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Abstract

In predicting hierarchical protein function annotations, such as terms in the Gene Ontology (GO),
the simplest approach makes predictions for each term independently. However, this approach has
the unfortunate consequence that the predictor may assign to a single protein a set of terms that
are inconsistent with one another; for example, the predictor may assign a specific GO term to a
given protein ('purine nucleotide binding') but not assign the parent term ('nucleotide binding').
Such predictions are difficult to interpret. In this work, we focus on methods for calibrating and
combining independent predictions to obtain a set of probabilistic predictions that are consistent
with the topology of the ontology. We call this procedure 'reconciliation'. We begin with a baseline
method for predicting GO terms from a collection of data types using an ensemble of discriminative
classifiers. We apply the method to a previously described benchmark data set, and we
demonstrate that the resulting predictions are frequently inconsistent with the topology of the GO.
We then consider 11 distinct reconciliation methods: three heuristic methods; four variants of a
Bayesian network; an extension of logistic regression to the structured case; and three novel
projection methods - isotonic regression and two variants of a Kullback-Leibler projection method.
We evaluate each method in three different modes - per term, per protein and joint -
corresponding to three types of prediction tasks. Although the principal goal of reconciliation is
interpretability, it is important to assess whether interpretability comes at a cost in terms of
precision and recall. Indeed, we find that many apparently reasonable reconciliation methods yield
reconciled probabilities with significantly lower precision than the original, unreconciled estimates.
On the other hand, we find that isotonic regression usually performs better than the underlying,
unreconciled method, and almost never performs worse; isotonic regression appears to be able to
use the constraints from the GO network to its advantage. An exception to this rule is the high
precision regime for joint evaluation, where Kullback-Leibler projection yields the best
performance.
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Introduction
The computational prediction of protein function can provide
an essential tool for the biologist, because many biological
questions are directly answered when we understand the role
of a protein in a biological process, how it interacts with other
proteins and DNA, and where in the cell it operates. Given the
limitations of current predictive methods, however, the pur-
pose of such technology cannot be to replace experimenta-
tion, but rather to assist the biologist either by directly
generating hypotheses to be verified experimentally or by
suggesting a restricted set of candidate functions that can
guide the exploration of promising hypotheses.

Our general strategy, which is similar to that of several other
groups that participated in the MouseFunc assessment [1],
involves first predicting protein function (that is, Gene Ontol-
ogy [GO] terms) on a per-term and per-data set basis and
then combining the predictions in a post-processing stage.
For the individual predictions, we employed the support vec-
tor machine (SVM) [2], using kernel methods to convert the
different data sources (sequence motifs, experimental pheno-
types, protein-protein interactions, differential gene expres-
sion levels, and orthology relationships) into a numerical
format appropriate for the SVM. Our focus in the current
paper, however, is not the SVM methodology per se, but
rather the methodology for combining per-term predictions.
Indeed, very little in our presentation hinges on the choice of
the SVM and kernel methods for the individual prediction.
Any method that can return a probabilistic estimate could be
substituted in place of the SVM.

Let us consider some of the general desiderata for any method
that yields predictions of protein function. First, we aim for
any such method to be consistent with the GO. Specifically, a
set of predictions is consistent with the GO if the predictions
increase in confidence (for example, in posterior probability)
as we ascend from more specific to more general terms in the
GO. For example, a protein that is predicted to be in the
nucleolus should also be predicted to be in the nucleus, and as
a result the confidence in the latter prediction should always
be higher. Second, we aim for such methods to be well cali-
brated, in the sense that the confidence assigned to a predic-
tion provides a good estimate of the prediction being correct;
in other words, we wish to construct confidence values that
can be interpreted as probabilities that a protein has a certain
function given the information provided by the data. Third,
and most importantly, we desire a method whose predictions
are accurate. To measure accuracy, we use two complemen-
tary metrics: precision (or positive predictive value), which
measures the fraction of predictions made that are correct,
and recall (or sensitivity), which measures the fraction of the
correct answers that are predicted. In this work, we fix four
specified recall values (R = 1%, 10%, 50%, 80%) and measure
the corresponding precisions.

In addition to these general aims, the quality of a prediction
method's output depends upon the particular prediction task
at hand. Therefore, in this work, we distinguish three predic-
tion tasks and define three corresponding modes of evalua-
tion: per protein, per term and joint annotation. In the per-
protein mode, for example, a developmental biologist has
determined a few genes that are activated by a particular reg-
ulator, and the biologist wants to understand which biological
process is regulated and how it relates to the phenotype
observed. Given a certain protein, a prediction for its function
is needed. In the per-term mode, for example, a drug designer
has determined which biological process is involved in a path-
ological condition and is now looking for a drug target in that
pathway. Given a function, a prediction for which proteins
have that function is needed. In the joint annotation mode,
for example, a bioinformatician is annotating a new genome
and wants to guarantee a high level of accuracy in the predic-
tions made. To achieve this goal, some proteins that are
harder to classify or some functions that are harder to predict
should be subject to a smaller number of predictions. In par-
ticular, if the confidence for all predictions can be estimated
on the same scale, then only the most confident predictions
should be considered, assigning proteins to functions. Given
protein-function pairs, correct associations have to be pre-
dicted.

To match these three different types of tasks, we propose
three performance evaluation modes: per protein, the aver-
age, across proteins, of the precision at a fixed term recall; per
term, the average, across terms, of the precision at a fixed pro-
tein recall; and joint annotation, the precision at fixed recall
for assignments of proteins to functions.

In addition to these three evaluation modes, our analyses fol-
low the distinctions used by Peña-Castillo and coworkers [1].
In particular, we consider separately the three ontologies that
comprise GO: biological process, cellular component and
molecular function. We also subdivide predictions into four
groups on the basis of the number of proteins assigned to a
GO term (3 to 10, 11 to 30, 31 to 100, and 101 to 300 proteins).

Overall, we consider 12 different protein function prediction
methods. These include the baseline, unreconciled predic-
tions, and three heuristic methods that return consistent
probabilistic predictions (that is, predictions that increase
numerically as we ascend the GO hierarchy). We also consider
four variants on the Bayesian approach first applied to GO
term prediction by Barutcuoglu and colleagues [3]. We con-
sider one discriminative method that extends logistic regres-
sion to the case of interrelated outputs. Finally, inspired by
the work of Wu and coworkers [4] for multi-class classifica-
tion, we also propose three methods, based on Kullback-Lei-
bler projections, that transform probabilistic values obtained
separately for each GO term into probabilistic values that
yield predictions consistent with the GO network topology.
Genome Biology 2008, 9:S6
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Given the large number of prediction methods considered
and the resulting multiple testing problem, we employ a two-
pass strategy to identify statistically significant trends. Before
testing the methods on the test set, we perform a preliminary
evaluation on a held-out portion of the training set. When we
draw conclusions about the various methods in our experi-
ments, we retain only conclusions confirmed to generalize to
the test set, which should be expected to be a more difficult set
than the held-out set, because the latter has exactly the same
distribution as the training set.

Following this strategy, we reach the following primary con-
clusions. Isotonic regression generally performs well across
evaluation modes, term sizes, ontologies and recall levels. In
particular, isotonic regression usually performs better than
the underlying, unreconciled logistic regression method. This
implies that reconciliation need not yield a decrease in per-

formance; indeed, the structure of the GO network can yield
valuable information that improves classification. Isotonic
regression also typically performs better than many other rec-
onciliation methods, which frequently yield reconciled prob-
abilities with significantly lower precision than the original,
unreconciled estimates. If the high precision regime of the
joint annotation mode is of interest, then the Kullback-Lei-
bler projection should be preferred, because it performs sig-
nificantly better than isotonic regression, and thus better
than logistic regression as well. This evaluation regime is of
particular interest because it yields predictions with the high-
est precision of all evaluation modes. Overall, the Kullback-
Leibler projection is a competitive reconciliation method. For
'small' GO terms - to which few proteins have been assigned -
this method also yields better performance in comparison
with all other methods.

Overall approachFigure 1
Overall approach. (1) A kernel matrix is computed for each available data type, and (2) these kernels are used to train one support vector machine (SVM) 
for each term and each data type. (3) The SVM predictions are combined and calibrated via a collection of logistic regressions. (4) Finally, the calibrated 
predictions are reconciled with respect to the Gene Ontology (GO) topology.
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Results
Independent predictions are frequently inconsistent
Our approach consists of four steps, schematized in Figure 1.
Initially, we consider only the first three steps, omitting the
reconciliation in step four. In the first step, each data set is
transformed into several 'kernel matrices'. The SVM algo-
rithm uses a generalized notion of similarity, known as a ker-
nel function, to implicitly map data objects (vectors, strings,
nodes in a graph, and so on) into a high-dimensional vector
space [5]. A kernel matrix is a sufficient representation of the
data for the SVM and is computed using the kernel function.
The ten data sets in the benchmark are summarized briefiy in
Table 1, and the corresponding collection of 31 kernel func-
tions is listed in Table 2. In most cases, we compute three ker-
nels: a linear kernel, a Gaussian kernel, and a kernel
specifically tailored to the given type of data. In addition, we
build four kernels that are linear combinations of the previ-
ously described ones. Details of the various kernel transfor-
mations are given in the Kernels section of Materials and
methods.

In step two, SVMs are trained for each GO term and kernel.
However, in order to use SVM outputs for a further learning
step, we need to simulate with training data the distribution
of SVM outputs on new data. This prevents us from using the
whole training set to learn just one SVM per term and per ker-
nel, because the distribution of scores that the SVM assigns to
the training and testing points differ. We therefore proceed as
in cross-validation, repeatedly holding out data on which the
SVM is tested and using the remaining training points to train
the SVM. Details of this procedure are given in the SVM train-
ing section in Materials and methods. We consider all terms
with 3 to 300 annotated proteins, leading to a total of approx-
imately 780,000 trained SVMs.

We use a logistic regression in the third step to produce indi-
vidual probabilistic outputs from the set of SVM outputs cor-
responding to one GO term. To handle missing data, we
cluster the held-out (or test) proteins into groups of proteins
with similar patterns of missing data, and we train a logistic
regression for each of these groups, following the scheme
described in the Missing data section in Materials and meth-
ods.

The assessment described in [1] was conducted in two stages:
a training phase where only labeled training data were avail-
able and a subsequent test phase in which unlabeled test data
were distributed to the participants. Although we performed
many of our analyses after the official training phase had
ended, we restricted our initial analyses to a held-out portion
of the training set, composed of a fixed set of 2,000 randomly
selected proteins.

We applied our three-step procedure to the held-out data set,
generating predictions across all three ontologies (2,931
terms) for each of the 2,000 proteins. Among the resulting set

of 8.83 × 106 parent-child term relationships, 10.96% are
inconsistent, and a significant number (4,645) of these incon-
sistencies - more than two on average per protein - are large,
with a difference in parent and child probabilities greater
than 0.5. Figure 2 plots the distribution of large differences in
probability between child and parent terms. An example of
this type of inconsistency is shown in Figure 3. For this par-
ticular protein, we observe three false negative annotations in
the left half of the plot: 'catalytic activity,' 'transferase activ-
ity', and 'protein-tyrosine kinase activity.' However, these
false negatives are offset by a block of strongly confident, cor-
rect predictions for four intermediate terms, colored in dark
green. Ideally, a good reconciliation scheme would propagate
the high-confidence predictions from these four terms to
overturn the two parental false negative predictions. Con-
versely, on the right side of the plot, we observe a single false
positive prediction for 'protein homodimerization activity,'
which is a child of two very confident true negative predic-
tions. Again, a good reconciliation scheme should fix this false
negative annotation, using the two high-confidence parents
to modify the prediction on the child term.

Previous work has shown that reconciling independent GO
term predictions can yield improved accuracy [3]. However,
note that, in addition to being inaccurate, the predictions
shown in Figure 3 are difficult to interpret because they are
inconsistent with one another. A method that claims, for
example, that a protein has homodimerization activity but
does not have dimerization activity is clearly incorrect, and a
biologist attempting to interpret these results would likely not
trust either prediction. Thus, even if reconciliation fails to
improve the accuracy of our independent predictors, recon-
ciled predictions are more desirable than unreconciled pre-
dictions.

Reconciliation methods
Motivated by the inconsistencies produced by our independ-
ent GO term predictors, we proceed to the final step of the
pipeline shown in Figure 1. In step four, the outputs of step
three are processed by a 'reconciliation method'. The goal of
this stage is to combine predictions for each term to produce
predictions that are consistent with the ontology, meaning
that all probabilities assigned to the ancestors of a GO term
are larger than the probability assigned to that term. This
fourth step is the core of our experiment, in which we con-
sider 11 different methods, summarized briefiy in Figure 4
and described in detail in Additional data file 1. We can dis-
tinguish four types of methods: heuristic methods; Bayesian
networks; cascaded logistic regression - a discriminative
method that extends logistic regression to the structured out-
put case; and projection methods.

We selected the 11 reconciliation methods to provide a variety
of complementary approaches. In general, the problem of rec-
onciliation arises for any structured prediction problem, in
which a set of interdependent labels have to be predicted.
Genome Biology 2008, 9:S6
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Depending upon the structure being predicted, the interde-
pendence relations among terms may be more or less compli-
cated. In the case of GO terms, although the GO is a complex
directed acyclic graph, the term relationships consist of sim-
ple deterministic implications, making the problem very intu-
itive. Several naïve heuristics are therefore natural. Beyond

these heuristics, methods using Bayesian networks have been
proposed by Barutcuoglu and coworkers [3]. However, dis-
criminative methods usually perform better in classification
problems; we therefore considered the cascaded logistic
regression, which is the simplest of our structured discrimi-
native models. Cascaded logistic regression itself has short-

Table 1

Summary of data types

Data type Description BP CC MF

Phenotype

MGI Mammalian phenotype ontology terms (33) 1,994 2,157 1,898

OMIM Diseases (2,488) associated with human homologs 998 1,166 978

Phylogenetic profile

Inparanoid Orthologs across 21 species 6,131 7,092 6,556

Biomart Orthologs across 18 species 6,269 7,242 6,695

Protein domain

Interpro Functional sites and domains 7,131 8,027 7,603

PfamA Protein domains 6,790 7,648 7,239

Protein-protein interaction

PPI Transferred via orthology from human (OPHID) 3,273 3,690 3,509

Gene expression data

Su et al. [9] Oligonucleotide arrays (55 tissues) 6,555 7,587 7,029

Zhang et al. [7] Affymetrix arrays (61 tissues) 5,097 5,716 5,447

SAGE Tag counts from SAGE library (99% cutoff) 6,323 7,231 6,753

Total 7,968 9,005 8,427

The table lists the ten data types from [1], along with the number of proteins that are annotated with at least one term of each ontology and for 
which that data type is available. BP, biological process; CC, cellular component; MF, molecular function.

Table 2

Kernel transformations

Name Linear Normalized linear Linear2 Normalized linear2 RBF Diffusion Parameters

MGI ✓ ✓

OMIM ✓ ✓ ✓ σ = 1

Inpar ✓ ✓ ✓ σ = 1

Biomart ✓ ✓ ✓ σ = 1

Inter ✓ ✓ ✓ σ = 1

PfamA ✓ ✓ ✓ σ = 1

PPI ✓ ✓ ✓✓✓ τ ∈ {0.1, 1, 10}

Su ✓

Zhang ✓ ✓ ✓ ✓ ✓ σ = 1

SAGE ✓ ✓ ✓ σ = 1

Each row in the table corresponds to one of the ten data types listed in Table 1. Check marks indicate which kernels were computed for each data 
set. The kernels are described in the Kernels section in Materials and methods. 'Linear2' and 'Normalized linear2' refer to the squared version of the 
original kernel matrix, as described in Materials and methods. The three check marks for the PPI data indicate that three diffusion kernels were 
computed using τ ∈ {0.1, 1, 10}. RBF, radial basis function.
Genome Biology 2008, 9:S6
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comings, which motivated us to propose new methods based
on projections. These projection methods are close in spirit to
some of the naive heuristics, compatible with a discriminative
framework, and related to a variational formulation of belief
propagation. The remaining methods considered result from
reversing the direction of the relationship between parent and
children GO terms or were hybrid methods that we included
in the evaluation in order to provide insights into the proper-
ties of the other methods.

All methods except the Bayesian networks and the cascaded
logistic regression take as input the logistic regression esti-
mates of the posterior probability for GO term i:

where Yi is a binary variable indicating whether the protein

has the function corresponding to GO term i, and xi contains

the outputs of the 35 SVMs trained for term i; the Bayesian

networks explicitly model the likelihood P(Xi = xi|Yi = yi). The

cascaded logistic regression uses individual regressions that

estimate  or , where

πi and ci are the set of parents or children of term i.

In the experiments described below, we performed analyses
in the three modes described in the Introduction: per term,
per protein, and jointly. For each of these evaluation modes,
we considered the three different ontologies - biological proc-
ess, molecular function and cellular component - and four dif-
ferent ranges of term sizes: 3 to 10 proteins, 11 to 30 proteins,
31 to 100 proteins, and 101 to 300 proteins. Furthermore, we

˘ ( | )p P Y Xi i i i= = x

P Y Y X xi i ii
( | , )π = P Y Y X xi c i ii

( | , )=

Distribution of large positive differences between child and parent GO term estimated probabilitiesFigure 2
Distribution of large positive differences between child and parent GO term estimated probabilities. The figure shows a histogram of the top 5% of the 
distribution of differences between the probability assigned to the child term and the probability assigned to the parent term by the logistic regression, 
corresponding to differences that are larger than 0.05. GO, Gene Ontology.
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compare methods at four specified recall levels: 1%, 10%,
50%, and 80%. In the following, we first describe systemati-
cally the three evaluation modes, and then proceed to more
general conclusions.

Per-term evaluation
The primary results from the per-term evaluation are shown
in Figure 5. The bar charts in this figure show average preci-
sion (y-axis) as a function of four fixed recall values (x-axis)
for all 11 reconciliation methods, plus the unreconciled logis-
tic regression. Some general trends are evident. In all three
ontologies and at all four recall levels, at least one reconcilia-
tion method performs better than the baseline logistic regres-
sion. Top performers include the three projection methods
(isotonic regression and the two Kullback-Leibler projec-
tions), as well as two of the heuristic methods ('And' and 'Or').
The belief propagation methods work consistently poorly,
and belief propagation with logistic regression (BPLR) as well
as the 'flipped' versions of both the belief propagation method
with asymmetric Laplace (BPAL) and BPLR perform worst
among all the methods.

Making qualitative observations about the results in Figure 5
immediately begs the question, which of the apparent differ-
ences in the figure are statistically significant? To address this

question, we use a Z-test procedure, described in the Statisti-
cal testing section in Materials and methods, which measures
the average amount of improvement from one method to the
next. The directed graphs in Figure 6 summarize these statis-
tical tests. In each graph, an edge from node A to node B indi-
cates that method A performs significantly better than
method B according to the Z-test. These graphs confirm that
the three projection methods perform well across ontologies
and term sizes. For example, isotonic regression never per-
forms significantly worse than any other method, and the two
Kullback-Leibler projections (KLP and KLP with edges
flipped [KLPf]) are each bested by a single method in one case
(KLP by 'And' for the biological process ontology at 50%
recall, and KLPf by 'And' in the same ontology at 80% recall).
'And' also performs very well overall; like isotonic regression,
it never performs significantly worse than any other method.

Thus far, we have ignored one dimension of our analysis: the
subdivision of terms according to their specificity. Intuitively,
some methods may be good at predicting very specific terms,
for which few training examples are available, whereas other
methods may excel at making predictions for very broad
terms. When we subdivide the GO terms into four groups,
based on the number of proteins in the training set that are
annotated with that term, we obtain 48 directed graphs like

Inconsistent predictions for the s domain of casein kinase 1Figure 3
Inconsistent predictions for the s domain of casein kinase 1. The graph shows a portion of the molecular function Gene Ontology (GO), corresponding to 
positive labels and labels predicted with probability larger than 0.1. Each term's outline is colored according to the label with respect to the target term 
'protein-tyrosine kinase activity'. A green outline corresponds to a positive label, and a purple outline corresponds to a negative label. For a given protein 
from the held-out data set, the interior of each node is colored following a similar color scheme (green = 1 and purple = 0), according to the probability 
produced by several data specific support vector machines (SVMs) combined into a logistic regression.
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the ones shown in Figure 6 (three ontologies, four recall lev-
els, and four term sizes). These plots are shown in Figure 7.

The 48 separate directed graphs in Figures 6 and 7 are diffi-
cult to summarize concisely. We therefore performed an addi-
tional processing step, in which we count how many times

each method wins and loses with respect to each of the other
methods. Specifically, for a given directed graph from the Z-
testing procedure, and for a given method A, we count (in the
original, transitively closed graph) the number of outgoing
edges (wins) and the number of incoming edges (losses), and
we subtract losses from wins. The resulting win-loss score

Summary of reconciliation methodsFigure 4

Summary of reconciliation methods. Given a set of probabilistic values obtained from logistic regression ( , i ∈ I), and Ai and Di denoting the set of 

ancestors and descendants, respectively, of Gene Ontology (GO) term i, we compute reconciled probabilistic predictions pi using the 11 strategies 

described in the text. Detailed descriptions of each method are given Additional data file 1. Colored boxes indicate the color that is used to represent this 
method on all subsequent plots.

Heuristic methods

Max Reports the largest logistic regression (LR) value of self and all descendants: pi = maxj∈Di p̂j.

And Reports the product of LR values of all ancestors and self. This is equivalent to computing the
probability that all ancestral GO terms are ‘on’ assuming that, conditional on the data, all predictions
are independent: pi =

∏
j∈Ai

p̂j.

Or Computes the probability that at least one of the descendant GO terms is ‘on’ assuming again that,
conditional on the data, all predictions are independent: 1 − pi =

∏
j∈Di

(1 − p̂j).

Bayesian networks

BPAL Belief propagation with asymmetric Laplace likelihoods. The GO is viewed as a graphical model
with edges directed from more general terms to more specific terms, and a joint Bayesian prior is put
on the binary GO term variables Yi [3]. Given Yi, the distribution of each SVM output Xi is modeled
as an independent asymmetric Laplace distribution. We use a variational inference algorithm described
in the supplement.

BPALf Same as BPAL, but with edges ‘flipped’ and directed from more specific terms to more general
terms.

BPLR A heuristic variant of BPAL where in the inference algorithm, we replace the Bayesian log
posterior ratio for Yi by the marginal log posterior ratio obtained from the LR.

BPLRf The same as BPLR, but with flipped edges.

Cascaded logistic regression

CLR In the third stage, a LR is fit to the SVM output only for those proteins that belong to all parent
terms, modeling the conditional distribution of the term given all parents, instead of the normal LR.
The final probability pi is obtained as the product of these conditionals p̌i through pi =

∏
j∈Ai

p̌i, as
in ‘And.’

Projections

IR Isotonic regression. Consider the squared Euclidian distance
∑

i(pi − p̂i)2 between two sets of
probabilities. For that distance, the isotonic regression finds the closest set of probabilities p i to the
LR values p̂i that verify all the inequality constraints pj ≤ pi for (i, j) such that i is a parent term of
j.

KLP Kullback-Leibler projection. The GO is viewed as a graphical model, corresponding to a set of dis-
tributions PG, that in particular verify the aforementioned constraints. The algorithm finds the closest
element in that set from the LR values according to the Kullback-Leibler divergence minP∈PG D(P‖P̂ ).

KLPf Same as KLP but with edges flipped.

p̆i
Genome Biology 2008, 9:S6
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ranges from 11 (all wins and no losses) to -11 (vice versa), with
a score of zero indicating that the method is approximately in
the middle of the pack. This win-loss counting procedure has
the advantage that it handles ties gracefully; when all meth-
ods tie, each method receives a win-loss score of zero. The
win-loss score allows us to summarize the results for all three
ontologies, all four term sizes, and all four recall levels in the
left-most three columns of Figure 8. In addition to scores for
the three separate ontologies, we ran the Z-testing procedure
across all terms for all three ontologies and computed corre-
sponding win-loss scores. These scores are shown in the col-
umn labeled 'All'.

Qualitatively, the most obvious trend in these heatmaps is the
division of methods into winners (cyan) and losers
(magenta). For five methods - the four belief propagation
methods and the 'Max' heuristic - nearly all of the corre-
sponding win-loss scores are either zero or negative. In the
few cases where one of these methods achieves a positive win-
loss score (for example, BPLR for the molecular function cat-
egory and small GO terms), it does so by outperforming the
other loser methods and tying with the winners. The second
most obvious trend is that the biological process ontology
provides more discrimination among methods than the other
two ontologies. Indeed, for the cellular component ontology,
so many methods tie with one another that most of the win-

Per-term evaluation, irrespective of term sizeFigure 5
Per-term evaluation, irrespective of term size. Each panel plots the average precision across all Gene Ontology (GO) terms (y-axis), using four fixed recall 
levels (x-axis). The bars are colored according to the 12 methods, as described in Figure 4.
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Statistical significance testing of per-term evaluation, irrespective of term sizeFigure 6
Statistical significance testing of per-term evaluation, irrespective of term size. Each panel shows a directed graph in which nodes are methods and a 
directed edge from node A to node B indicates that method A performs significantly better than method B according to the Z-test described in the 
Statistical testing section of Materials and methods. Because Z-tests are transitive - unlike other tests such as the Wilcoxon signed-rank test - we 
represent the graphs as transitive reductions, that is, removing edges that are already implied transitively by other edges. BP, biological process; CC, 
cellular component; MF, molecular function; Ont, ontology.
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loss scores are zero. Among the six winning reconciliation
methods, no clear trend emerges.

Thus far, we have described only results on the held-out data
set. We can gain additional confidence in our conclusions if

they are upheld by the results from the test set. Figure 9
shows the win-loss scores for the test set. Again, we can
immediately divide the methods into the same categories of
winners and losers. However, it is also clear that the test set
yields far fewer significant differences among methods. Once

Statistical significance testing of per-term evaluationFigure 7
Statistical significance testing of per-term evaluation. Each panel shows a directed graph in which nodes are methods and a directed edge from node A to 
node B indicates that method A performs significantly better than method B according to the Z-test described in the Statistical testing section of Materials 
and methods. Because Z-tests are transitive - unlike other tests such as the Wilcoxon signed-rank test - we represent the graphs as transitive reductions, 
that is, removing edges that are already implied transitively by other edges. BP, biological process; CC, cellular component; MF, molecular function; Ont, 
ontology.

Ont Size Recall = 1% Recall = 10% Recall = 50% Recall = 80%
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CC 3–10
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again, among the five winning reconciliation methods, no
clear best method emerges.

Per-protein evaluation
The per-protein evaluation proceeds in a similar fashion to
the per-term evaluation. Figure 10 shows bar plots similar to
those in Figure 5, but with precision averaged across proteins
rather than across terms. Statistical tests performed on these
results yield directed graphs (Additional data file 2), which
are then summarized using win-loss scores. These statistics
are summarized in the middle four columns of Figure 8.

For the per-protein evaluation, the story is quite different
from in the per-term evaluation. The two methods that clearly
dominate in terms of precision are the unreconciled logistic
regression and the isotonic regression. Other reasonable con-
tenders are the BPAL and the heuristic 'Or' methods. How-
ever, an inspection of the individual tests (Additional data file
2) reveals that most of the time in the biological process and
in the molecular function ontologies, the isotonic regression
performs significantly better than BPAL. Isotonic regression
also performs systematically significantly better than 'Or',
which is also significantly outperformed most of the time by
the logistic regression. On the other hand, the 'And' heuristic,

Summary of the entire experiment on the held-out data set by win-loss scoreFigure 8
Summary of the entire experiment on the held-out data set by win-loss score. Each heatmap entry represents the win-loss score for a given reconciliation 
method (row) and recall level (column). BP, biological process; CC, cellular component; MF, molecular function.
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which performed quite well in the per-term evaluation, is now
a losing method, and even the Kullback-Leibler projections
are borderline. The hybrid BPLR method and its flipped vari-
ant (BPLRf) are still losing methods. The only consistent win-
ner among the reconciliation methods is the isotonic
regression. Except for small term sizes, where many methods
tie, isotonic regression nearly always performs as well or bet-
ter than 'Or' and BPLR. These observations are confirmed in
the test set (Figure 9).

Joint evaluation
Finally, we performed a joint evaluation across terms and
proteins simultaneously. In this assessment, we rank all
(term, protein) pairs according to their predicted probability
and then plot the resulting precision-recall curve. Figure 11
shows the resulting curves for all twelve methods for each of
the three ontologies.

These plots are difficult to interpret, both because they con-
tain many series and because the series cross one another so

Summary of the entire experiment on the test data set by win-loss scoreFigure 9
Summary of the entire experiment on the test data set by win-loss score. Each heatmap entry represents the win-loss score for a given reconciliation 
method (row) and recall level (column). BP, biological process; CC, cellular component; MF, molecular function.
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frequently. We therefore used a bootstrap analysis (Boot
strap procedure for joint evaluation section in Materials and
methods) to evaluate the statistical significance of differences
between these curves. The resulting tests give rise to win-loss
scores, which are summarized in the right-most four columns
of Figures 8 and 9.

Perhaps the most striking difference between the win-loss
scores for the joint evaluation, as compared with the win-loss
scores for the other two evaluations, is the variation in per-
formance as we examine different recall values. In the previ-
ous two evaluation modes, a method generally performed
well across all recall levels or poorly across all recall levels.
This is not the case for joint evaluation. Here, some methods,
such as BPAL, perform very poorly at low recall but very well
at high recall. This change in performance arises because well
calibrated methods can concentrate their best predictions on
the left-most part of the precision-recall curve, leading to
higher precision at low recall; however, the performance of
these high precision methods at high recall can be quite dif-

ferent, and in that regime they can be significantly outper-
formed by other methods. An example is KLP, which obtains
very high precision at low recall (R = 1%, 10%) and outper-
forms significantly, in that regime, both logistic regression
and isotonic regression, according to our bootstrap tests
(Additional data file 2). KLP also has higher win-loss scores at
1% recall than isotonic regression. For intermediate recall val-
ues, isotonic regression is again typically the best performing
method, with higher win-loss scores than all other methods,
both on average and individually for each group of terms,
with the exception of the group of smaller molecular function
and cellular components terms, for which KLP is better.

Intermediate methods
In an attempt to understand what factors influence the per-
formance of two important methods, belief propagation
(BPAL) and the logistic regression, we considered several
methods that are variants or intermediates between these
two. In doing so, we wanted to separate the gain or loss in per-
formance due to different aspects of Bayesian modeling from

Per protein evaluation, irrespective of term sizeFigure 10
Per protein evaluation, irrespective of term size. Each panel plots the average precision across all protein in the held-out set (y-axis), using four fixed recall 
levels (x-axis). The bars in the top row and the nodes in the second row of panels are colored according to the 12 methods, as described in Figure 4.
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Joint evaluation, irrespective of term sizeFigure 11
Joint evaluation, irrespective of term size. Each panel plots expected precision as a function of recall produced by ranking all (protein, term) pairs according 
to their predicted probability. The curves have been bootstrapped as described in the Bootstrap procedure for joint evaluation section in Materials and 
methods.
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the gain or loss due to exploiting the constraints of the ontol-
ogy.

First we considered independent naïve Bayes classifiers that
use the same asymmetric Laplace likelihoods as BPAL but
with independent priors for each term, in contrast to the gen-
eral directed acyclic graph that BPAL uses as a structured
prior. We did not describe these naïve Bayes results above
because this is not a reconciliation method. However, its per-
formance in these experiments (not shown) is informative.
Naïve Bayes typically performs worse than unreconciled
logistic regression but better than BPAL. This observation
indicates that both of these Bayesian methods are worse than
a discriminative method, and that BPAL suffers most from
the arbitrary directed acyclic graph prior.

The other two intermediate methods that we considered have
already been described: BPLR and BPLRf. These methods
arise from the following considerations. The algorithm that
we use to perform the Bayesian inference in BPAL is a varia-
tional algorithm, which is described in Additional data file 1.
This variational formulation minimizes a Kullback-Leibler
divergence that is slightly different from that used in KLP.
However, the bigger difference between these two methods is
that the former uses a structured prior and models the evi-
dence with a likelihood term, both of which are subjective,
whereas KLP uses the discriminative predictions of the logis-
tic regression. In KLP, the log-odds for each node is the ratio
of the logistic regression conditional probabilities, but in
BPAL this log-odds is a ratio of likelihoods weighted by the
prior. In the hybrid BPLR method, the latter is substituted by
the log-odds ratio of the KLP. BPLR and BPLRf typically per-
form much better than BPAL, which demonstrates the advan-
tage of using discriminatively estimated likelihood ratios.
However, the hybrid methods typically perform worse than
KLP, probably because the formulation of BPLR uses another
term that contains the Bayesian prior.

Isotonic regression performs well overall
Among the 11 reconciliation methods that we considered, the
only one that is consistently among the winning methods for
all three evaluation modes is isotonic regression. Further-
more, considering both the held-out set and the test set, all
modes of evaluation, all three ontologies, all four term sizes,
and all recall levels, isotonic regression consistently achieves
a higher win-loss score than the unreconciled logistic regres-
sion estimates, except in 4 cases out of 360. It should be noted
that, even if the improvement is not significant for individual
tests (that heavily correct for multiple testing errors on the
complete graph of twelve nodes), all the projections (isotonic
regression, KLP, and KLPf) systematically improve over the
logistic regression in the per-protein evaluation for each term
size group and each recall level and in most of the configura-
tions for the two other modes of evaluation. Furthermore, per
protein, the improvement of isotonic regression is significant
at all recall levels for the held-out set and at 1% recall on the

test set. In addition, at high recall per protein (80%), isotonic
regression improves significantly over logistic regression in
both the held-out and test sets. In the per-protein evaluation,
isotonic regression is significantly better than all other recon-
ciliation methods on the biological process ontology, and bet-
ter than the non-projection methods for the molecular
function ontology at recall levels up to 50%.

Figure 12 illustrates the effect of applying isotonic regression
to the logistic regression estimates shown in Figure 3. The
single false positive prediction ('protein homodimerization
activity') has been corrected, and two of the three false nega-
tive annotations ('catalytic activity' and 'transferase activity')
have also been corrected. The remaining false negative ('pro-
tein-tyrosine kinase activity') has no children in the term set
and, hence, would not be corrected by any reconciliation
method.

Small terms
The group of smallest terms deserves a specific analysis,
because it is an important one; these terms represent 50% of
all terms 'of interest' selected by Peña-Castillo and coworkers
[1], and they also are the most specific and, hence, frequently
the hardest to predict. However, for these smaller terms, the
relative performance of the methods in our study is more var-
iable, and as a consequence, we observe fewer statistically sig-
nificant differences in performance. Furthermore, many of
the differences apparent in the hold-out set are not supported
by the results on the test set. Considering only the smallest
terms, the per term evaluation does not discriminate among
five reconciliation methods ('And,' 'Or,' isotonic regression,
and the two Kullback-Leibler projections). In the per protein
evaluation, 'And' does poorly on the hold-out set and well on
the test set, and conversely isotonic regression and 'Or' do
well on the hold-out set and poorly on the test set. Thus, for
the per-term evaluation, only the two Kullback-Leibler pro-
jection methods perform well in both of these evaluation
modes. It should be noted also that in the per-protein evalua-
tion, KLP does not perform well on the held-out set but per-
forms systematically well on small terms on the test set, with
significant improvement over logistic regression. Finally,
KLP also performs well for small terms under the joint evalu-
ation mode.

Joint evaluation at very high precision
One of the motivations for considering the joint annotation
regime is that the precision of the prediction almost doubles
at low recall compared with the two other modes of evalua-
tion. This effect is illustrated in Figure 13, which compares the
recall achieved at 10% precision across all 12 methods and all
3 evaluation modes. The figure shows that, for the held-out
set at recall = 10%, the precision levels jump from approxi-
mately 20% to 35% for biological processes, approximately
40% for molecular function and approximately 15% to 35%
for cellular component in the per-term and per-protein eval-
uations to 60%, 80% and 55%, respectively, in the joint eval-
Genome Biology 2008, 9:S6
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uation. Thus, a labeling that is adaptively parsimonious can
improve the precision considerably. It is important to note
that, in this regime, which corresponds to the high precision/
low recall regime for the joint annotation evaluation, isotonic
regression does not perform particularly well. In spite of the
fact that the isotonic regression improves, on average, over
logistic regression at low recall, it is often outperformed by
the Kullback-Leibler projection. The latter is indeed signifi-
cantly better than isotonic regression, on average, over the
biological process ontology and the molecular function ontol-
ogy at precision and recall less than 10% both on the held-out
and test sets.

Discussion
Overall, our experiments suggest that, among the reconcilia-
tion methods that we considered, isotonic regression is the
most generally useful. Across a range of evaluation modes,
term sizes, ontologies and recall levels, isotonic regression
yields consistently high precision. On the other hand, isotonic
regression is not always best, and a biologist with a particular
goal in mind may wish to consult our experiments to select
the most appropriate method. For small terms, we suggest
using Kullback-Leibler projections rather than isotonic
regression. Several other specific cases might be of interest;

for example, for joint annotation, if precision will be evalu-
ated at high recall values, then BPAL yields very good per-
formance.

One striking overall observation is that reconciliation can
yield a decrease in performance; thus, beating unreconciled
logistic regression is nontrivial. Intuitively, the structure of
the GO seems to be quite informative, and a biologist examin-
ing graphs like the one in Figure 3 might expect that any rea-
sonable reconciliation will lead to a performance
improvement. This assumption turns out to be incorrect. In
many cases, the reconciled probabilities have lower precision
than the original, unreconciled probabilities. This can be
explained by the fact that estimating well the degree of confi-
dence associated with a prediction is much harder than decid-
ing whether a prediction is roughly correct or not. Because
reconciliation methods essentially combine all of the confi-
dences (or the strength of the evidence) obtained at each
node, those individual confidence values must be carefully
estimated. We have argued that, for equal levels of precision,
reconciled predictions are clearly preferable to unreconciled
predictions, because they are not self-contradictory. Our
results show that although some methods do quite poorly
compared with unreconciled logistic regression, we can
essentially always do as well or better using one of the projec-

Predictions for the ε domain of casein kinase 1 reconciled by isotonic regressionFigure 12
Predictions for the ε domain of casein kinase 1 reconciled by isotonic regression. The figure is the same as Figure 3, but the predicted probabilities have 
been reconciled by isotonic regression. The graph shows a portion of the molecular function GO, corresponding to positive labels and labels predicted 
with probability larger than 0.1. Each term's outline is colored according to the label with respect to the target term 'protein-tyrosine kinase activity'. A 
green outline corresponds to a positive label, and a purple outline corresponds to a negative label. The interior of each node is colored following a similar 
color scheme (green = 1 and purple = 0), according to the predicted probability.
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tion methods. Hence, it is never necessary to weigh the
advantage of reconciled predictions against the disadvantage
of a loss in precision due to reconciliation.

In terms of complexity and ease of implementation several of

these methods are fairly comparable. The fastest methods are

the naïve methods 'Max,' 'And,' and 'Or,' whose complexity is

at worst (hn), where n is the number of nodes and h is the

height of the graph. The complexity of the cascaded logistic

regression is the same as that of the logistic regression. Also,

the complexity of performing the inference in the Bayesian

network or the Kullback-Leibler projection is the same; both

are iterative methods, and each iteration has a complexity

equal to that of the naïve methods. An exact algorithm for iso-

tonic regression is (n4); however, the approximation that

we employ is an iterative algorithm with iterations of com-

plexity (hm), where h is the height of the graph and m is the

number of edges. For the GO, the height of the ontology

graphs is small, h ≤ 12, and, moreover, the number of parents

is at most 6 so that m ≤ 6n. This reduces significantly the com-

plexity of most of the algorithms: the complexity of each iter-

ation for the Bayesian inference or the projection is (n). In

practice, the iterative algorithm for the isotonic regression

seemed to require slightly more iterations to converge than

the projection algorithm. The projection algorithms as well as

the inference in the Bayesian network are typically executed

in a few minutes on the entire training set.

One of the advantages of logistic regression is that it is trained
discriminatively, in a way that directly optimizes the decision
function, which models a probability for the binary term var-
iable Yi given the evidence Xi. In comparison, a Bayesian net-
work models the same conditional probability only indirectly,
through the likelihood of the evidence Xi given Yi. Moreover,
the logistic regression explicitly optimizes the 'calibration' of
the decision function, that is, how well the probabilistic val-
ues returned by the algorithm match the actual empirical suc-

cess of correct prediction. In contrast, the probabilistic values
returned by a Bayesian algorithm depend not only on the
prior but crucially on the accuracy of the likelihood, which
typically is very far from being a reasonable approximation of
the actual underlying distribution. Because the logistic
regressions are trained per term, it is not surprising that they
perform better than many other methods in that regime.

A question often asked when 'probabilizing' GO, that is, treat-
ing it as a graphical model that encodes some conditional
independencies between functions rather than just determin-
istic relations between terms, is which orientation of the
edges of the graph is most reasonable. Whereas we see a big
difference in performance when changing the orientation of
the edges for the Bayesian network, the difference is much
smaller in the case of Kullback-Leibler projection. It still
seems, however, that generally a top-down parameterization
leads to the best results.

Isotonic regression uses a similar notion of projection, but
does not make probabilistic assumptions on the GO, only tak-
ing into account marginal probabilities for each term and
deterministic implications between terms. The method's
good performance might be explained by the fact that it
makes fewer assumptions than other methods and corre-
sponds to the smallest distortion of the logistic regression
probabilities satisfying the deterministic constraints. We did
not mention cascaded logistic regression, which has two weak
points: that a prediction mistake somewhere in the cascade
might be difficult to compensate for and that the conditional
logistic regression might be difficult to estimate for lack of
positive examples.

Finally, it is worth mentioning that in spite of being fairly sim-
ple, both the 'And' and 'Or' methods perform well in some sit-
uations. In particular, 'And' tends to perform better for
smaller terms, whereas 'Or' performs better for larger terms.
This observation is consistent with the semantics associated
with these terms: for small terms, checking that all ancestral
terms agree with the prediction is a good guarantee, and for









All three evaluation modes at fixed recallFigure 13
All three evaluation modes at fixed recall. Each panel plots the precision achieved at recall = 10% across the three different evaluation modes. The bars are 
colored according to the 12 methods, as described in Figure 4.
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larger terms, considering the evidence coming from the
descendant term is relevant. It should be noted that 'And' and
'Or' are, in principle, very similar to cascaded logistic regres-
sion and its flipped variant, respectively.

Overall, this work aims to address three essential points. The
first point concerns the goals of protein function prediction;
we propose three distinct modes of evaluation, corresponding
to three different uses of prediction methods. The second
point concerns calibration - the estimation of a confidence
level for prediction that is common to all classifiers. Although
we have emphasized the need for calibration only in the joint
annotation mode of evaluation, it should be clear that calibra-
tion is more generally desirable, regardless of the evaluation
mode, because calibration leads to higher levels of precision.
Finally, the third point concerns reconciliation. The main
goal of a reconciliation is to obtain interpretable output. It is
important, however, to assess the extent to which interpreta-
bility is obtained at a cost in terms of accuracy; indeed, as we
have seen, several apparently reasonable reconciliation algo-
rithms lead to a decrease in accuracy. Our results allay this
concern - we have identified a class of projection methods
that maintains accuracy while producing predictions that are
consistent and, therefore, interpretable to the biologist.

Materials and methods
Kernels
The representation of the data used by a SVM is determined
by the choice of a kernel function. For each data type, we train
SVMs using three or more different kernel functions. Three
are common to all data types.

The first kernel function common to all data types is the linear
kernel:

K(x, y) = x·y

where x and y are standardized data vectors; that is, each var-
iable in the data matrix is centered to have mean 0 and scaled
to have variance 1.

The second is the normalized version  of the linear kernel:

The third is the Gaussian kernel or radial basis function ker-
nel:

In addition, for two data types we compute a data-specific
kernel. These kernels are described below.

For the protein-protein interaction data, we compute a diffu-
sion kernel [6] on the graph of proteins connected by interac-

tions. Diffusion kernels correspond to embeddings of the
vertices in a Hilbert space, where the inner product between
two vertices approximates the probability of traveling from
one vertex to the other in time τ by random walk on the graph.
Nodes connected by shorter paths therefore contribute more
to the similarity. We compute three diffusion kernels with τ ∈
{0.1, 1, 10}.

For the Zhang expression data, Zhang and coworkers [7] con-
clude from their study that patterns of co-expression across
tissues are 'more predictive of function than tissue-specific
expression levels.' To use the large amount of unlabeled data,
we use a representation of genes in terms of co-expressed
genes; consider the columns of the linear kernel matrix con-
structed from gene expression data as a new vector represen-
tation of the genes, and then compute a linear kernel from
those vectors. This corresponds to squaring the original ker-
nel matrix. Note that this is different from a Hadamard prod-
uct of the matrix with itself corresponding to a quadratic
kernel, which would not use unlabeled data.

We finally compute four kernels that are linear combinations
of the previously described ones. More specifically, we con-
sider two combinations of the data types with the largest cov-
erage: PfamA, Interpro, Inparanoid, Biomart, Zhang, Su,
SAGE; and PfamA, Interpro, Inparanoid, Biomart, PPI,
Zhang, Su, SAGE (see Table 1 for a summary of these data
types).

For each of these combinations, we renormalize the corre-
sponding linear kernels (restricted to the set of genes they
have in common) either by their trace or by the ratio of their
trace to their Frobenius norm. This yields four additional ker-
nels.

SVM training
In the second stage of the pipeline shown in Figure 1, we train
a collection of SVM classifiers for each GO term, building one
SVM for each combination of kernel and GO term. Thus, the
output of this stage is a matrix of SVM discriminant scores
with three dimensions: gene, GO term, and kernel. Note that,
typically, not all data types are available for a given gene, so
that some of the entries in this matrix are missing. We handle
these missing values in the subsequent stages.

For each SVM, proteins annotated with the target GO term or
a descendant term are labeled as positive examples. Proteins
annotated with an ancestor term are ignored. All remaining
proteins are labeled as negative examples. Let the numbers of
positive and negative examples be n+ and n-, respectively.
Each SVM is trained from a randomly selected 60% of the
training points. The SVMs are trained using two soft-margin
parameters C+ and C-, penalizing, respectively, false positives
and false negatives, and chosen, respectively, proportional to
1/n+ and 1/n-. For the third stage, we need samples of the dis-
tribution of SVM outputs on new data. To simulate these sam-

K

K K x y K x y K x x K y y: ( , ) ( , )/ ( , ) ( , )=

K x y e x y( , ) /= − − 2 λ
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ples from the training data, we use fivefold cross-validation,
and we store all evaluations on held-out data for use during
the third stage. The discriminant function used on any new
gene is the average of the five discriminants from the cross-
validation.

Missing data
In the third step of Figure 1, SVM outputs are either mapped
to probabilistic outputs using a logistic regression or, if the
fourth step is Bayesian inference, to their likelihood in a mix-
ture of fitted asymmetric Laplace distributions. For the Baye-
sian network, we use the approach of Barutcuoglu and
coworkers [3], except that we use asymmetric Laplace distri-
butions and a variational inference algorithm described in
Additional data file 1, rather than exact inference. In the
Bayesian network framework, data types are considered con-
ditionally independent given the GO term assignments, and
missing values are, therefore, accommodated naturally. We
refer the reader to Bennett [8] for details of the likelihood
parameter estimation.

Missing data are more problematic for the logistic regression.
Each protein exhibits a certain pattern of missing data across
the ten data types. This pattern can be represented as a bit
string of length 10. In practice, most patterns occur very
rarely; therefore, we consider only the 15 most frequent pat-
terns. Each protein is associated with the pattern most similar
to its own, provided there is at most one data type difference
between their data type patterns. Otherwise, it is considered
an orphan. When one data type is actually missing in the pro-
tein pattern compared with its group pattern, we fill in the
corresponding value with the average value of the SVM out-
put for that type. For each of the 15 groups, we then fit an
unregularized logistic regression, whose output on the test set
gives a confidence measure for the prediction. A few exam-
ples, the orphans, are not matched to any clusters; for these,
first, individual logistic regressions are learned from the out-
put of each kernel specific SVM using the training data; then
those logistic regressions are evaluated on the orphan points
if they have the corresponding data type. Finally, for each
orphan point we average the output of the logistic regressions
corresponding to the data types available and use the
obtained probability as a confidence measure for the predic-
tion.

Logistic regression and naive Bayes
To investigate the loss of precision incurred specifically by
modeling SVM outputs in a generative fashion as in the Baye-
sian network, we consider the unstructured counterpart of
the Bayesian network that treats each term independently.
For each term, this is a naïve Bayes model based on asymmet-
ric Laplace likelihoods (we use the NBAL acronym for this
method). The SVM outputs are modeled as in the Bayesian
network and the marginal frequency of terms is used as a
prior for each of them. The probabilistic value returned is the
posterior probability obtained by Bayes rule.

Statistical testing
From the point of view of testing whether a method is signifi-
cantly more precise at fixed recall than another, we use a Z-
test on the difference of average precisions, which measures
the average amount of improvement from one method to the
next. This test is appropriate if the number of observations is
large enough that the average can be assumed approximately
distributed as a Gaussian variable. This is the case both in
per-term and per-protein evaluations, where there are typi-
cally several hundreds of proteins or terms and in any case no
less than 35.

To perform simultaneous comparisons of different methods
with Z-tests, we determine first a 95% ellipsoidal confidence
region for the vector of means of the methods we are compar-
ing, and then we ask for which pairs of methods (k, l) the ellip-
soid is entirely on one side of the hyperplane with equation xk

= xl. The latter question matches the Gaussian rejection
region for the one dimensional statistic T defined as the dif-
ference of average precisions for methods k and l renormal-
ized by the empirical standard deviation of the difference. In
the tests reported in the Results section, we report the Gaus-
sian p-value for T.

Bootstrap procedure for joint evaluation
The two sample Z-tests used for the per-protein and per-term
evaluations are based on observations corresponding to the
value of the precision for different terms at a fixed recall
value. In the case of the joint evaluation, we a priori get a sin-
gle precision value for a fixed recall instead of a whole sample
of such precision values. To obtain a whole sample, we should
be allowed to draw several test (or held-out) sets from a larger
distribution of known proteins. The theory of the bootstrap is
based on the idea that the empirical distribution of the sample
is in itself a good approximation of the distribution that it is
sampled from, and that, therefore, an estimator of a function
of the distribution can be obtained by plugging the sample
empirical distribution into the function. Applying the concept
of the bootstrap to our situation, we can estimate the distribu-
tion of precision values at a fixed recall value by constructing
repeatedly precision-recall curves from bootstrap samples
and computing the precision at that fixed recall. In particular,
the mean of that distribution approximates the mean preci-
sion-recall curve of a sample. If the precision-recall curve for
several methods are bootstrapped based on the same boot-
strap sample, then the probability that one method beats
another can be estimated or tested. We perform multiple tests
to find pairs of methods (A, B) such that A outperforms B with
probability 0.9. The result of the tests based on 315 bootstrap
samples can be shown to guarantee a confidence level higher
than 95%, after correction for multiple testing.
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BPAL, belief propagation with asymmetric Laplace; BPLR,
belief propagation with logistic regression; BPLRf, flipped
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