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ChIP-Seq analysis<p>MACS performs model-based analysis of ChIP-Seq data generated by short read sequencers.</p>

Abstract

We present Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short
read sequencers such as Solexa's Genome Analyzer. MACS empirically models the shift size of
ChIP-Seq tags, and uses it to improve the spatial resolution of predicted binding sites. MACS also
uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for
more robust predictions. MACS compares favorably to existing ChIP-Seq peak-finding algorithms,
and is freely available.

Background
The determination of the 'cistrome', the genome-wide set of
in vivo cis-elements bound by trans-factors [1], is necessary
to determine the genes that are directly regulated by those
trans-factors. Chromatin immunoprecipitation (ChIP) [2]
coupled with genome tiling microarrays (ChIP-chip) [3,4]
and sequencing (ChIP-Seq) [5-8] have become popular tech-
niques to identify cistromes. Although early ChIP-Seq efforts
were limited by sequencing throughput and cost [2,9], tre-
mendous progress has been achieved in the past year in the
development of next generation massively parallel sequenc-
ing. Tens of millions of short tags (25-50 bases) can now be
simultaneously sequenced at less than 1% the cost of tradi-

tional Sanger sequencing methods. Technologies such as Illu-
mina's Solexa or Applied Biosystems' SOLiD™ have made
ChIP-Seq a practical and potentially superior alternative to
ChIP-chip [5,8].

While providing several advantages over ChIP-chip, such as
less starting material, lower cost, and higher peak resolution,
ChIP-Seq also poses challenges (or opportunities) in the anal-
ysis of data. First, ChIP-Seq tags represent only the ends of
the ChIP fragments, instead of precise protein-DNA binding
sites. Although tag strand information and the approximate
distance to the precise binding site could help improve peak
resolution, a good tag to site distance estimate is often
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unknown to the user. Second, ChIP-Seq data exhibit regional
biases along the genome due to sequencing and mapping
biases, chromatin structure and genome copy number varia-
tions [10]. These biases could be modeled if matching control
samples are sequenced deeply enough. However, among the
four recently published ChIP-Seq studies [5-8], one did not
have a control sample [5] and only one of the three with con-
trol samples systematically used them to guide peak finding
[8]. That method requires peaks to contain significantly
enriched tags in the ChIP sample relative to the control,
although a small ChIP peak region often contains too few con-
trol tags to robustly estimate the background biases.

Here, we present Model-based Analysis of ChIP-Seq data,
MACS, which addresses these issues and gives robust and
high resolution ChIP-Seq peak predictions. We conducted
ChIP-Seq of FoxA1 (hepatocyte nuclear factor 3α) in MCF7
cells for comparison with FoxA1 ChIP-chip [1] and identifica-
tion of features unique to each platform. When applied to
three human ChIP-Seq datasets to identify binding sites of
FoxA1 in MCF7 cells, NRSF (neuron-restrictive silencer fac-
tor) in Jurkat T cells [8], and CTCF (CCCTC-binding factor) in
CD4+ T cells [5] (summarized in Table S1 in Additional data
file 1), MACS gives results superior to those produced by
other published ChIP-Seq peak finding algorithms [8,11,12].

Results
Modeling the shift size of ChIP-Seq tags
ChIP-Seq tags represent the ends of fragments in a ChIP-
DNA library and are often shifted towards the 3' direction to
better represent the precise protein-DNA interaction site. The
size of the shift is, however, often unknown to the experi-
menter. Since ChIP-DNA fragments are equally likely to be
sequenced from both ends, the tag density around a true
binding site should show a bimodal enrichment pattern, with
Watson strand tags enriched upstream of binding and Crick
strand tags enriched downstream. MACS takes advantage of
this bimodal pattern to empirically model the shifting size to
better locate the precise binding sites.

Given a sonication size (bandwidth) and a high-confidence
fold-enrichment (mfold), MACS slides 2bandwidth windows
across the genome to find regions with tags more than mfold
enriched relative to a random tag genome distribution. MACS
randomly samples 1,000 of these high-quality peaks, sepa-
rates their Watson and Crick tags, and aligns them by the
midpoint between their Watson and Crick tag centers (Figure
1a) if the Watson tag center is to the left of the Crick tag
center. The distance between the modes of the Watson and
Crick peaks in the alignment is defined as 'd', and MACS shifts
all the tags by d/2 toward the 3' ends to the most likely pro-
tein-DNA interaction sites.

When applied to FoxA1 ChIP-Seq, which was sequenced with
3.9 million uniquely mapped tags, MACS estimates the d to be

only 126 bp (Figure 1a; suggesting a tag shift size of 63 bp),
despite a sonication size (bandwidth) of around 500 bp and
Solexa size-selection of around 200 bp. Since the FKHR motif
sequence dictates the precise FoxA1 binding location, the true
distribution of d could be estimated by aligning the tags by the
FKHR motif (122 bp; Figure 1b), which gives a similar result
to the MACS model. When applied to NRSF and CTCF ChIP-
Seq, MACS also estimates a reasonable d solely from the tag
distribution: for NRSF ChIP-Seq the MACS model estimated
d as 96 bp compared to the motif estimate of 70 bp; applied to
CTCF ChIP-Seq data the MACS model estimated a d of 76 bp
compared to the motif estimate of 62 bp.

Peak detection
For experiments with a control, MACS linearly scales the total
control tag count to be the same as the total ChIP tag count.
Sometimes the same tag can be sequenced repeatedly, more
times than expected from a random genome-wide tag distri-
bution. Such tags might arise from biases during ChIP-DNA
amplification and sequencing library preparation, and are
likely to add noise to the final peak calls. Therefore, MACS
removes duplicate tags in excess of what is warranted by the
sequencing depth (binomial distribution p-value <10-5). For
example, for the 3.9 million FoxA1 ChIP-Seq tags, MACS
allows each genomic position to contain no more than one tag
and removes all the redundancies.

With the current genome coverage of most ChIP-Seq experi-
ments, tag distribution along the genome could be modeled
by a Poisson distribution [7]. The advantage of this model is
that one parameter, λBG, can capture both the mean and the
variance of the distribution. After MACS shifts every tag by d/
2, it slides 2d windows across the genome to find candidate
peaks with a significant tag enrichment (Poisson distribution
p-value based on λBG, default 10-5). Overlapping enriched
peaks are merged, and each tag position is extended d bases
from its center. The location with the highest fragment
pileup, hereafter referred to as the summit, is predicted as the
precise binding location.

In the control samples, we often observe tag distributions
with local fluctuations and biases. For example, at the FoxA1
candidate peak locations, tag counts are well correlated
between ChIP and control samples (Figure 1c,d). Many possi-
ble sources for these biases include local chromatin structure,
DNA amplification and sequencing bias, and genome copy
number variation. Therefore, instead of using a uniform λBG

estimated from the whole genome, MACS uses a dynamic
parameter, λlocal, defined for each candidate peak as:

λlocal = max(λBG, [λ1k,] λ5k, λ10k)

where λ1k, λ5k and λ10k are λ estimated from the 1 kb, 5 kb or
10 kb window centered at the peak location in the control
sample, or the ChIP-Seq sample when a control sample is not
available (in which case λ1k is not used). λlocal captures the
Genome Biology 2008, 9:R137
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MACS model for FoxA1 ChIP-SeqFigure 1
MACS model for FoxA1 ChIP-Seq. (a,b) The 5' ends of strand-separated tags from a random sample of 1,000 model peaks, aligned by the center of their 
Watson and Crick peaks (a) and by the FKHR motif (b). (c) The tag count in ChIP versus control in 10 kb windows across the genome. Each dot 
represents a 10 kb window; red dots are windows containing ChIP peaks and black dots are windows containing control peaks used for FDR calculation. 
(d) Tag density profile in control samples around FoxA1 ChIP-Seq peaks. (e,f) MACS improves the motif occurrence in the identified peak centers (e) and 
the spatial resolution (f) for FoxA1 ChIP-Seq through tag shifting and λlocal. Peaks are ranked by p-value. The motif occurrence is calculated as the 
percentage of peaks with the FKHR motif within 50 bp of the peak summit. The spatial resolution is calculated as the average distance from the summit to 
the nearest FKHR motif. Peaks with no FKHR motif within 150 bp of the peak summit are removed from the spatial resolution calculation.
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influence of local biases, and is robust against occasional low
tag counts at small local regions. MACS uses λlocal to calculate
the p-value of each candidate peak and removes potential
false positives due to local biases (that is, peaks significantly
under λBG, but not under λlocal). Candidate peaks with p-val-
ues below a user-defined threshold p-value (default 10-5) are
called, and the ratio between the ChIP-Seq tag count and λlocal

is reported as the fold_enrichment.

For a ChIP-Seq experiment with controls, MACS empirically
estimates the false discovery rate (FDR) for each detected
peak using the same procedure employed in the previous
ChIP-chip peak finders MAT [13] and MA2C [14]. At each p-
value, MACS uses the same parameters to find ChIP peaks
over control and control peaks over ChIP (that is, a sample
swap). The empirical FDR is defined as Number of control
peaks / Number of ChIP peaks. MACS can also be applied to
differential binding between two conditions by treating one of
the samples as the control. Since peaks from either sample are
likely to be biologically meaningful in this case, we cannot use
a sample swap to calculate FDR, and the data quality of each
sample needs to be evaluated against a real control.

Model evaluation
The two key features of MACS are: empirical modeling of 'd'
and tag shifting by d/2 to putative protein-DNA interaction
site; and the use of a dynamic λlocal to capture local biases in
the genome. To evaluate the effectiveness of tag shifting based
on the MACS model d, we compared the performance of
MACS to a similar procedure that uses the original tag posi-
tions instead of the shifted tag locations. The effectiveness of
the dynamic λlocal is assessed by comparing MACS to a proce-
dure that uses a uniform λBG from the genome background.
Figure 1e,f show that both the detection specificity, measured
by the percentage of predicted peaks with a FKHR motif
within 50 bp of the peak summit, and the spatial resolution,
defined as the average distance from the peak summit to the
nearest FKHR motif, are greatly improved by using tag shift-
ing and the dynamic λlocal. In addition, FoxA1 is known to
cooperatively interact with estrogen receptor in breast cancer
cells [1,15]. As evidence for this, we also observed enrichment
for estrogen receptor elements (3.1-fold enriched relative to
genome motif occurrence) and its half-site (2.7-fold) [15]
within the center 300 bp regions of MACS-detected FoxA1
ChIP-Seq peaks.

λlocal is also effective in capturing the local genomic bias from
a ChIP sample alone when a control is not available. To dem-
onstrate this, we applied MACS to FoxA1 ChIP-Seq and con-
trol data separately. Using the same parameters, all the
control peaks are, in theory, false positives, so the FDR can be
empirically estimated as Number of control peaks / Number
of ChIP peaks. To identify 7,000 peaks, the FDR for MACS is
only 0.4% when a control is available and λlocal is used. To get
7,000 peaks when a control is not available, the FDR could
still remain low at 3.8% if MACS estimates λlocal from the ChIP

sample, whereas it would reach 41.2% if MACS uses a global
λBG. This implies that the λlocal is critical for ChIP-Seq studies
when matching control samples are not available [5,9].

Method comparisons
We compared MACS with three other publicly available ChIP-
Seq peak finding methods, ChIPSeq Peak Finder [8], Find-
Peaks [11] and QuEST [12]. To compare their prediction spe-
cificity, we swapped the ChIP and control samples, and
calculated the FDR of each algorithm as Number of control
peaks / Number of ChIP peaks using the same parameters for
ChIP and control. For FoxA1 and NRSF ChIP-Seq (an FDR for
CTCF is not available due to the lack of control), MACS con-
sistently gave fewer false positives than the other three meth-
ods (Figure 2a,b).

Determining the percentage of predicted peaks associated
with a motif within 50 bp of the peak center for FoxA1 and
NRSF ChIP-Seq, we found MACS to give consistently higher
motif occurrences (Figure 2c,d). Evaluating the average dis-
tance from peak center to motif, excluding peaks that have no
motif within 150 bp of the peak center, we found that MACS
predicts peaks with better spatial resolution in most cases
(Figure 2e,f). For CTCF, since QuEST does not run on sam-
ples without controls, we only compared MACS to ChIPSeq
Peak Finder and FindPeaks. Again, MACS gave both higher
motif occurrences within 50 bp of the peak center and better
spatial resolutions than other methods (Figure S1 in Addi-
tional data file 1). In general, MACS not only found more
peaks with fewer false positives, but also provided better
binding resolution to facilitate downstream motif discovery.

Comparison of ChIP-Seq to ChIP-chip
A comparison of FoxA1 ChIP-Seq and ChIP-chip revealed the
peak locations to be fairly consistent with each other (Figure
3a). Not surprisingly, the majority of ChIP-Seq peaks under a
FDR of 1% (65.4%) were also detected by ChIP-chip (MAT
[13] cutoff at FDR <1% and fold-enrichment >2). Among the
remaining 34.6% ChIP-Seq unique peaks, 1,045 (13.3%) were
not tiled or only partially tiled on the arrays due to the array
design. Therefore, only 21.4% of ChIP-Seq peaks are indeed
specific to the sequencing platform. Furthermore, ChIP-chip
targets with higher fold-enrichments are more likely to be
reproducibly detected by ChIP-Seq with a higher tag count
(Figure 3b). Meanwhile, although the signals of array probes
at the ChIP-Seq specific peak regions are below the peak-call-
ing cutoff, they show moderate signal enrichments that are
significantly higher than the genomic background (Wilcoxon
p-value <10-320; Figure 3c). Indeed, 835 out of 1,684 ChIP-
Seq specific peaks could also be detected in ChIP-chip, when
the less stringent FDR cutoff of 5% is used. Another reason
why peaks detected by ChIP-Seq may be undetected by ChIP-
chip is that ChIP-Seq specific peaks are usually slightly
shorter than similar fold-enrichment peaks found by both
ChIP-Seq and ChIP-chip (Figure 3d) and may not be detecta-
ble on the array due to insufficient probe coverage. On the
Genome Biology 2008, 9:R137
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Comparison of MACS with ChIPSeq Peak Finder, FindPeaks and QuESTFigure 2
Comparison of MACS with ChIPSeq Peak Finder, FindPeaks and QuEST. (a-f) Shown is the FDR for FoxA1 (a) and NRSF (b) ChIP-Seq, motif occurrence 
within 50 bp of the peak centers for FoxA1 (c) and NRSF (d), and the average distance from the peak center to the nearest motif (peaks with no motif 
within 150 bp from peak center are removed) for FoxA1 (e) and NRSF (f).
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Figure 3 (see legend on next page)
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other hand, ChIP-chip specific peak regions also have signifi-
cantly more sequencing tags than the genomic background
(Wilcoxon p-value <10-320; Figure S2 in Additional data file
1), although with current sequencing depth, those regions
cannot be called as peaks.

Comparing the difference between ChIP-chip and ChIP-Seq
peaks, we find that the average peak width from ChIP-chip is
twice as large as that from ChIP-Seq. The average distance
from peak summit to motif is significantly smaller in ChIP-
Seq than ChIP-chip (Figure 3e), demonstrating the superior
resolution of ChIP-Seq. Under the same 1% FDR cutoff, the
FKHR motif occurrence within the central 200 bp from ChIP-
chip or ChIP-Seq specific peaks is comparable with that from
the overlapping peaks (Figure 3f). This suggests that most of
the platform-specific peaks are genuine binding sites. A com-
parison between NRSF ChIP-Seq and ChIP-chip (Figure S3 in
Additional data file 1) yields similar results, although the
overlapping peaks for NRSF are of much better quality than
the platform-specific peaks.

Discussion
ChIP-Seq users are often curious as to whether they have
sequenced deep enough to saturate all the binding sites. In
principle, sequencing saturation should be dependent on the
fold-enrichment, since higher-fold peaks are saturated earlier
than lower-fold ones. In addition, due to different cost and
throughput considerations, different users might be inter-
ested in recovering sites at different fold-enrichment cutoffs.
Therefore, MACS produces a saturation table to report, at dif-
ferent fold-enrichments, the proportion of sites that could
still be detected when using 90% to 20% of the tags. Such
tables produced for FoxA1 (3.9 million tags) and NRSF (2.2
million tags) ChIP-Seq data sets (Figure S4 in Additional data
file 1; CTCF does not have a control to robustly estimate fold-
enrichment) show that while peaks with over 60-fold enrich-
ment have been saturated, deeper sequencing could still
recover more sites less than 40-fold enriched relative to the
chromatin input DNA. As sequencing technologies improve
their throughput, researchers are gradually increasing their
sequencing depth, so this question could be revisited in the
future. For now, we leave it up to individual users to make an

informed decision on whether to sequence more based on the
saturation at different fold-enrichment levels.

The d modeled by MACS suggests that some short read
sequencers such as Solexa may preferentially sequence
shorter fragments in a ChIP-DNA pool. This may contribute
to the superior resolution observed in ChIP-Seq data, espe-
cially for activating transcription and epigenetic factors in
open chromatin. However, for repressive factors targeting
relatively compact chromatin, the target regions might be
harder to sonicate into the soluble extract. Furthermore, in
the resulting ChIP-DNA, the true targets may tend to be
longer than the background DNA in open chromatin, making
them unfavorable for size-selection and sequencing. This
implies that epigenetic markers of closed chromatin may be
harder to ChIP, and even harder to ChIP-Seq. To assess this
potential bias, examining the histone mark ChIP-Seq results
from Mikkelsen et al. [7], we find that while the ChIP-Seq effi-
ciency of the active mark H3K4me3 remains high as pluripo-
tent cells differentiate, that of repressive marks H3K27me3
and H3K9me3 becomes lower with differentiation (Table S2
in Additional data file 1), even though it is likely that there are
more targets for these repressive marks as cells differentiate.
We caution ChIP-Seq users to adopt measures to compensate
for this bias when ChIPing repressive marks, such as more
vigorous sonication, size-selecting slightly bigger fragments
for library preparation, or sonicating the ChIP-DNA further
between decrosslinking and library preparation.

MACS calculates the FDR based on the number of peaks from
control over ChIP that are called at the same p-value cutoff.
This FDR estimate is more robust than calculating the FDR
from randomizing tags along the genome. However, we notice
that when tag counts from ChIP and controls are not bal-
anced, the sample with more tags often gives more peaks even
though MACS normalizes the total tag counts between the
two samples (Figure S5 in Additional data file 1). While we
await more available ChIP-Seq data with deeper coverage to
understand and overcome this bias, we suggest to ChIP-Seq
users that if they sequence more ChIP tags than controls, the
FDR estimate of their ChIP peaks might be overly optimistic.

Comparison of FoxA1 ChIP-Seq and ChIP-chipFigure 3 (see previous page)
Comparison of FoxA1 ChIP-Seq and ChIP-chip. (a) Overlap between the FoxA1 binding sites detected by ChIP-chip (MAT; FDR <1% and fold-enrichment 
>2) and ChIP-Seq (MACS; FDR <1%). Shown are the numbers of regions detected by both platforms (that is, having at least 1 bp in common) or unique to 
each platform. (b) The distributions of ChIP-Seq tag number and ChIP-chip MATscore [13] for FoxA1 binding sites identified by both platforms. (c) 
MATscore distributions of FoxA1 ChIP-chip at ChIP-Seq/chip overlapping peaks, ChIP-Seq unique peaks, and genome background. For each peak, the 
mean MATscore for all probes within the 300 bp region centered at the ChIP-Seq peak summit is used. Genome background is based on MATscores of all 
array probes in the FoxA1 ChIP-chip data. (d) Width distributions of FoxA1 ChIP-Seq/chip overlapping peaks and ChIP-Seq unique peaks at different fold-
enrichments (less than 25, 25 to 50, and larger than 50). (e) Spatial resolution for FoxA1 ChIP-chip and ChIP-Seq peaks. The Wilcoxon test was used to 
calculate the p-values for (d) and (e). (f) Motif occurrence within the central 200 bp regions for FoxA1 ChIP-Seq/chip overlapping peaks and platform 
unique peaks. Error bars showing standard deviation were calculated from random sampling of 500 peaks ten times for each category. Background motif 
occurrences are based on 100,000 randomly selected 200 bp regions in the human genome, excluding regions in genome assembly gaps (containing 'N').
Genome Biology 2008, 9:R137
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Conclusion
As developments in sequencing technology popularize ChIP-
Seq, we propose a novel algorithm, MACS, for its data analy-
sis. MACS offers four important utilities for predicting pro-
tein-DNA interaction sites from ChIP-Seq. First, MACS
improves the spatial resolution of the predicted sites by
empirically modeling the distance d and shifting tags by d/2.
Second, MACS uses a dynamic λlocal parameter to capture
local biases in the genome and improves the robustness and
specificity of the prediction. It is worth noting that in addition
to ChIP-Seq, λlocal can potentially be applied to other high
throughput sequencing applications, such as copy number
variation and digital gene expression, to capture regional
biases and estimate robust fold-enrichment. Third, MACS
can be applied to ChIP-Seq experiments without controls,
and to those with controls with improved performance. Last
but not least, MACS is easy to use and provides detailed infor-
mation for each peak, such as genome coordinates, p-value,
FDR, fold_enrichment, and summit (peak center).

Materials and methods
Dataset
ChIP-Seq data for three factors, NRSF, CTCF, and FoxA1,
were used in this study. ChIP-chip and ChIP-Seq (2.2 million
ChIP and 2.8 million control uniquely mapped reads, simpli-
fied as 'tags') data for NRSF in Jurkat T cells were obtained
from Gene Expression Omnibus (GSM210637) and Johnson
et al. [8], respectively. ChIP-Seq (2.9 million ChIP tags) data
for CTCF in CD4+ T cells were derived from Barski et al. [5].

ChIP-chip data for FoxA1 and controls in MCF7 cells were
previously published [1], and their corresponding ChIP-Seq
data were generated specifically for this study. Around 3 ng
FoxA1 ChIP DNA and 3 ng control DNA were used for library
preparation, each consisting of an equimolar mixture of DNA
from three independent experiments. Libraries were pre-
pared as described in [8] using a PCR preamplification step
and size selection for DNA fragments between 150 and 400
bp. FoxA1 ChIP and control DNA were each sequenced with
two lanes by the Illumina/Solexa 1G Genome Analyzer, and
yielded 3.9 million and 5.2 million uniquely mapped tags,
respectively.

Software implementation
MACS is implemented in Python and freely available with an
open source Artistic License at [16]. It runs from the com-
mand line and takes the following parameters: -t for treat-
ment file (ChIP tags, this is the ONLY required parameter for
MACS) and -c for control file containing mapped tags; --
format for input file format in BED or ELAND (output) format
(default BED); --name for name of the run (for example,
FoxA1, default NA); --gsize for mappable genome size to
calculate λBG from tag count (default 2.7G bp, approximately
the mappable human genome size); --tsize for tag size
(default 25); --bw for bandwidth, which is half of the esti-

mated sonication size (default 300); --pvalue for p-value
cutoff to call peaks (default 1e-5); --mfold for high-confi-
dence fold-enrichment to find model peaks for MACS mode-
ling (default 32); --diag for generating the table to evaluate
sequence saturation (default off).

In addition, the user has the option to shift tags by an arbi-
trary number (--shiftsize) without the MACS model (--
nomodel), to use a global lambda (--nolambda) to call
peaks, and to show debugging and warning messages (--
verbose). If a user has replicate files for ChIP or control, it is
recommended to concatenate all replicates into one input file.
The output includes one BED file containing the peak chro-
mosome coordinates, and one xls file containing the genome
coordinates, summit, p-value, fold_enrichment and FDR (if
control is available) of each peak. For FoxA1 ChIP-Seq in
MCF7 cells with 3.9 million and 5.2 million ChIP and control
tags, respectively, it takes MACS 15 seconds to model the
ChIP-DNA size distribution and less than 3 minutes to detect
peaks on a 2 GHz CPU Linux computer with 2 GB of RAM.
Figure S6 in Additional data file 1 illustrates the whole proc-
ess with a flow chart.

Abbreviations
ChIP, chromatin immunoprecipitation; CTCF, CCCTC-bind-
ing factor; FDR, false discovery rate; FoxA1, hepatocyte
nuclear factor 3α; MACS, Model-based Analysis of ChIP-Seq
data; NRSF, neuron-restrictive silencer factor.
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