32),
patients with sepsis caused by other pathogens (n = 31), and uninfected controls (n = 29).
Unsupervised analyses demonstrated the existence of a whole blood transcriptional signature
distinguishing patients with sepsis from control subjects. The majority of changes observed were
common to both septicemic melioidosis and sepsis caused by other infections, including genes
related to inflammation, interferon-related genes, neutrophils, cytotoxic cells, and T-cells. Finally,
class prediction analysis identified a 37 transcript candidate diagnostic signature that distinguished
melioidosis from sepsis caused by other organisms with 100% accuracy in a training set. This finding
was confirmed in 2 independent validation sets, which gave high prediction accuracies of 78% and
80%, respectively. This signature was significantly enriched in genes coding for products involved in
the MHC class II antigen processing and presentation pathway.

Conclusions: Blood transcriptional patterns distinguish patients with septicemic melioidosis from
patients with sepsis caused by other pathogens. Once confirmed in a large scale trial this diagnostic
signature might constitute the basis of a differential diagnostic assay.
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Background
Melioidosis is an infectious disease caused by the Gram-neg-
ative bacillus Burkholderia pseudomallei. The disease is
endemic in northern Australia, Southeast Asia, and northeast
Thailand, where it is a common cause of community-acquired
sepsis [1,2]. Cases of melioidosis have also been reported
from other regions around the world [3]. In Thailand, the
incidence rate of melioidosis was estimated as 4.4 cases per
100,000 individuals, but melioidosis cases are under-
reported due to a lack of adequate laboratory testing [1,4].
The disease is the leading cause of community-acquired sep-
ticemia in northeast Thailand [5]. The common clinical man-
ifestation of melioidosis at initial presentation is febrile
illness with pneumonia, which makes it difficult to distin-
guish from other infections [1,6]. However, in contrast to
other infections, the majority of melioidosis patients develop
sepsis rapidly after presentation, and the disease has a mor-
tality rate of 40% despite appropriate treatment [6].

Definitive diagnosis requires isolation of B. pseudomallei
from clinical specimens [1,7-9]. However, the rate of positive
cultures is low and it may take up to a week to confirm a
microbiological diagnosis of melioidosis, which can delay the
initiation of appropriate therapy [1,10-12]. Antibody detec-
tion by indirect hemagglutination assay is faster than culture
but lacks sensitivity and specificity, especially when used in
an endemic area since most of the population is seropositive
[1]. Amplification approaches to detect pathogen-specific
genes by PCR have similarly shown variable specificity and
sensitivity [7-9]. Missed or delayed diagnosis may have dire
consequences since several antibiotics commonly used for
Gram-negative septicemia are ineffective against B. pseu-
domallei [1,3,13]. It has been reported that faster diagnosis of
other bloodstream infections permits earlier implementation
of appropriate antimicrobial therapy and reduces mortality
[14]. Animal models support the notion that an earlier diag-
nosis of melioidosis leads to an improved disease outcome,
with increased survival observed when B. pseudomallei-
infected mice are treated with the appropriate antibiotics
within 24 hours post-infection [15]. Thus, there is an urgent
need for improved, rapid diagnostic tests for septicemic
melioidosis and indicators of clinical severity [1,6,10]. Fur-
thermore, B. pseudomallei has been classified as a category B
agent of bioterrorism by the US Centers for Disease Control
and Prevention and the National Institute of Allergy and
Infectious Diseases (NIAID) due to its ability to initiate infec-
tion via aerosol contact; the rapid onset of sepsis following the
development of symptoms and the high mortality rate even
with medical treatment [16]. Taken together, these facts
delineate the importance of developing novel tools for the
rapid and definitive diagnosis of B. pseudomallei infection.

Microarray-based profiling of tumoral tissue has proved
instrumental for the discovery of transcriptional biomarker
signatures in patients with cancer [17]. The immune status of
a patient can be assessed through the profiling of peripheral

blood, which constitutes an accessible source of immune cells
that migrate to and from sites of infection, and are exposed to
pathogen as well as host-derived factors released in the circu-
lation. Furthermore, through the analysis of whole blood it is
possible to measure transcriptional responses caused by dis-
ease with minimal sampling bias or ex vivo manipulation.
The use of gene expression microarrays as a tool to study the
expression profiles of human blood has been reported in sys-
temic autoimmune diseases and infectious diseases, includ-
ing malaria, acute dengue hemorrhagic fever, febrile
respiratory illness, and influenza A virus or bacterial infec-
tions [18-22]. In addition, previous studies have shown that
microarray-based approaches allow researchers to identify
blood expression profiles restricted to sepsis [23-25]. In the
context of the present study, we have used a microarray-
based approach to generate blood transcriptional profiles of
septic patients who were recruited in northeast Thailand.
After establishing a blood signature of sepsis, we developed a
candidate biomarker signature that distinguishes B. pseu-
domallei from other infectious agents causing septicemia.

Results
Patient characteristics
A total of 598 subjects consisting of 29 uninfected controls
and 569 patients diagnosed with sepsis were enrolled in this
study and all subjects were Asian (Figure 1a). Of these 569
patients, 63 had positive blood cultures (32 grew B. pseu-
domallei and 31 grew other organisms) and were thus
selected for microarray analysis. Meanwhile, 29 uninfected
controls recruited in this study were 8 healthy donors, 12
patients with type 2 diabetes (T2D) and 9 patients who had
recovered from melioidosis. Whole blood samples collected
from these 29 uninfected controls and 63 septic patients were
extracted for RNA in 3 separated experiments: the first set
(34 samples) was assigned to a training set used for discovery;
the second set (33 samples) was assigned to a first test set to
independently evaluate the performance of candidate mark-
ers; and the third set (25 samples) was assigned to a second
independent test set for further validation (Figure 1b and
Table 1).

The training set is composed of 34 samples: 24 patients with
sepsis, all with positive blood cultures, including 11 patients
with septicemic melioidosis; 13 patients with sepsis due to
other organisms (1 Acinetobacter baumannii, 2 Corynebac-
terium spp., 3 Candida albicans, 3 Escherichia coli, 1 Salmo-
nella serotype B, 1 Salmonella spp., 1 Staphylococcus aureus,
and 1 non-group A or B Streptococcus); and 10 subjects from
the same endemic area recruited as non-infected controls.
These non-infected controls comprised 5 patients with T2D, a
risk factor for melioidosis, and 5 patients with melioidosis
who have recovered after complete treatment, and been fol-
lowed up for at least 20 weeks without any sign of infection; 3
out of these 5 subjects were diabetic. Demographic, clinical
Genome Biology 2009, 10:R127
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and microbiological data are available in Table 2 and Addi-
tional data file 1.

The first independent test set (test set 1) is composed of 33
samples: 24 patients with sepsis, including 13 patients with
septicemic melioidosis, and 11 patients with sepsis and isola-
tion of other organisms (6 coagulase-negative staphylococci,
1 S. aureus, 1 Streptococcus pneumoniae, 1 Klebsiella pneu-
moniae, 1 Enterococcus spp., and 1 E. coli); and 9 control
samples, including 4 patients who recovered from melioido-
sis, 2 patients with T2D, and 3 healthy donors from the same

endemic area. Demographic, clinical and microbiological
data are available in Table 3 and Additional data file 1.

The second independent test set (test set 2) is composed of 25
samples: 15 patients with sepsis, including 8 patients with
septicemic melioidosis, and 7 patients with sepsis and isola-
tion of other organisms (2 E. coli, 1 S. aureus, 1 Corynebacte-
rium spp., 1 Enterococcus spp., 1 Enterococcus faecium, and
1 Aeromonas hydrophila); and 10 control samples, including
5 patients with T2D and 5 healthy donors. The demographic,

Table 1

Demographic, clinical and microbiological data of 92 subjects

Septicemic melioidosis Other sepsis Recovery Type 2 diabetes Healthy

Training set (n = 34)

Number of subjects 11 13 5 5

Mean age in years (range) 54 (41-70) 56 (37-74) 46 (41-64) 40 (39-68)

Sex (male/female) 7/4 4/9 3/2 1/4

Survivors/non-survivors 6/5 11/2

Organisms (n) B. pseudomallei (11) A. baumannii (1)

Corynebacterium spp. (2)

C. albicans (3)

E. coli (3)

Salmonella serotype B (1)

S. aureus (1)

Salmonella spp. (1)

Non-group A or B Streptococcus 
(1)

Independent test set 1 (n = 33)

Number of subjects 13 11 4 2 3

Mean age in years (range) 50 (18-70) 56 (37-70) 50 (39-64) 49 (48-50) 38 (35-43)

Sex (male/female) 11/2 6/5 3/1 0/2 0/3

Survivors/non-survivors 12/1 6/5

Organisms (n) B. pseudomallei (13) Coagulase-negative staphylococci (6)*

E. coli (1)

Enterococcus spp. (1)

S. aureus (1)

K. pneumoniae (1)

S. pneumoniae (1)

Independent test set 2 (n = 25)

Number of subjects 8 7 5 5

Mean age in years (range) 47 (40-56) 61 (43-81) 57 (50-71) 44 (37-67)

Sex (male/female) 4/4 2/5 0/5 3/2

Survivors/non-survivors 3/5 5/2 5/0 5/0

Organisms (n) B. pseudomallei (8) A. hydrophila (1)†

Corynebacterium spp. (1)

E. coli (2)†

S. aureus (1)

Enterococcus spp. (1)

E. faecium (1)

*Three in six patients were positive in two sets of blood cultures. †Patients were positive in two sets of blood cultures.
Genome Biology 2009, 10:R127
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Subject enrolment and study designFigure 1
Subject enrolment and study design. (a) Recruitment strategy. A total of 598 subjects consisting of 29 uninfected controls and 569 patients diagnosed with 
sepsis were recruited in this study. Of the patients diagnosed with sepsis (569 subjects), only those with positive blood cultures (63 subjects) were 
included for further study. Subjects who had no signs of infection (29 subjects) were also recruited to constitute an uninfected control group, including 
healthy donors, patients diagnosed with T2D, and patients who had recovered from melioidosis. Subjects for this latter group could not be recruited in 
our second validation set. (b) Study design. The diagram depicts the composition of the training and independent test sets. Of 92 subjects enrolled in this 
study, 34 were assigned to the training set, 33 were assigned to the test set 1, and 25 were assigned to the test set 2. T2D, type 2 diabetes.

(a)

(b)
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clinical data and microbiological data are available in Table 4
and Additional data file 1.

All groups were similar in terms of race. There was no statis-
tically significant difference in age among the data sets and
disease status groups (ANOVA overall F test, P-value =
0.0884). There was also no statistically significant difference
in gender among the data sets and disease groups (Fisher's
exact test with Bonferroni correction, all P-values ≥0.274). No
statistically significant differences were found between whole
blood samples collected from patients with septicemic melio-

idosis and patients with sepsis and isolation of other organ-
isms in the training and the two test sets concerning the total
leukocyte, platelet, neutrophil, lymphocyte, and monocyte
blood cell counts (Table S1 in Additional data file 2). Out of 92
subjects, 58 were diagnosed with T2D (63%), a well-docu-
mented risk factor for melioidosis. Of these 58 diabetic sub-
jects, 17 were uninfected controls whereas 41 were septic
patients. Pneumonia was found in 20 patients with melioido-
sis (63%) and in 12 of the septic patients with infections
caused by other organisms (39%). In addition, 4 out of 63
patients with sepsis were immunocompromised, including 2

Table 2

Characteristics of patients in the training set

Sample ID Age (years) Sex Bacterial isolation Antibiotherapy before 
blood collection

Underlying diseases Survival

Other sepsis (n = 13)

I001* 52 Male Streptococcus non-
group A or B

Ceftriaxone - Non-survivor

I002†‡ 52 Female A. baumannii Ceftazidime, bactrim T2D, CRF, lung edema Survivor

I004* ‡ 45 Male Salmonella serotype B Cloxacillin, ceftriaxone T2D, arthritis Survivor

I006* § 37 Male C. albicans Ceftriaxone, sulperazone, 
bactrim

HIV infection, 
tuberculosis

Survivor

I007* 73 Female Corynebacterium spp. - NSAID-induced GI 
bleeding

Non-survivor

I008†¶ 70 Female E. coli Bactrim, ceftazidime T2D Survivor

I009* 52 Female S. aureus Ceftazidime, cloxacillin T2D, knee abscess Survivor

I010†‡¥ 72 Female E. coli Ceftriaxone T2D, CRF Survivor

I011* ¶ 38 Female E. coli - HCV infection Survivor

I012* § 69 Female C. albicans Ceftazidime RF Survivor

I013* 74 Female Corynebacterium spp. Ceftazidime, clarithromycin Chronic heart failure, 
COPD

Survivor

I014* 54 Female Salmonella spp. Ceftriaxone, ceftazidime, 
levofloxacin

T2D, endometrial 
cancer, ITP

Survivor

I015* § 41 Male C. albicans Ceftazidime HIV infection Survivor

Septicemic 
melioidosis (n = 11)

M001* 68 Male B. pseudomallei Ceftazidime, bactrim Chronic heart failure, 
COPD

Non-survivor

M002* 43 Female B. pseudomallei Ceftriaxone, ceftazidime T2D Survivor

M003* 55 Male B. pseudomallei Ceftazidime - Non-survivor

M006* 46 Male B. pseudomallei Ceftriaxone T2D, chirrosis Non-survivor

M007* 50 Male B. pseudomallei Ceftazidime, tazocin Lung cancer Survivor

M008* 70 Female B. pseudomallei Ceftazidime, bactrim T2D Non-survivor

M009* 48 Female B. pseudomallei Sulperazone T2D Survivor

M010* 48 Male B. pseudomallei Ceftriaxone, ceftazidime, 
doxycycline

T2D Survivor

M012* 56 Male B. pseudomallei Sulperazone, bactrim, 
cetazidime

T1D, ARF Survivor

M014* 65 Female B. pseudomallei Cloxacilin, ceftazidime T2D, chirrosis Non-survivor

M015* 41 Male B. pseudomallei Bactrim, ceftazidime - Survivor

*Community-acquired septicemia; †hospital-acquired septicemia;‡mechanical ventilation;§taken immunosuppressive;¶urinary catheterized drugs; 
¥blood transfused. ARF, acute renal failure; COPD, chronic obstructive pulmonary disease; CRF, chronic renal failure; GI, gastrointestinal tract; 
NSAID, non-steroidal anti-inflammatory drug; RF, renal failure; T2D, type 2 diabetes; TP, idiopathic thrombocytopenic purpura.
Genome Biology 2009, 10:R127
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patients under immunosuppressive therapy and 2 patients
with underlying HIV infection.

Blood transcriptional profiles of septic patients and 
healthy or diabetic controls are distinct
We first wanted to determine whether transcriptional profiles
of septicemic patients were distinct from those of healthy
individuals and individuals with T2D. We started by carrying

out unsupervised analyses that consist in exploring molecular
signatures in a dataset without a priori knowledge of sample
phenotype or grouping. Blood profiles from the training data-
set (24 septicemic patients and 10 controls) were first sub-
jected to this analysis. Filters were applied to remove
transcripts that are not detected in at least 10% of all samples
(detection P-value < 0.01), and that are expressed at similar
levels across all conditions, that is, present little deviation

Table 3

Characteristics of patients in the independent test set 1

Sample ID Age (years) Sex Bacterial isolation Antibiotherapy before 
blood collection

Underlying diseases Survival

Other sepsis (n = 11)

I016* † 61 Female Coagulase-negative 
staphylococci

Ceftazidime, bactrim, 
Sulperazole

Hematemesis Survivor

I017* ‡§ 50 Male Coagulase-negative 
staphylococci

Ceftriaxone, ceftazidime, 
doxycycline, cloxacillin

Acute pancreatitis, 
nephrotic syndrome

Survivor

I018§¶¥ 57 Male Coagulase-negative 
staphylococci#

Vancomycin T2D, CRF Survivor

I019¤ 58 Female Staphylococcus aureus Cloxacillin, ceftazidime T2D, wound Survivor

I020¶¥ 66 Female Coagulase-negative 
staphylococci#

Ceftazidime, ceftriaxone T2D, ARF, tuberculosis Non-survivor

I021¶ 54 Female Enterococcus spp. Ceftazidime, cloxacilin T2D, abscess Non-survivor

I022§¶ 37 Male Coagulase-negative 
staphylococci#

Ceftriaxone, ceftazidime T2D, ARF Non-survivor

I023¶¤ 70 Female E. coli Doxycycline, ceftazidime T2D Non-survivor

I024¶¥ 56 Male Coagulase-negative 
staphylococci

Meropenem, ceftazidime T2D, RF Survivor

I025* 50 Male S. pneumoniae Ceftriaxone, meropenem T2D Non-survivor

I026¶ 57 Male K. pneumoniae Ceftriaxone, ceftazidime, 
bactrim

T2D Survivor

Septicemic 
melioidosis (n = 13)

M016¶ 39 Male B. pseudomallei Ceftazidime, bactrim, 
doxycycline

T2D Survivor

M017¶ 52 Female B. pseudomallei Norfloxacin, ceftazolin T2D Survivor

M020¶ 61 Male B. pseudomallei Ceftriaxone, doxycycline, 
ceftazidime

- Survivor

M021¶ 56 Female B. pseudomallei Ceftriaxone, ceftazidime T2D Survivor

M022¶ 18 Male B. pseudomallei Ceftazidime, cactrim T2D Survivor

M023¶ 63 Male B. pseudomallei Bactrim, ceftazidime T2D Survivor

M024¶ 44 Male B. pseudomallei Meropenem T2D, RF Survivor

M025¶ 57 Male B. pseudomallei Ceftazidime T2D Survivor

M026¶ 48 Male B. pseudomallei Ceftazidime, doxycycline, 
bactrim

T2D Survivor

M027¶ 44 Male B. pseudomallei Ceftriaxone, ceftazidime, 
meropenem

ARF Survivor

M028¶ 70 Male B. pseudomallei Ceftazidime, levofloxacin, 
bactrim

T2D Survivor

M029¶ 50 Male B. pseudomallei Ceftriaxone, ceftazidime CRF Non-survivor

M030¶ 44 Male B. pseudomallei Ceftazidime, ceftriazone T2D, tuberculosis Survivor

*Hospital-acquired septicemia;†long hospitalization;‡taken immunosuppressive drugs;§dialysis; ¶community-acquired septicemia; ¥mechanical 
ventilation; ¤wounds. #Positive by two sets of blood cultures. ARF, acute renal failure; CRF, chronic renal failure; RF, renal failure; T2D, type 2 
diabetes.
Genome Biology 2009, 10:R127
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from the median intensity value calculated across all samples
(less than 2-fold and 200 intensity units from the median; see
Materials and method section for details). From a total of
48,701 probes arrayed on the Illumina Hu6 V2 beadchip,
16,400 transcripts passed the detection filter and 2,785 tran-
scripts passed both filters.

This set of 2,785 transcripts was used in an unsupervised
hierarchical clustering analysis where transcripts are ordered
horizontally and samples (conditions) vertically, according to
similarities in expression patterns (Figure 2a). The resulting
heatmap reveals the molecular heterogeneity of this sample
set. The molecular classification obtained through hierarchi-
cal clustering is then compared with phenotypic classification
of the samples: out of the ten uninfected controls, nine sam-
ples were clustered together on a branch of the condition tree
(region R1) that is distinct from that of septicemic patients
(regions R2, R4, and R5). One outlying uninfected control
clustered together with septicemic patients (sample R001 in
region R3). The expression pattern for this outlying sample

appeared nonetheless distinct from that of septicemia and it
was excluded from subsequent class comparison analyses.

We further explored the molecular heterogeneity of this sam-
ple set through principal component analysis (PCA; Figure S1
in Additional data file 2). PCA is a useful tool to reduce the
dimension and complexity of microarray data. The 2,785
most variable transcripts selected above were decomposed
into 7 principal components (PCs). The first 3 major PCs
accounted for 40.1% (PC1), 18.2% (PC2), and 6.2% (PC3) of
the variability observed for these conditions. This three-
dimensional plot confirmed the segregation of uninfected
controls from septicemic patients with the exception of the
same outlying sample (sample R001).

We repeated this analysis for the independent test set 1 (n =
33) using the same 2,785 transcripts previously identified in
the analysis of the training set. Once again, unsupervised
hierarchical clustering revealed distinctive transcriptional
profiles separating uninfected controls (region R6) from
patients with sepsis (regions R8, R9, and R10) (Figure 2b).

Table 4

Characteristics of patients in the independent test set 2

Sample ID Age (years) Sex Bacterial isolation Antibiotherapy before 
blood collection

Underlying diseases Survival

Other sepsis (n = 7)

I027* 64 Female E. coli† Fortum, ceftriaxone UGIB Non-survivor

I028‡ 81 Female Corynebacterium spp. Ceftriaxone, fortum, 
clindamycin

T2D Survivor

I029‡ 74 Female S. aureus Fortum, ceftriaxone, 
tazocin

Asthma, emphysema, 
ARF

Survivor

I031* 48 Male Enterococcus spp. Fortum Urinary tract infection Survivor

I032* 54 Female E. faecium Fortum, tazocin T2D, respiratory failure Non-survivor

I033* 63 Female E. coli† Tazocin, ceftriaxone, 
fortum

T2D, ovarian cancer Survivor

I034* 43 Male A. hydrophila† Tazocin - Survivor

Septicemic melioidosis 
(n = 8)

M031* 49 Male B. pseudomallei Fortum, bactrim, tazocin T2D Non-survivor

M032* 54 Male B. pseudomallei Fortum, doxycycline, 
sulperazone

T2D Non-survivor

M033* 44 Male B. pseudomallei Fortum, sulperazone, 
bactrim, ciprofloxacin

T2D Survivor

M034* 40 Female B. pseudomallei Fortum, bactrim, 
ceftazidime, ceftriaxone

T2D Survivor

M035* 56 Male B. pseudomallei Ceftriaxone, ceftazidime, 
fortum

COPD, T2D Non-survivor

M036* 41 Female B. pseudomallei Ceftriaxone, ceftazidime T2D Non-survivor

M037* 42 Female B. pseudomallei Bactrim, fortum, cloxacillin T2D Survivor

M038* 49 Female B. pseudomallei Ceftriaxone, fortum, 
ceftazidime, levofloxacin

- Non-survivor

*Community-acquired septicemia; ‡hospital-acquired septicemia. †Positive by two sets of blood cultures. ARF, acute renal failure; COPD, chronic 
obstructive pulmonary disease; T2D, type 2 diabetes; UGIB, upper gastrointestinal bleeding.
Genome Biology 2009, 10:R127
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Thus, the results of the unsupervised analysis clearly estab-
lished the existence of a robust blood transcriptional signa-
ture in the context of sepsis that is distinct from that of
uninfected controls. Indeed, the sample grouping (separation
of healthy controls and T2D compared to sepsis) and lack
thereof (non-separation of healthy controls compared to
T2D) observed following unsupervised hierarchical cluster-
ing (Figure 2) and PCA (Figure S1 in Additional data file 2)
indicates that the transcriptional profile of T2D patients is
more similar to healthy controls than to patients with sepsis.
This suggests that the transcriptional perturbation induced
by melioidosis or sepsis is of such a magnitude as to render
any such effect from T2D undetectable in comparison.

To examine the biological significance of the 2,785 transcript
signature, we extracted annotations from the Database for
Annotation, Visualization and Integrated Discovery (DAVID)

using Expression Analysis Systematic Explorer (EASE). The
major biological Gene Ontology term enrichments catego-
rized from these 2,785 transcripts are shown in Figure S2 in
Additional data file 2. This analysis associated transcripts
with several biological categories, including defense response
(CD55, CD59, LTF, TLR2), immune system process (GBP6,
HLA-A, HLA-DMA, BCL2), response to stress (ZAK, GP9,
DUSP1, PTGS1), and inflammatory response (CFH, TLR4,
IL1B, SERPING1) [26].

Next, we identified and independently validated sets of tran-
scripts differentially expressed between uninfected controls
and patients with sepsis by carrying out direct comparison
between these two groups (supervised analysis). Starting
from the list of genes present in at least 10% of samples
defined above (n = 16,400), we performed statistical compar-
isons (Welch t-test, P < 0.01) with three different stringencies

Unsupervised hierarchical clustering of blood transcriptional profiles of septic patientsFigure 2
Unsupervised hierarchical clustering of blood transcriptional profiles of septic patients. Transcripts with 2-fold over- or under-expression compared with 
the median of all samples and differential expression values greater than 200 from the median for each gene in at least 2 samples in the training set were 
selected for unsupervised analysis (n = 2,785 transcripts). (a) A heatmap resulting from hierarchical clustering of transcripts and conditions (subjects) was 
generated for the training set. (b) The same gene tree of these 2,785 transcripts was then used to generate a heatmap for the first independent test set 
(test set 1) using hierarchical clustering of conditions as before. The color conventions for heatmaps are as follows: red indicates over-expressed 
transcripts; blue represents underexpressed transcripts; and yellow indicates transcripts that do not deviate from the median. Study group is marked as 
follows: patients with melioidosis are indicated by pink rectangles; patients with sepsis due to other organisms by green rectangles; uninfected controls 
who recovered from melioidosis by black rectangles; T2D patients by purple rectangles; and healthy donors by blue rectangles. This unsupervised 
hierarchical clustering of blood transcriptional profiles was observed to segregate into five distinct regions in both training (regions R1 to R5) and test sets 
(regions R6 to R10).

(a) (b)
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of multiple testing corrections and returned sets of tran-
scripts for which expression levels were significantly different
between the two study groups (Table S2 and Figure S3 in
Additional data file 2). Using the most stringent Bonferroni
correction for controlling type I error, 2,733 transcripts were
found differentially expressed between these two groups.
Applying a more liberal correction, the Benjamini and Hoch-
berg false discovery rate, to the analysis yielded an expanded
list of 7,377 transcripts differentially expressed between these
two groups (false discovery rate = 1%). Finally, performing
the statistical analysis without any multiple testing correction
yielded 8,096 differentially expressed transcripts with 164
transcripts expected to be positive by chance alone. These 3
transcriptional signatures identified using different statistical
stringencies were then validated independently in the first
test set composed of 9 uninfected controls and 24 patients
with sepsis. We found that hierarchical clustering discrimi-
nated perfectly between the two groups in this independent
test set when using the probes identified with the Bonferroni
correction (Figure S3f in Additional data file 2). Class predic-
tion analysis further confirmed these results since a set of 10
predictors gave over 95% in sensitivity and specificity in the
training set (K-nearest neighbors; leave-one-out cross-vali-
dation) and 96% sensitivity and 89% specificity in the first
independent test set (Table S3 in Additional data file 2).

In conclusion, these results demonstrate that whole blood
transcriptional profiles in patients with sepsis and in non-
infected controls are distinct.

Blood transcriptional profiles of septic patients are 
heterogeneous
While the signature of sepsis is clearly distinct from that of
uninfected controls, unsupervised analyses revealed that it
was also heterogeneous. Indeed, distinct patterns are discern-
able on the heatmaps generated from the training set (Figure
2a, regions R2, R4, and R5) and test set 1 (Figure 2b, regions
R8, R9, and R10). This heterogeneity cannot be explained by
etiological differences since the pathogen species identified
are distributed among the different regions (R2: 2 C. albi-
cans, 1 A. baumannii, 1 Corynebacterium spp., and 1 B. pseu-
domallei; R4: 1 Corynebacterium spp., 1 Salmonella serotype
B, 1 E. coli, and 2 B. pseudomallei; R5: 1 Salmonella spp., 1 S.
aureus, 1 Streptococcus non group A or B, 1 C. albicans, 2 E.
coli, and 8 B. pseudomallei; R8: 2 coagulase-negative staphy-
lococci, 2 B. pseudomallei; R9: 4 coagulase-negative staphy-
lococci, 1 S. pneumoniae, 1 E. coli, 1 K. pneumoniae, 11 B.
pseudomallei; R10: 1 Enterococcus spp.), nor can it be attrib-
uted to differences in treatment, co-morbidity or pulmonary
involvement (Figure 3a, b).

A metric that we have developed to quantify global transcrip-
tional changes over a pre-determined baseline was used to
further investigate the source of heterogeneity in the sepsis
patient signature (molecular distance; see Materials and
methods for details). Cumulative distances from the unin-

fected control baseline increased progressively from region
R2 to regions R4 and R5 of the training set (Figure 4a), and
from region R6 to regions R8, R9 and R10 of the test set 1
(Figure 4b). As indicated on the same graphs we also
observed that most fatalities occurred in patients found in
regions R5 and R9. Septic patients who died showed multiple
organ dysfunction when compared to those who survived
(Figure 3a, b). The number of patients with severe sepsis was
higher in region R5 compared to regions R2 and R4 (86%,
40%, and 40%, respectively; Figure 4a). Most patients with
pneumonia, whether due to melioidosis or other organisms,
were also in R5 (Figure 3a). Similarly, the number of patients
with severe sepsis increased from region R8 (25%) to R9
(67%) in test set 1 (Figure 4b). Despite all patient samples
being obtained within 48 hours of the diagnosis of sepsis,
these results suggest that the heterogeneity of the blood tran-
scriptional profiles observed among patients with sepsis may
be linked to differences in degrees of disease severity.

Blood transcriptional profiles of septic patients are 
heterogeneous
Recently, our group has developed a transcriptional module-
based analysis that provides pre-determined annotations
through literature profiling of sets of functionally related
transcripts [27]. This data dimension reduction approach
groups transcripts according to similarities in expression pat-
tern in the blood of patients across a wide range of diseases.
Focusing the analysis on sets of coordinately expressed tran-
scripts facilitates functional interpretation of the data, with
the activity of annotated modules mapped on a standardized
grid format. Furthermore, this approach proved robust in
comparisons carried out across different microarray plat-
forms [28].

To facilitate the biological interpretation of the distinct sepsis
signatures identified in the present study, we applied this
modular analysis strategy. Briefly, differences in expression
levels between uninfected controls (region R1) and septic
patients (regions R2, R4 or R5) for sets of coordinately
expressed transcripts (that is, modules) are displayed on a
grid (Figure 5). Each position on the grid is assigned to a given
module; a red spot indicates an increase in expression level
and a blue spot a decrease. The spot intensity is determined
by the proportion of transcripts reaching significance for a
given module (≥20% of transcripts in a given module differ-
entially expressed compared to the non-infected group,
Mann-Whitney U-test P < 0.01). A posteriori biological inter-
pretation by unbiased literature profiling has linked several
modules to immune cells or pathways as indicated by a color
code on the figure legend [27]. The modular map thus con-
structed for region R2 shows modest over-expression of inter-
feron-inducible transcripts (M3.1: STAT1, IFI35, GBP1) and
under-expression of transcripts linked to B-cells (M1.3: EBF,
BLNK, CD72), ribosomal proteins (M2.4: ZNF32, PEBP1,
RPL36), or T-cells (M2.8: CD96, CD5, LY9) (Figure 5a). An
increase in the number of altered modules and spot intensi-
Genome Biology 2009, 10:R127
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ties was observed when comparing region R4 to the unin-
fected control region (R1), thereby confirming the increased
level of perturbation quantified through the earlier computa-
tion of cumulative distances (Figure 4). A pronounced over-
expression of transcripts associated with neutrophils (M2.2:
BPI, DEFA4, CEACAM8), myeloid lineage cells (M2.6:
PA1L2, FCER1G, SIPA1L2), and erythrocytes (M2.3: ERAF,
EPB49, MXI1) was observed, together with the under-expres-
sion of modules associated with ribosomal proteins (M2.4),
T-cells (M2.8), and cytotoxic cells (M2.1: CD8B1, CD160,
GZMK). This set of modules was similarly affected in septic
patients belonging to R5, but this time modules composed of
interferon-inducible genes (M3.1: IFITM1, PLAC8, IFI35)
and genes related to inflammation (M3.2: ICAM1, STX11,
BCL3; M3.3: ASAH1, TDRD9, SERPINB1) were also over-
expressed. Modular mapping carried out in turn for our first
test set revealed a fingerprint for R9 that was most similar to
R5, with both interferon and inflammation-related modules

turned on. As described above, we observed that grouping of
samples in regions R5 and R9 appeared to correlate with
severity of septic illness. Increased abundance of transcripts
associated with innate immune responses, including neu-
trophils, interferon, inflammation, and myeloid lineage,
together with under expression of transcripts related to T-
cells, B-cells, and cytotoxic cells, indicated substantial dys-
regulation of the host immune system in response to infection
in those patients. This finding is in line with a recent report
that found over-expression of transcripts corresponding to
inflammation and innate immunity in the blood of patients
with sepsis, while the abundance of transcripts related to
adaptive immunity was decreased [29]. An interactive version
of the module maps shown in Figure 5 is available online [30].

Neutrophils play a pivotal role in the defense against infec-
tions. In the present study, over-expression of genes related
to this cell type (module M2.2) was observed in septic

Comparison of phenotypic and clinical information with unsupervised condition clusteringFigure 3
Comparison of phenotypic and clinical information with unsupervised condition clustering. The distribution of subjects who were defined as community-
acquired or nosocomial septicemia, given antibiotics before blood collection (Antibiotherapy), diagnosed with T1D or T2D, organ dysfunction, pneumonia, 
and microbial diagnosis is indicated on a grid aligned against the hierarchical condition tree generated through unsupervised clustering (Figure 2) for both 
(a) training and (b) test set 1.

(a) (b)
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patients compared to uninfected controls (Figure S4 in Addi-
tional data file 2). Increase in transcript abundance for genes
included in this module may be an indication of an increase in
the abundance of immature neutrophils (for example,
DEFA1, DEFA3, FALL-39) as was reported earlier in patients
with systemic lupus erythematosus [27,31]. In particular,
genes encoding neutrophil cell surface markers, such as
ITGAM (CD11b), FCGR1 (CD64), CD62L, and CSF3R, were
also over-expressed in septic patients and may be indicative
of the activation status of neutrophils.

On the basis of the increased transcriptional perturbation
seen in the blood of patients with severe sepsis (regions R4,
R5, R9), as shown by both molecular cumulative distance and
modular mapping analyses, we interpret the heterogeneity of

the sepsis signatures as resulting from differences in levels of
disease severity rather than differences in etiology. Longitu-
dinal studies will have to be carried out in order to definitively
address this point. We have in addition identified qualitative
differences among the transcriptional fingerprints of patients
with sepsis corresponding to distinct molecular phenotypes.

Discovery and validation of a candidate biomarker 
signature for the diagnosis of septicemic melioidosis
We focused our biomarker discovery efforts on the prototyp-
ical signatures of sepsis established in both training and test
sets. Samples clustering in R5 were used for the discovery of
a diagnostic signature that distinguishes sepsis caused by B.
pseudomallei from sepsis caused by other organisms. Class
prediction identified a set of 37 classifiers that separated sam-

Comparison of molecular distances from baseline samples with unsupervised condition clusteringFigure 4
Comparison of molecular distances from baseline samples with unsupervised condition clustering. The list of 2,785 transcripts identified in the 
unsupervised analysis (Figure 2) was used to compute the 'molecular distance' between samples from patients with sepsis and uninfected control samples. 
(a, b) Region R1 for the training set (a) and R6 for the first test set (b) were used as the baseline uninfected controls for all comparisons. Molecular 
distances for individual subjects are indicated on a histogram that is aligned against the hierarchical condition tree generated through unsupervised 
clustering (Figure 2). Study group is marked as follows: patients with melioidosis are indicated by pink rectangles; patients with sepsis due to other 
organisms by green rectangles; uninfected controls who recovered from melioidosis by black rectangles; T2D patients by purple rectangles; and healthy 
donors by blue rectangles. Patients who died from sepsis are indicated by diagonal shading within the bars. Patients with severe sepsis are indicated by 
asterisks.

(a) (b)
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ples from the training set (R5; n = 14) with 100% accuracy in
a leave-one-out cross-validation scheme (Figure 6a; K-near-
est neighbors at cutoff P-value ratio = 0.9 and number of
neighbors = 5). Next, the performance of this set of 37 candi-
date markers was evaluated independently. Samples from
region R9 (n = 18) were classified with 78% accuracy (82%
sensitivity and 71% specificity; Figure 6b; K-nearest neigh-
bors), with two melioidosis samples and two samples from
patients with other infection being incorrectly classified
(Table S4 in Additional data file 2). The transcripts forming
this candidate biomarker signature are listed in Table 5, with
33 transcripts found to be over-expressed in patients with
septicemic melioidosis and 4 underexpressed (IQWD1, OLR1,
AGPAT9, and ZNF281). Antigen processing and presentation
is the strongest functional association identified for this set of

37 classifiers (P = 1 × 10-11, Fischer's exact test; Figure 7a).
Some of the transcripts encode antigen processing and pres-
entation (PSMB8, CD74) via major histocompatibility com-
plex (MHC) class II molecules (HLA-DMA, HLA-DMB, HLA-
DRA, HLA-DRB2, and HLA-DPA1), and the proteasome com-
plex in the ubiquitin-proteasome system (UBE2L3, PSME2,
PSMB2, and PSMB5) (Figure 7b). Some of the remaining
transcripts are involved in proteolysis (LAP3, CFH, and
OLR1), the inflammatory response (APOL3 and AIF1), apop-
tosis and programmed cell death (SEPT4, ELMO2, and ZAK),
cellular metabolic processes (ZAK, ZNF281, SSB, WARS,
MSRB2, MTHFD2, DUSP3, and ASPHD2), or protein trans-
port (STX11). RARRES3 is involved in negative regulation of
cellular process, LGALS3BP is related to the immune
response, and MAPBPIP is associated with the activation of

Modular transcriptional fingerprints for regions defined by unsupervised condition clusteringFigure 5
Modular transcriptional fingerprints for regions defined by unsupervised condition clustering. A modular analysis framework was used to generate modular 
transcriptional fingerprints for the major regions identified in Figure 2. Significant differences in expression levels in comparison to a baseline sample are 
indicated by a spot, with the intensity of the spot representing the proportion of significantly differentially expressed transcripts for each one of the 
transcriptional modules. The color of the spot indicates the direction of change of expression: red = overexpressed, blue = underexpressed. For the 
training set, region R1 was used as the baseline for all comparisons, while for the first test set region R6 was used as the baseline. Functional 
interpretations are indicated by the color coded grid at the bottom left of the figure.

(a) (b)
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MAPKK activity. Finally, the list also includes genes that have
not previously been associated with the immune response
(IQWD1, FAM26F, C16orf75, AGPAT9, and C19orf12).

The results we have obtained were confirmed by quantitative
PCR (qPCR) for the top 11 classifiers chosen after ranking the
transcripts based on fold change and difference in intensity

(Figure S5 in Additional data file 2). Significant correlation
(Pearson correlation test, r = 0.57 or higher, P < 0.05) was
observed between the expression level determined by micro-
array and by qPCR in the training (n = 24; Figure S5a in Addi-
tional data file 2) and test set 1 (n = 23; Figure S5b in
Additional data file 2) for all 11 classifiers.

Table 5

The 37 classifiers discriminated sepsis caused by B. pseudomallei from those by other organisms

Rank Abbreviation Gene name Gene accession

1 FAM26F Homo sapiens family with sequence similarity 26, member F [GenBank:NM_001010919.1]

2 MYOF Myoferlin, transcript variant 2 [GenBank:NM_133337.2]

3 LAP3 Leucine aminopeptidase 3 [GenBank:NM_015907.2]

4 HLA-DMA Major histocompatibility complex, class II, DM alpha [GenBank:NM_006120.3]

5 WARS Tryptophanyl-tRNAsynthetase (WRS) [GenBank:M61715.1]

6 RARRES3 Retinoic acid receptor responder (tazarotene induced) 3 [GenBank:NM_004585.3]

7 HLA-DMB Major histocompatibility complex, class II, DM beta [GenBank:NM_002118.3]

8 PSME2 Proteasome (prosome, macropain) activator subunit 2 (PA28 beta) [GenBank:NM_002818.2]

9 C19orf12 Chromosome 19 open reading frame 12, transcript variant 2 [GenBank:NM_031448.3]

10 HLA-DRA Major histocompatibility complex, class II, DR alpha [GenBank:NM_019111.3]

11 CD74 CD74 molecule, major histocompatibility complex, class II invariant chain transcript 
variant 2

[GenBank:NM_004355.2]

12 IQWD1* IQ motif and WD repeats 1 [GenBank:BC025262.1]

13 APOL3 Apolipoprotein L3 [GenBank:AF305227.1]

14 DUSP3 Dual specificity phosphatase 3 [GenBank:BC035701.1]

15 SEPT4 Septin 4, transcript variant 1 [GenBank:NM_004574.2]

16 CFH Complement factor H, transcript variant 1 [GenBank:NM_000186.3]

17 HLA-DPA1 Major histocompatibility complex, class II, DP alpha 1 [GenBank:NM_033554.2]

18 AIF1 Allograft inflammatory factor 1 [GenBank:U19713.1]

19 OLR1* Oxidized low density lipoprotein (lectin-like) receptor 1 [GenBank:NM_002543.3]

20 ASPHD2 Aspartate beta-hydroxylase domain containing 2 [GenBank:NM_020437.4]

21 LGALS3BP Lectin, galactoside-binding, soluble, 3 binding protein [GenBank:NM_005567.3]

22 PSMB2 Proteasome (prosome, macropain) subunit, beta type, 2 [GenBank:NM_002794.3]

23 TMSB10 Thymosin beta 10 [GenBank:NM_021103.3]

24 STX11 Syntaxin 11 [GenBank:AF044309.1]

25 ZAK Sterile alpha motif and leucine zipper containing kinase AZK, transcript variant 1 [GenBank:NM_016653.2]

26 PSMB8 Proteasome (prosome, macropain) subunit, beta type, 8 (large multifunctional 
peptidase 7), transcript variant 2

[GenBank:NM_148919.3]

27 MSRB2 Methionine sulfoxide reductase B2 [GenBank:NM_012228.3]

28 HLA-DRB3 Major histocompatibility complex, class II, DR beta 3 [GenBank:BC008987.1]

29 ELMO2 Engulfment and cell motility 2, transcript variant 1 [GenBank:NM_133171.3]

30 SSB Sjogren syndrome antigen B (autoantigen La) [GenBank:NM_003142.3]

31 UBE2L3 Ubiquitin-conjugating enzyme UbcH7 [GenBank:AJ000519.1]

32 C16orf75 (MGC24665) Chromosome 16 open reading frame 75 [GenBank:BC022427.1]

33 AGPAT9 (HMFN0839)* 1-Acylglycerol-3-phosphate O-acyltransferase 9 [GenBank:NM_032717.3]

34 MTHFD2 Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, 
methenyltetrahydrofolate cyclohydrolase

[GenBank:NM_006636.3]

35 PSMA5 Proteasome (prosome, macropain) subunit, alpha type, 5 [GenBank:NM_002790.2]

36 ZNF281* Zinc finger DNA binding protein 99 (281) [GenBank:AF125158.1]

37 ROBLD3 (MAPBPIP) Roadblock domain containing 3 [GenBank:BC024190.2]

*Transcripts underexpressed in patients with septicemic melioidosis when compared to sepsis due to other organisms
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Secondary validation of the candidate biomarker 
signature
The performance of the candidate biomarkers identified in
the training set was further evaluated in a second independ-
ent set of samples (n = 15). This secondary validation was per-
formed using the most recent Illumina expression BeadChip
(HumanHT-12 V3). The content of this BeadChip was revised
to account for updates made to the National Center for Bio-
technology Information Reference Sequence database (NCBI
RefSeq) since the release of the version 2 BeadChip. We first
generated technical replicates by running the cRNA samples
of septic patients in region R5 (n = 14) of our training set on
the new BeadChip platform. The set of 37 candidate biomar-
kers identified from analysis using the Hu6 V2 beadchip (40
probes) were mapped to 47 equivalent probes on the
HumanHT-12 V3 BeadChip. Class prediction analysis using
these 47 probes classified perfectly samples from patients
with septicemic melioidosis and patients with sepsis caused
by other organisms (region R5 of the training set; 100% accu-
racy; leave-one-out cross-validation; Figure 8a).

This same set of 47 V3 BeadChip probes was then used to clas-
sify the 15 samples of the second test set. Consistent with the
results obtained in our first test set, the candidate biomarkers
efficiently distinguished patients with septicemic melioidosis
(n = 8) from those patients with other pathogens (n = 7) with
80% accuracy (Fisher's exact test, P-value = 0.0406) and 3
samples were misclassified (Figure 8b; Table S4 in Additional
data file 2). The resulting sensitivity and specificity was 0.71
(exact 95% confidence interval, 0.29 to 0.96) and 0.88 (exact
95% confidence interval, 0.47 to 0.997), respectively.

Thus, class prediction analysis identified and independently
validated a candidate blood transcriptional signature for the
differential diagnosis of septicemic melioidosis. Further-
more, significant functional convergence was observed
among the transcripts forming this signature, which appear
to be principally involved in antigen processing and presenta-
tion. In the present study, we aimed to compare the signa-
tures of patients with septicemic melioidosis and of patients
with sepsis caused by other infections with the goal of identi-

Candidate blood transcriptional markers discriminate sepsis due to B. pseudomallei from sepsis due to other organismsFigure 6
Candidate blood transcriptional markers discriminate sepsis due to B. pseudomallei from sepsis due to other organisms. (a) Patients with sepsis in R5 of the 
training set (comprising eight patients with melioidosis (pink rectangles) and six patients with sepsis caused by other organisms (green rectangles)) were 
subjected to class prediction analysis (K-nearest neighbors (kNN)) using the leave-one-out cross-validation scheme. This algorithm identified 37 classifiers 
that discriminated samples with 100% accuracy in the training set. (b) Independent validation of the 37 predictors was performed with the equivalent 
region R9 in test set 1, including 11 patients with melioidosis (pink) and 7 patients with sepsis caused by other organisms (green). The predictors correctly 
classified 14 of the 18 samples (78% accuracy).
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fying candidate biomarkers for the differential diagnosis of
melioidosis.

Discussion
Genome-wide blood transcriptional profiling affords a com-
prehensive assessment of the immune status of patients. To
date, signatures have been reported for a number of systemic
diseases, including sepsis [18,22-25,31-35]. A recent report
described blood leukocyte mRNA profiles of 35 genes related
to inflammation, such as interleukin-1β, interferon-γ, and

tumor necrosis factor-α, in patients with melioidosis and
healthy control subjects [36]. We have extended the findings
of this study with the characterization and independent vali-
dation of a robust whole blood signature measured on a
genome-wide scale (>48,000 probes) in control subjects and
in patients with sepsis caused by a wide range of organisms,
including B. pseudomallei. Whereas all patients with sepsis
clearly demonstrated patterns of expression distinct from
that of non-infected controls with over 8,000 transcripts
found to be differentially expressed, unsupervised analyses
also revealed heterogeneity among the sepsis signature.

Canonical pathway and gene network analysis of the 37 classifiersFigure 7
Canonical pathway and gene network analysis of the 37 classifiers. (a) The 37 classifiers were analyzed using ingenuity pathway analysis and the classifiers 
were grouped to 12 canonical biological process pathways. The antigen presentation pathway (7 molecules) and protein ubiquitination pathway (5 
molecules) were found to be the dominant canonical pathways represented by these set of classifiers. The orange squares indicate the ratio of the number 
of genes from the dataset that map to the canonical pathway, whilst the solid blue bars correspond to the P-value representing the probability that the 
association between the genes in the classifier set and the identified pathway occurs by chance alone (calculated by Fischer's exact test, and given as a log 
P-value). A representative gene network of the dominant canonical pathways was then generated (b). Transcripts that are overexpressed in patients with 
melioidosis are indicated by a red color. The function of the gene product is represented by a symbol. Connections between the gene products and the 
nature of these interactions are shown.
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Applying a modular analysis framework demonstrated differ-
ences at the functional level and a molecular distance metric
showed marked differences in the levels of transcriptional
perturbations between the different patient clusters. We and
others have formerly demonstrated pathogen-specific tran-
scriptional signatures in patients with acute infections, but
differences in disease etiology could not explain the heteroge-
neous signatures observed here. These observations support
that the first order of variation in this dataset may originate
from differences in disease severity. Longitudinal analyses on
samples collected serially should be performed to confirm
this hypothesis.

A number of studies have employed gene expression microar-
rays to measure the responses of host cells to pathogenic
microorganisms [19-25,37,38]. Specifically, the analysis of
patients' blood leukocyte transcriptional profiles has led to a
better understanding of host-pathogen interaction and
pathogenesis and yielded distinct diagnostic signatures [37-
39]. Moreover, others have shown that clinical illness caused
by non-infectious causes of systemic inflammatory response
syndrome or infection-proven sepsis can be distinguished

using the transcriptional signature of peripheral blood mono-
nuclear cells [40]. In addition, illness severity levels and sep-
tic shock subclasses of pediatric patients have also been
identified through genome-wide expression profiling [41].

Here we report a signature differentiating melioidosis from
sepsis caused by other pathogens. Prediction of melioidosis
from sepsis caused by other organisms yielded 100%, 78%,
and 80% accuracy in the training set and the first and second
independent test sets, respectively. The two misclassified
patients who were erroneously predicted to belong to the
melioidosis group had clinical diagnoses of coagulase-nega-
tive staphylococcal (patient I016) and E. coli (patient I023)
septicemia. Patient I023 had community-acquired septi-
cemia resulting from a leg wound. Patient I016 was hospital-
ized for 2 weeks prior to the collection of the blood culture
from which the coagulase-negative staphylococci were iso-
lated and thus it is plausible that they had true hospital-
acquired coagulase-negative staphylococcal septicemia.
However, it is equally likely that this isolate was not the true
causative agent for the sepsis, in which case it is less surpris-
ing that the classification of this sample is incorrect. Coagu-
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Candidate blood transcriptional markers retain their discriminatory power in an additional secondary validation set. (a) Patients with sepsis clustered in 
region R5 of the training set (comprising eight patients with melioidosis (pink rectangles) and six patients with sepsis caused by other organisms (green 
rectangles) were hybridized to Illumina Human HT-12 V3 BeadChips and used for microarray analysis as before. The 37 blood transcriptional markers 
identified from the same samples using Illumina Human V2 BeadChips were used for class prediction analysis of the new dataset in a leave-one-out cross-
validation scheme as before. The 37 classifiers discriminated training set samples analyzed using the novel data with 100% accuracy as before, despite the 
change of microarray platform. (b) The performance of the 37 predictor genes was then further evaluated in a secondary independent test set also 
analyzed using Illumina Human HT-12 V3 BeadChips. This second independent test set (n = 15) comprised eight patients with melioidosis (pink rectangles) 
and seven patients with sepsis caused by other organisms (green rectangles). The predictors correctly classified 12 of the 15 samples (80% accuracy).
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lase-negative staphylococci were felt to be the organism
responsible for sepsis in at least one patient (I018), who was
a chronic renal failure patient on dialysis. Coagulase-negative
staphylococcal bacteremia is more common in such patients
due to the need for frequent connection to plastic lines for
dialysis [42]. The organism was isolated in two separate sets
of blood cultures from this patient, who was then treated with
vancomycin and recovered. For other patients with coagu-
lase-negative staphylococcal bacteremia (I020, I022), the
organism was also isolated from two separate sets of blood
cultures, suggesting that, in these cases, coagulase-negative
staphylococci may be the true causative pathogen. In the
remaining cases, it is possible that the coagulase-negative sta-
phylococci were not the true causative pathogen, but the
patients meet the criteria for sepsis and thus still form a use-
ful control group against melioidosis, essentially as a group of
patients with 'sepsis of uncertain origin'. This reflects a com-
mon and important clinical scenario.

Due to concerns over this possible diagnostic misclassifica-
tion, however, a second independent test set, with no coagu-
lase-negative staphylococcal bacteremia cases, was also used
to validate the findings of the training set. Notably, this study
adds a second level of validation that goes beyond the train-
ing/independent testing scheme that is starting to appear
more commonly in microarray publications. The level of clas-
sification accuracy of 80% observed in our second independ-
ent test set confirmed our earlier results. In this last set two
patients with sepsis attributed to Corynebacterium spp.
(patient I028) and S. aureus (patient I029) were misclassi-
fied as septicemic melioidosis. These patients stayed in a hos-
pital for more than 10 days before collection of the
subsequently positive blood culture. One patient with septi-
cemic melioidosis was erroneously classified as having sepsis
caused by another pathogen (patient M033).

We report that the 37 classifiers forming the diagnostic signa-
ture were significantly enriched in transcripts whose prod-
ucts are involved in class II antigen processing and
presentation, including nonclassical MHC molecules HLA-
DMA and HLA-DMB, which catalyze the removal of invariant
chain CD74 from the MHC class II binding groove and facili-
tate peptide loading to MHC class II molecules within intrac-
ellular compartments, as well as classical MHC class II
molecules HLA-DRA, -DRB3, and -DPA1, which function by
the presentation of loading peptides onto the cell surface.
Association between HLA-DRB1*1602 and severe melioido-
sis in the Thai population has been proposed [43]. Indeed,
patients who do not survive sepsis have decreased HLA-DRA,
-DMA, -DMB, and CD74 mRNA expression in whole blood
and reduced HLA-DR expression on the cell surface of circu-
lating monocytes [44,45]. The numbers of circulating blood
dendritic cells has recently been linked to disease severity in
septic patients [46]. This study found significantly lower
blood myeloid dendritic cell and plasmacytoid dendritic cell
counts in septic patients than in controls. Moreover,

decreased numbers of circulating of myeloid and plasmacy-
toid dendritic cells has also been reported to be associated
with mortality in patients with septic shock [46]. Since HLA-
DR is a well recognized marker of dendritic cell activation,
such findings suggest a possible link between HLA-DR
expression level, the number of circulating dendritic cells and
disease severity. In the present study, decreased mRNA
expression of these transcripts was observed in septic
patients compared to uninfected controls. Among septic
patients, elevated MHC class II mRNA expression discrimi-
nated septicemic melioidosis from other sepsis. A recent
study has reported decreased expression of these MHC class
II molecules in patients with sepsis [29]. Taken together,
measuring the expression of these molecules at the transcrip-
tional or protein levels may be useful for the diagnosis of
melioidosis. Transcripts encoding the 20S proteasome
(PSMB2, PSMB8, PSMA5), 11S activator (PSME2) and
UBE2L3 in the ubiquitin-proteasome pathway, which are
responsible for protein degradation and generating patho-
gen-derived peptides for loading onto MHC class I molecules
for presentation to CD8+ T cells, were also listed as classifiers
for the differential diagnosis of melioidosis in the present
study. The differential expression of transcripts in this path-
way has also been reported in patients with dengue hemor-
rhagic fever [20]. This pathway is believed to be important in
host defense against intracellular pathogens and viruses [47].
Given that B. pseudomallei is an intracellular pathogen, it is
biologically plausible that this pathway would have an impor-
tant role in the host response to melioidosis. Other classifiers
found in our study are also involved in immune responses.
Increased abundance of AIM2 (interferon-inducible and neu-
trophil-related gene), LAP3 (interferon-inducible gene) and
WARS (interferon-response gene) found in our study has also
been observed to be over-expressed in patients with malaria
[19]. These transcripts are induced by interferon-γ, which cor-
related with our observation of increased abundance of inter-
feron-induced mRNA transcripts (Figure 5, module M3.1)
Over-expression of LGALS3BP, which is involved in cell-cell
and cell-matrix interaction, was also found in our study.
Over-expression of this transcript has been reported in the
blood of patients with febrile respiratory illnesses and protein
levels have been found to be elevated in the serum of patients
with human immunodeficiency virus infection [21,48]. The
fact that a significant functional convergence exists among
the transcripts forming this diagnostic biomarker signature is
important as it suggests that it may be stemming from differ-
ences rooted in the pathophysiology of B. pseudomallei.

In addition to providing valuable diagnostic information,
blood transcriptional assays that measure the host response
to infection could potentially serve to monitor disease pro-
gression and response to treatment. A test combining such
characteristics would contribute to improvements in the
management of sepsis. In a context where medical care facil-
ities could be quickly overwhelmed, a test measuring the host
response to infection would facilitate early diagnosis and an
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evaluation of disease severity, thus proving to be particularly
valuable as a triage tool.

Thus far, several practical considerations have limited the
implementation of blood transcriptional testing. Microarray
technologies, while constituting an excellent tool in the dis-
covery phase, are currently inadequate for routine testing.
Indeed, the data that are generated are not quantitative and
are therefore susceptible to batch-to-batch variations. Fur-
thermore, the turnaround time for the processing of samples
and generation of data is too long to be of use in a critical care
setting. Real-time PCR based assays address such limitations
but are only amenable to the quantification of a small number
of transcripts. New technologies, however, are becoming
available for quantitative 'digital' transcriptional profiling of
large sets of genes [49]. An additional advantage of this study
is that our findings are based on whole blood transcriptional
profiling. This obviates the need for complex additional
processing of the blood sample to extract peripheral blood
mononuclear cells or other cell fractions or subpopulations,
which requires significant laboratory experience and addi-
tional equipment. Taken together, the convergence of recent
advances made in the collection of blood samples, measure-
ment of transcript abundance and bioinformatics analyses
could make clinical translation achievable.

Conclusions
Microarrays were used to study genome-wide blood tran-
scriptional profiles of patients with sepsis caused by B. pseu-
domallei. We are reporting the identification of a candidate
signature for the differential diagnosis of septicemic melio-
idosis that classified samples with nearly 80% accuracy in a
first independent test set and 80% in a second validation set.
The molecular distance metric that we describe here for the
first time also remains to be evaluated as a potential indicator
of disease severity. Finally, the diagnostic signature that we
have identified was significantly enriched in genes involved in
the MHC class II antigen processing and presentation path-
way and the implication of this finding for B. pseudomallei
pathogenesis will be the subject of further investigations.

Materials and methods
Enrolment, sample collection, and informed consent
A total of 598 subjects consisting of 29 uninfected controls
and 569 patients suspected of having contracted community-
acquired or nosocomial infection were recruited for this
study. Of these subjects, those from whom samples were col-
lected in 2006 and met the enrolment criteria were assigned
to the training set whereas those from whom samples were
collected in 2007 and 2008 were assigned to test set 1 and test
set 2, respectively. Clinical specimens (for example, blood,
sputum, urine) were collected for bacterial culture within 24
hours following the diagnosis of sepsis. All blood samples
were obtained at the Khon Kaen Regional Hospital, Khon

Kaen, Thailand. Each patient enrolled in the study had three
milliliters of whole blood collected into Tempus vacutainer
tubes (Applied Biosystems, Foster City, CA, USA) containing
an RNA stabilization solution. The tubes were mixed vigor-
ously for 30 seconds to ensure complete sample homogeniza-
tion. The whole blood lysate was stored at -80°C prior to
extraction. Sixty-three of the enrolled patients had the diag-
nosis of bacteremic sepsis retrospectively confirmed by the
isolation of a causative organism on blood culture. Patients
who had negative blood cultures were excluded from further
study. Community-acquired septicemia was defined when the
first positive blood culture was obtained from samples col-
lected within 48 hours of hospitalization, whereas nosoco-
mial septicemia was defined if the infection developed after
48 hours of hospitalization or within 14 days of a previous
admission [50].

The diagnosis of sepsis for this study was taken from accepted
international guidelines and defined as presentation with two
or more of the following criteria for the systemic inflamma-
tory response syndrome: fever (temperature >38°C or
<36°C), tachycardia (heart rate >90 beats/minute), leukocy-
tosis or leukocytopenia (white blood cell count ≥12 × 109/l or
≤4 × 109/l) [51]. Severe infection was defined as the presence
of systemic hypoperfusion: shock (systolic blood pressure
<90 mmHg or requirement for vasopressors or inotropes for
>1 hour in the absence of other causes of hypotension), renal
dysfunction (oliguria: urine output <500 ml per 24 hours),
liver dysfunction (bilirubin level of >2.0 mg/dl), and throm-
bocytopenia (platelet count <100,000 cells/ml). A total of 92
blood samples from control subjects and septicemic patients
that met the case definitions were analyzed, including 63
patients with sepsis (32 patients with septicemic melioidosis,
31 patients with sepsis due to other organisms) and 29 non-
infected controls (9 patients recovered from melioidosis, 12
patients with T2D, and 8 healthy donors) (Figure 1). Among
the sepsis group, 3 whole blood samples were collected before
antibiotics were given while 60 whole blood samples were
drawn after the start of antibiotic therapy. Two samples were
collected after anti-fungal drugs were given. Of 32 patients
with melioidosis, 20 (63%) had pneumonia, a common clini-
cal presentation of the disease. Twelve patients infected by
other organisms also had pneumonia (39%). Clinical infor-
mation is available in Additional data file 1. The study proto-
col was approved by the Institutional Review Boards of each
participating institution and informed consent was obtained
for all subjects.

Microarray assay
RNA preparation and microarray hybridization
Total RNA was isolated from whole blood lysate using the
Tempus Spin Isolation kit (Applied Biosystems) according to
the manufacturer's instructions. RNA integrity values were
assessed on an Agilent 2100 Bioanalyzer (Agilent, Palo Alto,
CA, USA). Samples with RNA integrity values >6 were
retained for further processing (average RNA integrity values
Genome Biology 2009, 10:R127
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= 7.9, standard deviation = 0.89). Globin mRNA was depleted
from a portion of each total RNA sample using the GLOBIN-
clear™-Human kit (Ambion, Austin, TX, USA). Globin-
reduced RNA was amplified and labeled using the Illumina
TotalPrep RNA Amplification Kit (Ambion). Labeled cRNA
was hybridized overnight to Sentrix Human-6 V2 or
HumanHT-12 V3 expression BeadChip array (IIlumina, San
Diego, CA, USA), washed, blocked, stained and scanned on an
Illumina BeadStation 500 following the manufacturer's pro-
tocols. The dataset described in this manuscript is deposited
in the NCBI Gene Expression Omnibus (GEO) with series
accession number [GEO:GSE13015].

Microarray data extraction and normalization
Microarray data analysis
Normalization
Illumina's BeadStudio version 2 software was used to gener-
ate signal intensity values from the scans. After background
subtraction, the average normalization recommended by the
BeadStudio 2.0 software was used to rescale the difference in
overall intensity to the median average intensity for all sam-
ples across multiple arrays and chips. After that, the standard
normalization procedure for one-color array data in Gene-
Spring GX7.3 software (Agilent Technologies) was used. In
brief, data transformation was corrected for low signal, with
intensity values < 10 set to 10. In addition, per-gene normali-
zation was applied by dividing each probe intensity by the
median intensity value for all samples.

Unsupervised analysis
The aim is to group samples on the basis of their molecular
profiles without a priori knowledge of the phenotypic classi-
fication. The first step consists in selecting transcripts that are
expressed in the dataset, and present some degree of variabil-
ity: transcripts must have a detection P-value less than the P-
value cutoff of 0.01 in at least two samples (data file filter in
GeneSpring GX 7.3); and they must vary by at least two-fold
from the median intensity calculated across all samples with
a minimum difference ≥200. The probes passing the filtering
criteria were used to group samples in GeneSpring GX 7.3 fol-
lowing two distinct strategies, hierarchical clustering and
PCA.

Hierarchical clustering is an iteratively agglomerative cluster-
ing method that was performed to find similar transcriptional
expression patterns and to produce gene trees or condition
trees representing those similarities. The hierarchical cluster-
ing performed in our dataset was calculated through the aver-
age linkage while the similarity or dissimilarity of gene
expression profiles was measured using Pearson correlation,
which is the default in the software. By using this algorithm,
samples were segregated into distinct groups based on simi-
larity in expression patterns. Gene trees are represented in
the horizontal dimension while condition trees are repre-
sented in the vertical dimension. The color conventions for all
maps are as follows: red indicates over-expressed transcripts,

blue underexpressed transcripts, and yellow transcripts that
do not deviate from the median.

PCA on conditions was performed to visualize the differences
in expression levels of the entire dataset. This approach was
performed through JMP genomics software (SAS, Cary, NC,
USA) to find and interpret the complex relationships between
variables in the dataset from each study group. The first three
components, PC1, PC2 and PC3, were plotted against each
other. Each colored dot represents an individual sample.

Supervised analysis
The aim of the supervised analysis is to identify probes that
are differentially expressed between study groups and that
might serve as classifiers. We adopted two different strategies
for probe selection. First, transcripts that were present in at
least two samples in the dataset were selected for statistical
group comparison. Second, the parametric Welch t-test was
used with P < 0.01 and three levels of stringency for multiple
testing correction - Bonferroni, Benjamini and Hochberg, and
no multiple testing correction were set for the statistical
group comparison (GeneSpring GX 7.3 software).

Class prediction
Class prediction analyses were carried out to determine
whether whole blood from patients with sepsis due to B. pseu-
domallei infection carry gene expression signatures that can
classify them separately from that of whole blood obtained
from septic patients caused by other organisms. Significantly
different transcripts (parametric Welch t-test, P < 0.01)
changing by at least 1.5-fold between the study groups were
used as a starting point for the identification of classifiers
using the K-nearest neighbors algorithm. This set of classifier
genes was validated in an independent group of patients (test
sets 1 and 2).

Molecular distance analysis
This novel approach consists in the computation of a score
representing the 'molecular distance' of a given sample rela-
tive to a baseline (for example, healthy controls). This
approach essentially consists in carrying out outlier analyses
on a gene-by-gene basis, where the dispersion of the expres-
sion values found in the baseline samples (controls) is used to
determine whether the expression value of a single case sam-
ple lies inside or outside two standard deviations of the con-
trols' mean. This analysis was performed by merging the
transcripts from all modules, which accounted for 2,109
probes. The distance of each sample from the uninfected con-
trol baseline was calculated as follows. In step 1 the baseline
is established: for each gene the average expression level and
standard deviation of the uninfected control group is calcu-
lated. In step 2 the 'distance' of an individual gene from the
baseline is calculated: the difference in raw expression level
from the baseline average of a gene is determined for a given
sample, and then the number of standard deviations from
baseline levels that the difference in expression represents is
Genome Biology 2009, 10:R127
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calculated. In step 3 filters are applied: qualifying genes must
differ from the average baseline expression by at least 200
and 2 standard deviations. In step 4 a global distance from
baseline is calculated: the number of standard deviations for
all qualifying genes is added to yield a single value, the global
distance of the sample from the baseline.

Transcriptional module-based analysis
This mining strategy has been described in detail elsewhere
[27]. Briefly, a total of 139 blood leukocyte gene expression
profiles were generated using Affymetrix U133A&B Gene-
Chips (44,760 probe sets). Transcriptional data were
obtained for eight experimental groups, including systemic
onset juvenile idiopathic arthritis, systematic lupus ery-
thematosus, liver transplant recipients, melanoma patients,
and patients with acute infections (E. coli, S. aureus, and
influenza A). For each group, transcripts with an absent flag
call across all conditions were filtered out. The remaining
genes were distributed among 30 sets by hierarchical cluster-
ing (k-means algorithm; clusters C1 through C30). The clus-
ter assignment for each gene was recorded in a table and
distribution patterns across the eight diseases were compared
among all the genes. Modules were selected using an iterative
process starting with the largest set of genes that belonged to
the same cluster in all study groups (that is, genes that were
found in the same cluster in eight of the eight groups). The
selection was then expanded to include genes with 7 of 8, 6 of
8 and 5 of 8 matches to the core reference pattern. The result-
ing set of genes from each core reference pattern formed a
transcriptional module and was withdrawn from the selection
pool. The process was repeated starting with the second larg-
est group of genes, then the third, and so on. This analysis led
to the identification of 5,348 transcripts that were distributed
among 28 modules. Each module was attributed a unique
identifier indicating the round and order of selection (for
example, M3.1 was the first module identified in the third
round of selection). In the context of the present study, Ref-
Seq IDs were used to match probes between the Affymetrix
U133 and Illumina Hu6 platforms. Unambiguous matches
were found for 2,109 out of the 5,348 Affymetrix probe sets.

RT-PCR and qPCR
RNA expression of a selection of the predictor genes was
determined by qPCR. The same source of RNA used for
microarray analysis was reverse-transcribed in a 96-well
plate using the High Capacity cDNA Archive kit (Applied Bio-
systems, San Diego, CA, USA). Real-time PCR was set up with
Roche Probes Master reagents and Universal Probe Library
hydrolysis probes (Roche Applied Science, Indianapolis, IN,
USA). PCRs were performed on the LightCycler 480 (Roche
Applied Science). Secondary derivative calculation data were
collected and cross point values of the selected predictor
genes were normalized to two housekeeping genes (HRPT1
and TBP) [52]. Relative Expression Software Tool (REST©)
was used in analyzing both group comparison and individual
fold changes [53]. Primer sequences were as follows: ZAK

[GenBank:NM_016653.2] forward primer, 5'-tgacagagcagtc-
caacacc-3', and reverse primer, 5'-acacatcgtcttccgtccat-3';
FAM26F [GenBank:NM_001010919.1] forward primer, 5'-
ttctgcagctgaaattctgg-3', and reverse primer, 5'-tgcatgctctgt-
ggctttac-3'; LAP3 [GenBank:NM_015907.2] forward primer,
5'-gctggaaagctgagagagactt-3', and reverse primer, 5'-cctgat-
gcagaccataaaagg-3'; HLA-DMA [GenBank:NM_006120.3]
forward primer, 5'-agctgcgctgctacagatg-3', and reverse
primer, 5'-tggccacattggagtagga-3'; MYOF [Gen-
Bank:NM_133337.2] forward primer, 5'-agcacgtggaaacaag-
gact-3', and reverse primer, 5'-ccacccacatctgaagttttc-3';
WARS [GenBank:M61715.1] forward primer, 5'-cattttcggct-
tcactgaca-3', and reverse primer, 5'-gggaatgagttgctgaagga-3';
RARRES3 [GenBank:NM_004585.3] forward primer, 5'-
tgggccctgtatataggagatg-3', and reverse primer, 5'-ggactgagaa-
gacactggagga-3'; HLA-DMB [GenBank:NM_002118.3] for-
ward primer, 5'-gcccttctggggatcact-3', and reverse primer, 5'-
tggttttggctacttgcaca-3'; PSME2 [GenBank:NM_002818.2]
forward primer, 5'-gggaatgagaaagtcctgtcc-3', and reverse
primer, 5'-tcaatcttggggatcaggtg-3'; HLA-DRA [Gen-
Bank:NM_019111.3] forward primer, 5'-caagggattgcgcaaaag-
3', and reverse primer, 5'aagcagaagtttcttcagtgatctt-3';
LGALS3BP [GenBank:NM_005567.3] forward primer, 5'-
tgtggtctgcaccaatgaa-3', and reverse primer, 5'-ccgctggctgt-
caaagat-3'.
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