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NetGrep<p>NetGrep is a system for searching protein interaction networks for matches to user-supplied network schemas.</p>

Abstract

NetGrep (http://genomics.princeton.edu/singhlab/netgrep/) is a system for searching protein
interaction networks for matches to user-supplied 'network schemas'. Each schema consists of
descriptions of proteins (for example, their molecular functions or putative domains) along with
the desired topology and types of interactions among them. Schemas can thus describe domain-
domain interactions, signaling and regulatory pathways, or more complex network patterns.
NetGrep provides an advanced graphical interface for specifying schemas and fast algorithms for
extracting their matches.

Rationale
High-throughput experimental and computational
approaches to characterize proteins and their interactions
have resulted in large-scale biological networks for many
organisms. These complex networks are composed of a
number of distinct types of interactions: these include inter-
actions between proteins that interact physically, that partic-
ipate in a synthetic lethal or epistatic relationship, that are
coexpressed, or where one phosphorylates or regulates
another (for a review, see [1]). Though incomplete and noisy,
these networks provide a holistic view of the functioning of
the cell, and with appropriate computational analysis and
experimental work have significant potential for helping to
uncover precisely how complex biological processes are
accomplished.

We have developed a network analysis system based on que-
rying interactomes using templates corresponding to network
patterns of interest. Searching for recurring patterns in bio-
logical data has been the backbone of much research in com-
putational biology; for example, within the context of

sequence analysis, it has given rise to extensive work on
sequence alignments and sequence motif discovery and has
resulted in large sequence motif libraries. Not surprisingly,
within the burgeoning field of biological network analysis,
considerable effort has been focused on uncovering recurring
patterns within interactomes. Mapping homologous proteins
with conserved interaction patterns in different interactomes
has revealed shared modules and complexes recurring across
a range of organisms [2-6]. Analysis of the wiring diagrams of
interactomes has uncovered network motifs that occur more
frequently than expected by chance [7-13]. Additionally, there
has been much work on uncovering recurring domain-
domain interactions in physical interactomes [14-23], both to
suggest a physical basis for known interactions and to help
predict new interactions. Most closely related to the work
described here are previous attempts to query biological net-
works using particular user-supplied subgraphs [24-29].

In this paper, we introduce a system, NetGrep, that integrates
the wealth of prior information known about individual pro-
teins - for example, their functional annotations, sequence
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motifs, predicted domain structures, or other attributes -
within the context of user-directed network searches. In par-
ticular, NetGrep utilizes 'network schemas' to describe pat-
terns in interaction networks and incorporates fast
algorithms to search for matches of these schemas within net-
works. A network schema describes a group of proteins with
specific characteristics and with the desired topology and
types of interactions connecting them (Figure 1a). A schema's
matches, or instances, in an interactome are subgraphs of the
interaction network that are made up of proteins having the
specified characteristics, which interact with one another as
dictated by the schema's topology (Figure 1b). In graph-theo-
retic terms, a schema corresponds to a graph with labeled
nodes and edges, and finding instances of a schema within an
interactome corresponds to solving a subgraph isomorphism
problem. The NetGrep system allows querying with schemas
described via a diverse set of protein features, including
Prosite family [30], Pfam motif [31], SMART domain [32,33],
Supfam superfamily [34], and Gene Ontology (GO) [35]
annotations. Proteins may also be specified via particular
protein IDs, homology to other proteins, regular expressions
over amino acids, or with unions or intersections over any of
the previously described features. By utilizing these protein
attributes in combination with physical, genetic, phosphor-
ylation, regulatory, and/or coexpression interactions (as
available for the organism of interest via high-throughput
experiments), the network schema queries allowed in Net-
Grep generalize many previously studied interaction pat-
terns. For example, a general network schema relating to
signaling is a path of physically interacting proteins, where
the first protein is a receptor, and the last protein is a tran-
scription factor (Figure 2a); such queries have been used in
conjunction with gene expression data to infer signaling path-
ways in Saccharomyces cerevisiae [36]. A more specific net-
work schema relating to signaling consists of particular
proteins making up a pathway that can be used to search for
paralogous pathways (Figure 2b), as has been suggested in
network alignment approaches [37]. Network motifs have
been widely studied [7,8], and can be described by schemas
without constraints on protein types but with particular inter-
action types specified (Figures 2c,d). Domain-domain or
domain-peptide interactions, such as those important for cell
signaling and regulatory systems [38], can be represented by
two-protein schemas with the proteins appropriately con-
strained (Figure 2e). Schemas relating to specific proteins of
interest are also easily incorporated (Figure 2f). Finally, net-
work schemas can be naturally extended to handle approxi-
mate matches by specifying optional nodes (Figure 2a). While
these types of network interaction patterns have been studied
in a wide-range of contexts, it has not even been possible to
use many of them as queries in existing systems. Thus, we
have introduced NetGrep to provide a flexible, unified system
for interrogating an interactome using a diverse set of que-
ries.

In addition to allowing a broad range of network schema que-
ries, NetGrep has an easy-to-use graphical interface for input-
ting schemas. For each user-input schema, NetGrep finds all
of its matches in the chosen interactome. Although the search
problem is a case of the computationally difficult subgraph
isomorphism problem, we have been able to develop algo-
rithms that take advantage of schema characteristics for bio-
logical networks. As a result, NetGrep's core algorithms are
extremely fast in practice for queries with up to several thou-
sand matches in the interactomes studied. Though speed is
useful for individual user queries, it also makes it possible to
systematically enumerate and query many network interac-
tion patterns. For example, here we have systematically
tested NetGrep's underlying algorithms by enumerating
>100,000 schema queries with proteins described via GO
molecular function terms and have found that for schemas
with up to tens of thousands of matches, NetGrep can rapidly
uncover all instances. Our algorithms can thus enable new
analysis that characterizes networks with respect to the types
and numbers of interaction patterns found (for example, see
[39]).

Relationship to previous work
There are several previously developed tools for querying bio-
logical networks. While none of them have the functionality of
NetGrep, we briefly review them here. Previous approaches
fall broadly into the categories of network alignment, network
motif finding, and specific subgraph queries, although these
categories overlap.

Network alignment tools [4,5,37,40] align protein-protein
interaction networks by combining interaction topology and
protein sequence similarity to identify conserved pathways.
These tools can be used to identify schemas for which the cri-
terion for matching a query protein to a target protein is
sequence similarity. Network alignment has also been applied
to metabolic networks [24], with proteins characterized by
their enzyme classification. Algorithmically, these
approaches are designed for aligning entire interactomes, and
several of them are based on local alignments based on sim-
pler linear or tree topologies. NetGrep in contrast is devel-
oped and optimized for general network schema queries, and
has faster algorithms for the task at hand.

Several tools exist for uncovering network motifs or over-rep-
resented topological patterns in graphs [41,42], and these
could be used to find schemas consisting solely of unanno-
tated proteins. These approaches do not, however, provide a
mechanism for utilizing specific protein annotations, nor do
they allow user defined queries. We note that while NetGrep
can obtain instances to network motif queries, our algorithms
are optimized for schemas utilizing protein descriptions and
with up to tens of thousands of instances. Alternative algo-
rithms, specifically developed for counting or approximating
Genome Biology 2008, 9:R138
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A sample schema and its instances in yeastFigure 1
A sample schema and its instances in yeast. (a) An example of a schema. Each protein in the schema has a specific feature description and each edge has a 
type. In this case, the schema describes Ras GTPase signaling, where small G proteins from the Ras family are regulated by GTPase activating proteins 
(GAPs) and Guanine nucleotide exchange factors (GEFs), and in turn regulate effector kinases, which may phosphorylate other proteins. (b) Instances of 
the schema in S. cerevisiae.
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Sample schemasFigure 2
Sample schemas. Examples of network schemas. Unlabeled schema proteins are considered to be 'wildcards' and can match any protein in the interaction 
network. (a) A signaling pathway schema. This schema matches all sets of proteins such that a protein in the cell membrane physically interacts with a 
succession of anywhere between one and three kinases, the last of which physically interacts with a protein that is a transcription factor. (b) A MAP kinase 
schema, specified by particular yeast proteins making up a canonical MAPK signaling pathway. (c) A feed-forward loop network motif [8] schema. The 
unlabeled nodes can match any protein in the network. (d) A 'kinate' feedback loop network motif schema [13]. (e) An SH3 domain interaction schema. 
This schema matches all interacting pairs of proteins such that one contains a Pfam SH3 domain and the other has one of the specified patterns, 
corresponding to SH3 binding sites, in its underlying amino acid sequence. Amino acids in the pattern are specified by their one letter code, and 'x' denotes 
a match to any amino acid. (f) A specific protein schema. This schema matches all proteins with a synthetic lethal relationship to yeast protein ACT1.
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the total number of instances of network motifs [43,44], may
be more suitable if network motif queries are desired.

Other more closely related tools have been implemented to
query biological networks using subgraphs. Given a linear
sequence of GO functional attributes, Narada [45] finds all
occurrences of the corresponding linear paths in a network.
MOTUS [25] is designed for non-topology constrained sub-
graph searches in metabolic networks. Qnet [28] is restricted
to tree queries and utilizes only sequence similarity. Net-
Match [26], extending ideas of GraphGrep [46], allows users
to search for subgraphs within the Cytoscape [47] environ-
ment and can be used for simple schema queries. SAGA [27]
is a subgraph matching tool for Linux platforms that allows
inexact matches to a query in multiple networks, and has
built-in support for biological networks where proteins are
described via orthologous groups. In contrast to these
approaches, NetGrep is a standalone, multi-platform system
where schemas may have arbitrary topologies as well as a
large set of built-in protein and interaction types. NetGrep
schemas allow flexibility via optional nodes (thereby permit-
ting inexact matches) and protein and interaction descrip-
tions that may consist of boolean conjunctions or disjunctions
of features. While NetGrep comes with built-in protein fea-
ture and interaction data sets for several model organisms, it
also has the ability to incorporate new custom networks and
associated feature sets. Furthermore, NetGrep can optionally
be used within the Cytoscape environment to visualize
schema matches. See Table 1 for a comparison of features
available in NetGrep and previous approaches.

Implementation
We have implemented NetGrep in Java so that it is easily
portable among different operating systems. Users have the
option of running a feature-limited version of the software on

our server [48] or of downloading the fully featured program
and running it locally. NetGrep can be used both as a stan-
dalone application or in conjunction with Cytoscape as a
plugin if visualization of the results in network form is
desired. A detailed description of how to use NetGrep is pro-
vided online [49]. More formal descriptions of schemas, their
instances in the interactome, and the algorithms used to
uncover the instances are given in the 'Model and algorithm'
section below.

Packaged data files
Data files are provided for the following model organisms to
be used with NetGrep: S. cerevisiae, Caenorhabditis elegans,
Drosophila melanogaster and Homo sapiens. These files
contain all the information necessary to run NetGrep, includ-
ing protein information (names and aliases), interaction
maps, and protein features.

Tables 2 and 3 list the protein features and edge types
included in these data files. Physical and genetic interactions
for all organisms are obtained from BioGrid [50] (version
2.0.34), and phosphorylation interactions for yeast are
obtained from [13]. Regulatory relationships in yeast are
obtained from the binding data of [51] using a p-value/cutoff
of 1e-5. Gene expression interactions between pairs of pro-
teins are taken as those that have linear correlation coefficient
>0.8 on the concatenation of all experiments in the gene
coexpression data compiled by [52]; we note that this high
cutoff and required correlation in all conditions favors
expression interactions between housekeeping proteins.

One important feature of NetGrep is that none of the data are
hard-coded into the program. Users can therefore use any
node features or edge types desired when constructing net-
works; for example, custom or newly defined interaction

Table 1

Feature comparisons

Feature PathBLAST [37] Fanmod [41] Narada [45] SAGA [27] NetMatch [26] NetGrep

Non-linear queries X X X X X

Allows arbitrary protein annotations 1 per node Unlimited Unlimited

Boolean combination of annotations X X

Inexact matches X X X

Multiple edge types in a network X X X

Boolean combination of edge types X

UI for searching/choosing annotations X X

Can be used with Cytoscape X X

Can be used as a standalone X X X X X

Custom data sets provided X X X

A comparison of built-in features available in systems that can, in principle, be used for querying interactomes using network schemas. A network 
alignment tool, PathBLAST, and a network motif finder, Fanmod, are shown for comparison. All other systems are explicitly designed for querying 
interactomes utilizing labeled subgraphs.
Genome Biology 2008, 9:R138
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types can be added. Additionally, creating data files for other,
non-supported organisms is a straightforward process.

Describing proteins and interactions
Nodes, describing proteins, are added to a schema via a visual
canvas, and then individual features of the proteins can be
selected (Figure 3a). The interactome to be queried is speci-
fied via a pull-down menu (Figure 3b). Each of the nodes in a
schema can be annotated with any combination of protein
features; multiple features are related by boolean combina-
tions via ANDs or ORs. A node in a schema can be connected
to any other, corresponding to a desired interaction, also by
specifying this in the visual canvas. These edges between
nodes can be described as having one or more types (Figure
3c). As with protein features, edge types may be combined
with logical ANDs or ORs. For example, one might require
that two given proteins physically interact AND that the first
is a transcription factor regulating the second. Note that a
schema must be a connected graph.

Specifying inexact matches
The schemas described thus far are rigid in their structure.
Occasionally, a user might prefer to specify that any number
of proteins with a particular feature set interact in a cascade
or that a given node in the schema not be absolutely required.
NetGrep achieves this flexibility by allowing nodes in the

schema to be designated as optional. When a schema contains
an optional node, NetGrep will find matches both with and
without the given protein. For example, to represent a signal-
ing pathway as 'a protein in the membrane, which interacts
with a succession of between one and three kinases, the last of
which interacts with a transcription factor', one would build
the given linear five-node pathway and designate two of the
kinases as optional (Figure 2a). NetGrep would then find all
three-, four-, and five-node matches within the network. Note
that single nodes with more than two interactions cannot be
designated as optional. When an optional node has two inter-
actions, the interaction types are logically ORed for instances
of the schema that have the optional node excluded.

Similarly, a significant problem with current interaction data-
sets is that they are incomplete. NetGrep provides a solution
to this difficulty by also allowing interactions in a schema to
be designated as optional. When a schema contains an
optional interaction, NetGrep will allow matches even if the
given interaction is not found in the network.

Matches and reliabilities
NetGrep has a user-set threshold that limits the number of
matches reported for an input schema (Figure 3b). As a typi-
cal user is not expected to look through tens of thousands of
matches, this threshold can be as low as 100 and as high as
50,000. For faster run times, a lower threshold is recom-
mended; additionally, the threshold limits memory usage.
Alternatively, if the total number of instances is greater than
the highest allowed threshold, there is an advanced (some-
what slower) option that computes the total number of
instances but does not explicitly enumerate them.

The instances of a query schema are returned by NetGrep, up
to the user-defined threshold, and are sorted according to
how confident we are of the underlying interactions. In par-
ticular, for each pair of proteins, we have a single precom-
puted reliability value between 0 and 1 that assesses how
likely these two proteins are to interact (see 'Interaction reli-
abilities' section below). For each of the matches found by
NetGrep, its overall reliability is computed by multiplying
together the reliabilities corresponding to protein pairs that
have interactions in the matches. The matches are sorted
based on the negative log of this value, beginning with the
most reliable (Figure 3d).

Performance
We have found NetGrep to run extremely fast in practice. We
illustrate the performance of NetGrep in two ways. First, we
report how long NetGrep takes for each of the schemas shown
in Figure 2. As a comparison, whenever possible, we have also
run these schemas on the same network using other tools. For
each system, the software is downloaded and run on a laptop
running Windows XP with 1 GB RAM and a 1.66 GHz Intel
processor. All queries are run on our S. cerevisiae network

Table 2

Protein features

Protein feature Source

Gene names and aliases BioGRID [50] 2.0.34

Amino acid sequences Biomart [58]

Paralogs COG [59], Biomart [58]

Pfam A/B motifs Pfam [31] 21.0

SMART [32,33] motifs InterPro [60] 15.0

Prosite [30] motifs

SCOP [34] superfamilies

GO functional annotations GO [35] 05/2007 download

Protein features used to annotate proteins in the built-in data sets 
provided with NetGrep.

Table 3

Interaction types

Interaction type Source Restrictions

Physical BioGRID [50] 2.0.34

Genetic

Gene coexpression [52]

Transcriptional regulation [51] Yeast only

Phosphorylation [13] Yeast only
Genome Biology 2008, 9:R138
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data, described above. All timings include the times for both
the search and output of the results. Default settings for all
programs are used. While we have NetGrep print out its wall
clock time to standard output, the timings for the other sys-
tems are estimated via a handheld timer and rounded down
to the nearest second. We have chosen this process as some of
the systems must be run within a graphical interface and
strict system timing calls are not possible. Each query is
repeated ten times and the reported running times are the
averages over these runs. Table 4 shows the performances for
each sample query. Note that table entries are left blank for

schemas that cannot be run on a given system and two of
these queries can currently be run only on NetGrep. NetGrep
has considerably faster query times for all sample queries,
and is often more than an order of magnitude faster than pre-
vious approaches.

Second, we have run NetGrep in a systematic fashion on sche-
mas consisting of physical interactions in triangular, 4-node
linear 'quad,' and 4-node branched (that is, a central node
interacting with three others) 'Y-star' topologies. We consider
all possible ways to annotate the proteins in these topologies

NetGrep screenshotFigure 3
NetGrep screenshot. A detailed screenshot of the NetGrep display showing a sample query schema. (a) The graph panel area used to describe schemas. 
The Ras GTPase signaling schema from Figure 1 is shown in the panel with the Ras GTPase node highlighted. (b) The panel used to designate which 
interaction network to use, to choose the maximum number of matches desired, and to initiate a search. (c) The panel used to annotate nodes in the 
schema and to create or modify edges. The information for the highlighted node (node 3) is currently displayed in the panel; the edge between the first and 
third nodes is being modified. (d) The results panel in which the matches found from the search are displayed. Each row lists the proteins that make up a 
particular match along with its reliability score.

(b)

(a)

(d)

(c)
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using GO molecular function slim [53] terms (see Additional
data file 1 for terms used). We have chosen these types of
schemas because of their linear, branched, and cyclical topol-
ogies, and because we are easily able to exhaustively enumer-
ate over all possible schemas of this type on a standard laptop.
Additionally, GO annotations can be utilized with queries in
two previous systems, NetMatch and Narada (though Narada
is limited to the linear schemas). There are 1,771 triangular

schemas, 101,871 quad schemas, and 37,191 Y-star GO molec-
ular function slim schemas. Since each GO slim term is gen-
eral and can annotate many proteins, we set the threshold for
the maximum number of matches allowed to 80,000. Of the
schemas, almost all have fewer than 80,000 instances in S.
cerevisiae (all triangular schemas, 97,170 quad schemas and
37,129 Y-star schemas). Statistics about how long NetGrep
takes to retrieve all instances for each query that has between

Table 4

Running time comparisons

Running time (s)

Sample query PathBLAST Fanmod Narada NetMatch NetGrep

Signaling pathway 1 28 4.2

Signaling pathway 2 26.9

MAPK pathway 90 0.02

Feed-forward motif 32 5.2 1.4

Kinate motif 32 5 0.5

SH3 domain interaction 0.5

ACT1 genetic interaction 15 0.1

Running times (in seconds) for several sample queries on the S. cerevisiae interaction network, using PathBLAST, Fanmod, Narada, NetMatch and 
NetGrep. All reported running times are for search and output only. As in Table 1, PathBLAST is used as a prototypical example of a network 
alignment tool and Fanmod represents network motif finders. Note that SAGA is excluded here because it cannot be run on Windows. The sample 
schemas correspond to those provided in Figure 2, except that two distinct queries are used for Figure 2a. In the first, all three kinases in the 
pathway are required. In the second, two of the kinases are designated as optional (as in Figure 2a). Each query is run ten times and the average 
computation time is provided. Row entries are left blank for any tool that is unable to find instances of a particular schema because of feature 
limitations.

Table 5

GO MF running time comparisons

Running time (s)

Topology Query Narada NetMatch NetGrep

Triangle GO:0003677, GO:0004386, GO:0004672 15 0.1

Triangle GO:0004386, GO:0004672, GO:0030528 16 0.2

Triangle GO:0003723, GO:0003723, GO:0003723 15 1.9

Quad GO:0004386, GO:0003677, GO:0016874, GO:0016829 1 14 0.2

Quad GO:0016787, GO:0030234, GO:0005515, GO:0008233 2.3 17 1.2

Quad GO:0003677, GO:0003723, GO:0005515, GO:0005198 4 16 1.9

Quad GO:0016787, GO:0005198, GO:0003677, GO:0016779 2.2 17 1.7

Quad GO:0016787, GO:0016740, GO:0016779, GO:0030528 4.8 16 2.9

Y-star GO:0008233, GO:0016874, GO:0030234, GO:0005215 15 0.2

Y-star GO:0005515, GO:0004721, GO:0008233, GO:0016740 17 0.8

Y-star GO:0005515, GO:0008233, GO:0005198, GO:0005215 17 3.9

Y-star GO:0030528, GO:0005515, GO:0016740, GO:0005215 14 1.5

Y-star GO:0016740, GO:0005515, GO:0030528, GO:0005215 14 5.2

A comparison of running times (in seconds) for several sample schemas annotated with GO molecular function slim terms on the S. cerevisiae 
interaction network using Narada, NetMatch and NetGrep. Of the previous methods, Narada and NetMatch are chosen as they can be run off-the-
shelf for these schemas; note, however, that Narada only handles linear topology queries. All reported running times are for search and output only. 
In the case of the Y-stars, the first term shown annotates the central node. The schemas shown have between 10 and 11,000 instances in S. cerevisiae.
Genome Biology 2008, 9:R138
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5 and 80,000 instances in yeast are given in Figure 4; we
exclude schemas with fewer than 5 matches as they typically
take less time. As can be seen, matches for each of these que-
ries are found within 100 seconds, but the vast majority in
fact take less than even 10 seconds. We are not able to time
NetMatch and Narada in a systematic manner; thus, we have
arbitrarily chosen three triangle, five quad, and five Y-star
molecular function queries, to give a sampling of run times
for these previous approaches on these types of schemas. The
schemas and their timings are shown in Table 5.

Model and algorithm
Graph model
We give a formal specification of the problem. Let L be the set
of possible protein labels (for example, Pfam motifs, protein
IDs, and so on) and let T be the set of possible edge types (for
example, physical, regulatory, and so on). An interaction net-
work is represented as a mixed graph G = (VN,EN,AN). VN  is
the set of vertices, with a vertex v ∈ VN  for each protein. EN ⊆
VN × VN  is the set of undirected edges, and AN ⊆ VN × VN  is the

set of arcs or directed edges. Vertices correspond to proteins
and edges and arcs correspond to interactions. Each vertex v
in the interaction network is associated with a set of features
l(v) ⊂ L (specifying protein features), each edge (u,v) is asso-
ciated with a set of types te(u,v) ∈ T (specifying the undirected
interactions between the proteins), and each arc (u,v) is asso-
ciated with a set of types ta(u,v) ∈ T (specifying the directed
interactions between the proteins). If there is no edge
between u and v, te(u,v) = ∅, and if there is no arc between u
and v, ta(u,v) = ∅.

A network schema is a mixed graph H = (VS,ES,AS) such that:
(1) each vertex v ∈ VS is associated with description set Dv

such that each d ∈ Dv is a subset of L (in NetGrep, the set Dv

is constructed via individual protein features in L and utiliz-
ing either intersections or unions over these features; for
example, for a particular vertex v ∈ VS, if a union is taken over
individual feature types, Dv consists of singleton sets consist-
ing of each of these features; note that Dv can consist of one
set, the emptyset, in the case of a wildcard vertex); (2) for
every pair of vertices u and v such that (u,v) ∈ ES ∪ AS, there
is an associated description set D'u,v ⊂ T (in NetGrep, the set
D'u,v  is constructed via individual interaction types, and
requiring either all of them, or just one of them; for example,
for a particular pair of vertices u and v with desired edges or
arcs between them, if all interactions are required, then D'u,v

consists of a single set consisting of all desired interaction
types).

An instance of a network schema H in an interaction network
G (that is, a match in the network for the schema) is a sub-
graph (VI,EI,AI) where VI ⊂ VN, EI ⊂ EN, and AI ⊂ AN such that
there is a one-to-one mapping f:VS→VI  where: (1) for each v
∈ VS, there exists a d ∈ Dv such that d ⊂ l(f(v)); (2) for each
pair of vertices u,v ∈ VS with (u,v) ∈ ES ∪ AS, there exists a d'
∈ D'u,v such that d' ⊂ (te(f(u),f(v)) ∪ ta(f(u),f(v))). Note that
two distinct instances of a schema may share proteins and/or
interactions; however, any two instances must differ in at
least one protein. Network schemas are used to interrogate
the interaction network for sets of proteins that match this
description.

Interaction reliability
For each pair of proteins, we estimate the reliability of their
having any interaction between them. In particular, we first
partition all the observed underlying interactions in the inter-
actome into several experimental groups. The reliability of
each experimental group i is then evaluated as follows. For
experiments determining non-genetic interactions, the relia-
bility is estimated based on 'functional coherence' by comput-
ing si as the fraction of interactions in that group that are
between proteins sharing a high-level GO biological process
slim term [53] (only pairs of interacting proteins that both
have GO slim annotations are considered). We note that we
do not use the functional coherence measure to assess genetic
interaction experiments, as these types of interactions can

Yeast GO molecular function schema timingsFigure 4
Yeast GO molecular function schema timings. All possible triangular, 4-
node linear, and 4-node branched schemas ('Y-star') with nodes described 
via GO molecular function slim terms were run systematically on 
NetGrep. Results are reported for those schemas with at least 5 but no 
more than 80,000 instances in S. cerevisiae: 780 triangular schemas; 80,719 
4-node linear schemas; and 30,642 4-node branched schemas. Boxplots of 
the running times for each topology are given; boxplots are a convenient 
way of depicting the smallest observation, second quartile, median, third 
quartile, and largest observation in the data.
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bridge between pathways [54]. Instead, for these experi-
ments, the reliability is estimated based on a '2-hop' topolog-
ical measure that has been shown to be highly predictive of
genetic interactions [55]. In particular, the reliability si for an
experimental group determining genetic interactions is esti-
mated by computing the fraction of interactions in that group
that additionally have paths of length two between them in
the full interactome where either both interactions are genetic
interactions or where one is a genetic interaction and the
other is a physical interaction. Then, for a pair of proteins u
and v, we consider all interactions j found between them, and
treat them as independent events. The reliability r(u,v)
between u and v is then computed as:

r(u,v) = 1 - Πj(1 - sg(j))

where j ranges over all interactions linking proteins u and v,
and g(j) gives the experimental group of interaction j. If no
interactions exist between the two proteins, r(u,v) = 0. This
noisy-or scheme is similar to the one used for reliability esti-
mation in [56,57].

We partition our interactions into the following experimental
groups. For physical and genetic interactions, there is one
group for each individual high-throughput physical and
genetic interaction experiment (defined as those that discover
at least 50 interactions). All small-scale physical interaction
experiments (defined as those that discover fewer than 50
interactions) are considered as belonging to a single group.
Similarly, small-scale genetic interaction experiments are
considered a single group. Experiments are identified by the
combination of 'Experimental System' and 'PubMed ID' as
reported by the BioGRID [50]. All phosphorylation interac-
tions in [13] are considered in one group. In the case of inter-
actions that are associated with continuous numerical data,
such as coexpression interactions (associated with the corre-
lation coefficient) and regulatory interactions [51] (associated
with the p-value for the binding), we assign each interaction
to one of 20 uniform bins associated with the numerical data,
and consider each bin as a separate group.

Searching for schemas
Overview
Finding the matches for a particular schema in a network cor-
responds to the computationally difficult subgraph isomor-
phism problem. A number of sophisticated algorithmic
approaches for closely related problems on biological net-
works have been introduced earlier (for example, utilizing
color coding [28]). Here, we obtain fast matches in practice
utilizing a few key ideas. First, we pre-process the interac-
tome to build fast look up tables mapping protein and inter-
action type labels to proteins associated with the labels. For
each node in a schema, this allows us to quickly enumerate
the set of all proteins that match the node's feature set. Sec-
ond, we utilize the labeled schema nodes and schema edges to
prune the search space. In particular, we constrain the pro-

teins in each node match set by determining interaction
matches along each edge in the schema. Finally, these inter-
actions are cached for fast lookup in the last step, in which we
enumerate the considerably smaller search space, and con-
struct the full list of matches. We describe these steps in more
detail below.

Algorithm
We first pre-process the interactome to maintain two hashes
that map labels to proteins associated with those labels.
HASHF maps protein features to sets of vertices described by
those features (for example, all kinases), and HASHT maps
edge types to pairs of proteins connected by an edge anno-
tated with the types (for example, all proteins with physical
interactions). For directed edge types, there are two separate
entries in HASHT, one for each direction of the edge (for
example, one for all kinases and one for all substrates). These
hashes are used to quickly build, for any schema, its matches
edge by edge.

When searching for instances of a particular schema, we asso-
ciate with each node v in the schema a set of node matches
NMATCHv, which contains all of the proteins in the interac-
tion network that are described by that particular schema
node (that is, the proteins that could be a match to that
schema node). Specifically, we use HASHF to initialize
NMATCHv with all the proteins that match v's feature set.
When features are combined with a boolean AND, we take the
intersection of the protein sets from HASHF, and when they
are combined with a boolean OR, we take the union of the
protein sets. For each edge e = (u,v) in the schema that has a
single type (that is, is not composed of a boolean combination
of types) or for which all edge types are required (that is, types
are combined by a logical AND), we use HASHT to trim the
proteins in each node match set. For example, if schema node
v is connected by a physical edge, then we can remove all pro-
teins from NMATCHv that are not found in the set from
HASHT corresponding to all proteins in the network con-
nected by a physical edge.

We next prune the sets of node matches as follows, or until
any of them becomes empty (at which point we know that
there are no matches to the query in the network). For each
edge e = (u,v) in the schema, we use the network interaction
map to remove all proteins from NMATCHu that do not inter-
act with any of the proteins in NMATCHv given e's specified
type. Although we could repeat this pruning step after each
edge is processed, we have found it to be unnecessary because
of two additional optimizations that we introduce. First, as we
iterate through the edges in this step, we start with those
edges whose endpoints contain the smallest sets of node
matches and we progress in order; this optimization helps to
reduce the size of the larger node match sets early on in the
process. That is, we rank schema nodes based on the size of
their node match sets, start with the node with the smallest
node match set, and consider its edges first, starting with the
Genome Biology 2008, 9:R138
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neighbor with the smallest node match set. We then consider
the node with the next smallest node match set, and so on.
Second, as we iterate through the schema edges, we cache the
matches for each edge, so that they can be quickly accessed in
the next step where we find the actual matches. Note that this
pruning step is skipped with optional nodes because edges
connected to those nodes are not required. This pruning step
is also skipped for edges if their match bins are too large
(>1,000).

To find the sets of proteins that match the given schema, we
iterate through each of the node match sets from smallest to
largest, constructing matches as we go along. We note that
this search order over the nodes provides a significant speed-
up over a simpler approach that performs depth-first search
from an arbitrary starting node in the schema. As we iterate
through the nodes, for each protein p in a given match set rep-
resenting node v in the schema, we constrain each larger
match set representing node u in the schema as follows: if u
and v are connected by an edge in the schema, we eliminate
all proteins in u's match set that do not interact with p (using
the cached matches from the pruning step above). Further-
more, we remove p from u's set if it is there (that is, we do not
allow the same protein to occur in multiple positions of a
match). We then set p as the matching protein at schema node
v for this particular set of matches and traverse to the next
largest node match set. Once a complete match to a schema is
found, we backtrack and continue the search process.

If at any point the number of matches to a schema exceeds the
user-defined threshold (Figure 2b), the search is terminated
and NetGrep returns just those matches found up to that
point. Once all matches to a schema are found, they are sorted
by their interaction reliability, as described above.

Symmetric schemas
When a schema displays an inherent symmetry, it is often the
case that the same set of proteins redundantly occurs in mul-
tiple instances. Consider, for example, the symmetric linear
three-node schema A-B-A, where the edges are undirected,
and the first and last nodes have identical feature sets and are
symmetric around the middle node. One might find among
the matches of this schema the proteins p1-p2-p3 and p3-p2-p1.
NetGrep is able to determine that a given schema is symmet-
ric and excludes these superfluous matches from the results
returned by the search. The test for symmetry exploits the fact
that for any two given nodes in a schema to be symmetric they
need to have the exact same feature set and degree; for all
pairs of nodes u and v in the schema for which this is true, the
algorithm recursively checks all pairs of nodes connected to
these two target nodes (that is, one connected to u and one
connected to v) for symmetry, following any given edge just
one time. This is equivalent to a depth first search over the
schema. The base case in the recursive algorithm occurs when
two target nodes are connected to each other or when they are
connected to the same node.

If a query is determined to be symmetric, redundant matches
are ignored during the search. To accomplish this task, each
protein in the interaction network is first assigned an arbi-
trary unique ID number, as are each of the nodes in the query
schema. Then, for any two symmetric nodes A and B in a
query schema where the ID of A is smaller than the ID of B,
we require that the ID of any protein matching node A be
smaller than the ID of a protein matching node B in any given
instance. All instances for which this requirement is not met
for each of the symmetric nodes are ignored.

Conclusion
We have introduced NetGrep, a powerful Java system for
searching protein interactomes for instances of user-supplied
labeled subgraphs, or network schemas, and have provided
fully-featured data files for several organisms. NetGrep
allows a wide-range of possible queries that supersede many
previously studied interaction patterns. Finally, we have
described an algorithm for solving the labeled subgraph iso-
morphism problem that is fast and effective in practice for
biological networks.
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