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Abstract

Background: Perturbations in cell-cell interactions are a key feature of cancer. However, little is
known about the systematic effects of cell-cell interaction on global gene expression in cancer.

Results: We used an ex vivo model to simulate tumor-stroma interaction by systematically co-
cultivating breast cancer cells with stromal fibroblasts and determined associated gene expression
changes with cDNA microarrays. In the complex picture of epithelial-mesenchymal interaction
effects, a prominent characteristic was an induction of interferon-response genes (IRGs) in a subset
of cancer cells. In close proximity to these cancer cells, the fibroblasts secreted type | interferons,
which, in turn, induced expression of the IRGs in the tumor cells. Paralleling this model,
immunohistochemical analysis of human breast cancer tissues showed that STATI, the key
transcriptional activator of the IRGs, and itself an IRG, was expressed in a subset of the cancers,
with a striking pattern of elevated expression in the cancer cells in close proximity to the stroma.
In vivo, expression of the IRGs was remarkably coherent, providing a basis for segregation of 295
early-stage breast cancers into two groups. Tumors with high compared to low expression levels
of IRGs were associated with significantly shorter overall survival; 59% versus 80% at 10 years (log-
rank p = 0.001).

Conclusion: In an effort to deconvolute global gene expression profiles of breast cancer by
systematic characterization of heterotypic interaction effects in vitro, we found that an interaction
between some breast cancer cells and stromal fibroblasts can induce an interferon-response, and
that this response may be associated with a greater propensity for tumor progression.

Background isms. Cells of different origin communicate in a network of
Communication between different cell types is fundamental  interactions via proteins, peptides, small molecular signals,
for the development and homeostasis of multi-cellular organ-  the extracellular matrix and direct cell-cell contact. These
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heterotypic interactions provide information that is neces-
sary for the regulation of the gene expression programs in
normal development [1], differentiation [2], topologic organ-
ization [3] and homeostasis [4] of complex tissue structures.
Given the important physiological role of intercellular com-
munication to maintain the delicate dynamic equilibrium of a
normal tissue, it is not surprising that aberrant cell-cell inter-
action signals have been implicated in cancer development
and progression [5-10]. Although the characteristics and
roots of the heterotypic interaction effects are fundamental
aspects of normal physiology and disease, they have not been
systematically explored.

In cancer biology, there is increasing evidence for the impor-
tance of the interaction between the malignant epithelial cells
and the surrounding stromal cells [7]. Tumors are not merely
aggregates of malignant cells but are in many respects organ-
like structures, which include host stromal cells, such as
fibroblasts, endothelial cells and so on, with which the malig-
nant cells themselves intermingle and interact. Inductive
interactions between these different cell lineages can play not
only a morphogenetic role but also an important mechanistic
role in the pathogenesis and progression of malignancy. Co-
inoculation of stromal cells with pre-malignant or malignant
epithelial cells can increase tumorigenicity and the capacity to
metastasize for a variety of tumor types [11,12], including
breast cancer [13]. On the molecular level, results from the
knockout of single genes have demonstrated the importance
of specific signaling pathways in the tumor-stroma interac-
tion. For example, conditional inactivation of the transform-
ing growth factor (TGF)-f receptor type II in stromal cells led
to development of epithelial cancer of the prostate and
forestomach in mice [14]. In the mammary gland, site-spe-
cific knockout of TGF-B receptor type II in stromal fibroblasts
led to defective mammary ductal development and increased
carcinoma growth and metastasis [15]. Experiments explor-
ing the interaction of tumor with stromal cells in vitro have
revealed changes in expression of several genes involved in
cancer [16-18]. These effects reveal the significance of one
specific signaling mechanism, but a more complete overview
of the molecular systems that mediate these cell-cell interac-
tion effects remains to be revealed.

Biopsy samples of human carcinoma frequently contain both
malignant cells and stromal cells. Since gene expression pro-
files of human cancer are generally derived from these mixed
cell populations of grossly dissected tissues, the effects of het-
erotypic interactions among the cells in the tumor tissue are
expected to leave their traces in the global gene expression
profiles. Datasets representing expression profiles of thou-
sands of genes in collections of benign and malignant tissues
from hundreds of patients have steadily grown in recent years
and might be a rich latent source of insights into heterotypic
interaction effects on global gene expression. The superposi-
tion of the cell specific profiles, however, results in complex
gene expression patterns that are difficult to interpret. In
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breast cancer, Allinen et al. [19] attempted to resolve this
complexity by fractionating the tissue using cell-surface
markers to separate different cell types. This led to the iden-
tification of cell type specific gene expression profiles. As a
result of this analysis they suggested that a myofibroblast
expression of CXCL14 and CXCL12, which can bind to the
respective receptor CXCR4 on the epithelial cells, is a specific
tumor promoting mechanism leading to enhanced prolifera-
tion, invasion and metastasis. In a different approach to
search for the relevance of stromal signals in cancer data,
West et al. [20] identified stromal-cell specific gene expres-
sion signatures in breast cancer using gene expression data
from fibroblastic tumors as in vivo models of homogenous
populations of malignant mesenchymal cells. Based on stro-
mal-cell specific signatures they were able to segregate breast
cancer samples into two subgroups with distinct clinical
outcome.

A further layer of complexity, in addition to the simple addi-
tive effects of the involved cells, might arise from the effects
on gene expression profiles induced by heterotypic cell-cell
interactions. The deconvolution of these intercellular signal-
ing effects poses an even greater challenge, since they result
in supra-additive non-linear behaviors, which are hard to dis-
entangle and distinguish from the cell-intrinsic regulatory
processes. These cell interaction effects might account for a
significant proportion of the unrevealed information in the
gene expression data from tissue specimens. Given the evi-
dence that interactions between cells can play critical roles in
tumor progression, such data might be even more meaningful
than prominent expression patterns that are driven by the
proportional representation of a given cell type in a tissue

[21].

The primary aim of this work was to survey and characterize
the effects of cell-cell interaction in an attempt to disentangle
the complex network of intercellular signaling in a multi-cel-
lular tissue and specifically in breast cancer. To extract the
information about tumor-stroma interaction from global
gene expression profiles of cancer tissue, we applied an
approach based on in vitro modeling combined with subse-
quent testing of the in vitro findings in published cancer data-
sets. Observation of fundamental biological processes in
vitro, such as the cell cycle [22] and the reaction of fibroblasts
to serum [23,24], or observation of the common response of
different cell types to hypoxic conditions [25] has proven to
be a worthwhile approach to better understand complex bio-
logical mechanisms underlying global gene expression pro-
files in human cancer. Using a simple ex vivo co-culture
system allowed us to address a few basic questions about het-
erotypic cell-cell interactions. First, is global gene expression
in a co-culture setting different from the expression in mono-
culture and, if so, in which respect is it different? Second, how
do the responses to co-culture differ among different cell
combinations? Third, are the in vitro observations transfera-
ble in vivo using published gene expression datasets from
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human tissue specimens? We analyzed heterotypic interac-
tion effects in stromal fibroblasts and a diverse set of benign
and malignant breast epithelial cells in a mixed co-culture
setting by measuring changes in global gene expression using
DNA microarrays. The global view of the gene expression
responses facilitated the identification of specific changes and
pathways underlying these effects. Gene expression signa-
tures paralleling a response to heterotypic interaction in this
ex vivo model were shared by clinically distinct subgroups of
breast cancer.

Results

Identification of heterotypic interaction effects

As a model for investigating the gene expression program in
response to heterotypic cell-cell interaction in normal breast
and in breast cancer, we examined cells representing the
benign and malignant epithelial cell compartment and the
mesenchymal cell compartment in an in vitro mixed co-cul-
ture setting. The cells were co-cultivated for 48 h in low fetal
bovine serum medium (0.2% FBS) to allow reciprocal signal
exchange with minimal background from the influence of
undefined molecular signals inherent in FBS. We examined
the effects of co-cultivation for each cell pair in at least two
independent biological replicates. The gene expression pro-
files of the co-cultures were compared to the expression pro-
files of the corresponding cells kept in monoculture using
c¢DNA microarrays containing approximately 40,700 ele-
ments, representing 24,472 unique Unigene clusters (build
number 173, released on 28 July 2004). To establish the
experimental approach, we first focused our experiments on
the breast cancer cell line MDA-MB231, the primary fibro-
blast CCL-171 and the co-culture of these two cell types. The
data were organized using unsupervised hierarchical cluster-
ing of the replicate experiments to provide an overview of the
effects on global gene expression (Figure 1a). In the co-cul-
ture, most genes displayed intermediate expression levels,
which closely approximated the proportionally weighted
average of their expression levels in the two cell types in
monoculture. However, one set of genes showed a consistent,
significant increase in transcript abundance in the co-culture
compared to either monoculture, suggesting that induction of
these genes was an effect of co-cultivation. Most of these
induced genes were known to be interferon regulated (Figure
1b). They included those encoding the myxovirus resistance
proteins 1 and 2 (MX1 and MX2), 2',5'-oligoadenylate syn-
thetase 1 and 2 and 3 (OAS1, OAS2, OAS3) and interferon-
induced protein with tetratricopeptide repeats 1 (IFIT1),
phospholipid scramblase 1 (PLSCR1), eukaryotic translation
initiation factor 2-alpha kinase (EIF2AK2) and the signal
transducer and activator of transcription (STAT1). One of
these genes, EPSTI1, had previously been reported to be
induced by co-cultivation of MDA-MB231 and a fibroblast
[17]. Our results suggest that the interferon response pathway
mediates this induction. Although several of the genes
induced in this co-culture model have not previously been
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linked to interferon induction (for example, zinc finger pro-
tein 187 (ZNF187), Homo sapiens peroxisomal proliferator-
activated receptor A interacting complex 285 (PRIC285),
hect domain and RLD 6 (HERC6)), we have confirmed that
they are induced in MDA-MB231 cells by treatment with a
type I interferon. As a more explicit approach to identify
genes with consistent changes in expression in response to
co-culture we used significance analysis of microarrays
(SAM) [26]. A set of 42 genes represented by 49 image clones
were identified with a false discovery rate (FDR) of o (Addi-
tional data file 1).

To further validate the results obtained by cDNA microarray
analysis OAS2 transcript levels were measured by quantita-
tive real time PCR (Figure A in Additional data file 2). More-
over, for STAT1 the increase in transcript levels in co-culture
(2.8-fold) was paralleled by an increase in STAT1 protein as
detected by fluorescence assisted cell sorting (FACS) analysis
(Figure B in Additional data file 2).

Since breast cancer is a clinically and molecularly heterogene-
ous disease, we selected a broad spectrum of different breast
cancer cell lines to sample this heterogeneity and explored the
effects of heterotypic culture looking for subtype-specific and
shared response patterns. We focused on epithelial-mesen-
chymal interactions co-cultivating fibroblasts of different ori-
gins (HTB125 (breast stromal fibroblast), HDF (fibroblast
from breast skin) and CCL-171 (embryonic lung fibroblast)),
in combination with normal breast epithelial cells (human
mammary epithelial cells (HMECs)) and seven widely used
breast cancer cell lines.

The changes in gene expression due to heterotypic interaction
were subtle compared to the large intrinsic variation in
expression patterns among the involved cell types, as Figure
1a illustrates for the cell pair MDA-MB231 and CCL-171. To
identify the gene expression changes resulting from cell-cell
interaction, we needed to control for the simple additive
effects that reflect the proportional contribution of the two
cell types to the total population of each gene's transcript in
the co-culture. Eliminating these proportionally weighted
additive contributions would allow us to isolate supra-addi-
tive interaction effects. The fact that transcript levels of most
genes did not change in response to co-culture allowed a lin-
ear regression model based on the transcript profiles of each
monoculture to be fitted to the co-culture data for normaliza-
tion. An example of such an analysis is shown in Figure 2a.
For each gene, the ratio of the measured transcript level and
the level estimated by the linear model provides a measure of
the heterotypic interaction effect. This is illustrated in Figure
2b, which shows the distribution of the gene expression
changes of the CCL-171/MDA-MB231 co-culture. The genes
identified by SAM as differentially expressed in co-culture
compared to monoculture are highlighted to illustrate the
performance of this approach. Interaction effects, repre-
sented as gene-expression changes, are converted to
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Effect of heterotypic interaction between breast cancer cell line MDA-
MB231 and CCL-171 fibroblasts. (a) Biologically independent replicates of
the monocultured fibroblast CCL-171, the breast cancer cell line MDA-
MB231| and the mixed co-culture of CCL-171 and MDA-MB231 were
grown for 48 h at low serum conditions and characterized by DNA
microarray hybridization. Hierarchical clustering of a total of 4,333
elements that display a greater than 3-fold variance in expression in more
than 3 different experimental samples. Data from individual elements or
genes are represented as single rows, and different experiments are
shown as columns. Red and green denote expression levels of the samples.
The intensity of the color reflects the magnitude of the deviation from
baseline. Unsupervised hierarchical clustering of the experiments grouped
the biological replicates together. Gene expression varied considerably
between fibroblast and MDA-MB231 cultures, as expected for cells of
mesenchymal or epithelial origin, respectively. The co-culture profile
showed mainly intermediate expression levels. However, the vertical black
bar marks a cluster of genes induced in all co-cultures compared to both
monocultures, indicating that they are induced by heterotypic interaction.
(b) Zooming in on the genes up-regulated in co-culture compared to
monocultures reveals that they are associated with the response to
interferon.
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quantitative values that can be analyzed for similarities and
disparities over multiple different pair-wise interactions
between cells with the same tools we use to analyze conven-
tional gene expression data.

There was obvious heterogeneity in the responses of different
pairs of cells to co-cultivation. The patterns of gene expres-
sion changes due to co-cultivation were mainly determined by
the type of the epithelial cell involved whereas the origin of
the fibroblasts had a minor influence. Importantly, CCL-171,
a lung fibroblast, and HTB125, a fibroblast derived from the
breast of a cancer patient, induced distinct but very similar
interferon responses in co-cultivation with different epithe-
lial cells (Figure 2c). To highlight consistent features of the
responses of distinct normal or malignant epithelial cells,
representing the distinct types of breast cancer, to co-cultiva-
tion with fibroblasts, we collapsed our data into eight groups,
one group for each epithelial cell co-cultured with three dif-
ferent types of fibroblasts. There were 3,000 genes that
showed a significant reproducible change (FDR < 1%) in tran-
script levels in response to co-culture in at least one of the
groups. Clustering the averaged values of co-culture-induced
changes for each group revealed specific and shared effects
(Figure 2d). For several cell combinations, co-cultures led to
an induction of smooth muscle actin (ACTA2), myosin regu-
latory light chain interacting protein (MYLIP), myosin, light
polypeptide kinase (MYL), myosin regulatory light chain 2,
smooth muscle isoform (MYL9), calponin 2 (CNN2) and
fibronectin (FN1). Induction of these genes has previously
been described to be associated with the acquisition of a
myofibroblast phenotype [27]. The ability of the tumor cells
to induce this 'myofibroblast' expression program varied
among the breast cancer cell lines; the strongest effect was
seen with MCF7 cells. In a previous study, conditioned
medium of MCF7 cells was shown to induce a myofibroblast
phenotype [28]. Targets of the TGF-f pathway, such as the
gene encoding latent transforming growth factor beta bind-
ing protein LTBP2 and transforming growth factor induced
gene TGFBI, were induced in parallel with the 'myofibroblast
response'. In fact, TGF-B has previously been shown to induce
a 'myofibroblast' phenotype [29], suggesting that the
response observed in these co-cultures might be mediated by
the TGF-pB pathway.

The most consistent coordinated response, however, was an
induction of interferon-associated genes by cultivation of
fibroblasts with four of the seven breast cancer cell lines. This
response was seen in the co-cultures involving the estrogen-
receptor negative breast cancer cell lines MDA-MB231, MDA-
MB436, Hs578T and BT549, but neither in HMECs nor in the
estrogen-receptor positive breast cancer cells MCFy, T47D
and SKBR-3. Although the gene expression profiles of these
epithelial cells grown as monocultures reflected their molec-
ular differences, including some consistent differences
between the estrogen-receptor negative and estrogen-recep-
tor positive breast cancer cell lines, there were no consistent
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differences between these groups in baseline expression of
the interferon-induced genes in the monocultures. The cell-
type specificity is a strong hint that the interferon-response
activation is a specific effect of heterotypic interaction. Since
we compared the gene-expression responses in the co-cul-
tures with the responses in the corresponding monocultures
kept under the same conditions, we can exclude responses to
serum stimulation or withdrawal as sources of the interferon
response observed in these experiments. The response does
not represent an effect of crowding, which is a known inducer
of an interferon response [30], since the cell density in our
experiments was maintained below the threshold at which
the interferon response genes were turned on (data not
shown). Furthermore, we were unable to identify any infec-
tive agent in any of the cultures despite extensive testing for
mycoplasma, reverse transcriptase activity and viral tran-
scripts, using microarrays that provide a broad survey of
human viruses [31] (data not shown). The consistent cell-type
specific, coordinated response suggests that it depends on a
specific physiological feature shared among the estrogen-
receptor negative human breast cancers, which is retained in
long-term culture, enabling them to activate this specific
response upon contact with stromal cells.

Localizing expression of interferon-response genes to
breast cancer cell lines

We investigated in which cell the interferon-response genes
were induced in response to heterotypic interaction by differ-
entially labeling the epithelial cells and the fibroblasts with
distinct fluorescent dyes prior to co-culture, then sorting
them after co-culture using FACS. Comparing gene expres-
sion patterns of cells in monoculture with those of the same
cell type after co-cultivation showed that in the CCL-171
fibroblasts, the interferon-response genes were induced on
average by a factor of only 2.7 whereas in the MDA-MB231
breast cancer cell line these genes were induced 11-fold (Fig-
ure 3a). This result of a predominant induction in the tumor
cell is in line with immunohistochemical evidence that in vivo
the interferon- response genes STATi, EPSTI1 [17] and
EIF2AK2 [32] are expressed in the malignant epithelial cells
and to a much lesser extent in the stroma. To test whether a
soluble factor is sufficient to induce the interferon response
genes or whether direct cell-cell contact is needed for their
induction, we let the cells interact in transwell co-cultures at
low serum conditions. In this setting, neither the MDA-
MB231 breast cancer cell line nor the CCL- 171 fibroblasts
showed induction of interferon response genes, indicating
that close cell-cell contact is necessary for interaction. If the
induction of interferon-response genes depended on short-
range epithelial-mesenchymal interactions, we would expect
to find the expression of interferon-response genes mainly at
the tumor-stromal interface. To test this hypothesis we
stained normal breast and breast cancer sections using anti-
bodies specific for STAT1, the key transcriptional activator of
the interferon-response genes, and itself a protein over-
expressed in response to interferon stimulation (Figure 3b).
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No staining was evident in normal breast samples. In tumor
tissue sections consisting of a homogenous tumor island
surrounded by stroma, we typically observed a distinctive
pattern of STAT1 expression concentrated at the periphery of
the tumor islands, near the tumor-stroma boundary, support-
ing the idea that the interferon-response genes are induced
preferentially in the tumor cells in closest proximity to the
stromal cells. The gradient in the response further suggests
involvement of a soluble factor acting over a short range.

Induction of interferon in co-culture

To investigate the possible roles of soluble factors or direct
cell-cell contact in triggering the observed interferon
response, we tested the ability of conditioned medium from
selected cultures to induce the response in a monoculture of
MDA-MB231 cells. Conditioned medium from monocultures
of either CCL-171 or MDA-MB231 cells did not induce inter-
feron-response genes. However, conditioned media from an
MDA-MB231/CCL-171 co-culture did induce the interferon
response genes in MDA-MB231 cells. Thus, interferon-
response genes are induced by a soluble factor, the induction
depending upon direct contact between the tumor cells and
fibroblasts. In contrast to the MDA-MB231/CCL-171 co-cul-
ture supernatant, the conditioned medium of the T47D/CCL-
171 co-culture did not induce the interferon response genes
when applied onto MDA-MB231 cells (Figure 4a). Con-
versely, when T47D cells were exposed to MDA-MB231/CCL-
171 co-culture supernatant, the interferon-response was
induced (Figure 4b). However, the response of the T47D cells
to the co-culture supernatant was weaker than that of the
MDA-MB231 cells. This implies that while the interferon-
response genes can be induced in either tumor cell line, only
the interaction of MDA-MB231 with fibroblasts released a
soluble factor into the medium capable of inducing an inter-
feron response. We speculated that the factor released by the
fibroblasts might be a type I interferon. To confirm and
localize the expression of type I interferon we used quantita-
tive RT-PCR to analyze sorted cells after co-cultivation. We
found over-expression of IFNS in CCL-171 in response to
interaction with MDA-MB231 but not in response to T47D
(Figure 4c). Expression analysis of IFN« gave us the same
result (data not shown), indicating that the expression of type
I interferon genes by co-cultured fibroblasts might underlie
the observed interferon response.

Taken together, these results demonstrate that heterotypic
interaction between fibroblasts and a specific subset of breast
cancer cells can induce the fibroblasts to express type I inter-
ferons, resulting, in turn, in induction of interferon-response
genes in the tumor cells and to a lesser extent in the fibrob-
lasts (Figure 5). In our in vitro system, both estrogen-recep-
tor positive and estrogen-receptor negative tumor cells are
responsive to type I interferons, but the ability to induce
expression of interferons in co-cultivated fibroblasts was spe-
cific to the estrogen-receptor negative breast cancer cells.
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Figure 2 (see previous page)

Overview of gene expression changes over multiple co-cultures of breast cancer cell lines and normal breast epithelial cells with fibroblasts. (a)
Correlation of the measured co-culture gene expression levels and their estimated expression levels based on the proportional contribution of each cell
type determined by a linear regression fit of the monoculture to the co-culture data. (b) Fold change of each gene associated with co-culturing of MDA-
MB231 and CCL-171. Genes of the interferon response gene set (Additional data file 1) as determined by SAM are indicated in red. (c) Fold change in
expression of the interferon response gene set (Additional data file |) in co-culture of MCF-7, HMECs and MDA-MB-23 | with either the CCL-171 lung
fibroblast or the HTB-125 breast fibroblast, showing that CCL-171 and HTB-125 induce a distinct, but very similar response in co-culture with different
epithelial cells. (d) Overview of collapsed data from repeat co-culture experiments of eight benign and malignant epithelial cells with three different
fibroblasts. Hierarchical clustering of the interaction effects of 3,000 genes in co-cultures of 7 breast cancer cell lines and normal breast epithelial cells with
fibroblasts. Red and green denote relative changes in expression associated heterotypic interaction. The magnitude of the relative change is given by color

intensity.

Genomic analysis of epithelial-mesenchymal
interaction effects in human cancers

Interactions between cancer cells and non-malignant cells in
the surrounding microenvironment are important determi-
nants of cancer development and progression [11,14,33,34].
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Figure 3

Interferon response gene induction in co-cultivated cells. (a) MDA-MB23 |
breast cancer cells and CCL-171 fibroblasts were labeled before co-
culture with the fluorescent carbocyanine dye DiO and isolated after co-
culture using FACS, which allowed a purification of 95%. Comparing gene
expression patterns of the cells cultivated in monoculture to the same cell
type after co-cultivation showed that the CCL-171 fibroblasts up-regulate
the interferon response genes 2.8-fold on average, whereas the MDA-MB-
231 breast cancer cell line up-regulates them about | |-fold. (b)
Immunohistochemistry for STAT|. STAT| expression in a normal breast
(left panel) and in a breast cancer specimen (right panel). STATI is
predominantly expressed in the malignant epithelial cells at the stromal
interface in a centrifugal gradient.

We reasoned that identifying and characterizing gene expres-
sion programs characteristically induced by interaction
between specific pairs of cells in culture might enable us to
recognize and interpret specific features in the expression
profiles of human cancer that reflect similar interactions
between tumor and stromal cells in vivo. The most consistent
response to ex vivo co-cultivation of breast cancer and stro-
mal cells was the induction of the interferon-response genes.
We therefore looked for this response in the expression pat-
terns in published data from 295 early stage (stage I and II)
breast cancer samples from the Netherlands Cancer Institute
(NKI) [35] (Figures 6a,b and 7). The interferon-response
genes showed a strikingly coherent variation in expression
among these cancers, enabling these cancers to be divided
into two groups, one with relatively high expression and the
other with relatively low expression of the interferon-
response genes. Clustering the breast carcinomas based only
on expression of the interferon response genes directed them
into two main clusters, one with high-level expression of most
of the interferon genes and the other with lower expression of
these genes (Figure 6a). The same coordinated behavior and
segregation of tumors could be observed in a different set of
advanced breast cancer samples [36,37], suggesting that var-
iation in this interferon-response program is a general feature
in breast cancer (Additional data file 3).

As a first assessment of its potential biological relevance, we
compared distant metastasis-free survival and overall-spe-
cific survival between the two groups distinguished by the
interferon-response genes (Figure 6b). We found that tumors
with high expression levels of interferon-response genes had
a significantly shorter metastasis-free survival (p = 0.0014;
58% at 10 years) and overall survival (p = 0.001; 59% at 10
years) than tumors with low expression levels (metastasis free
survival, 74% at 10 years; overall survival, 80% at 10 years).

The same trend toward unfavorable outcome in patients with
cancers showing high levels of interferon-response gene tran-
scripts (p = 0.067) could be seen in an analysis of published
data from advanced-stage breast cancers [36,37]. As a metric
that can be compared to known prognostic parameters and
applied to other prospectively collected samples, we defined
an 'interferon-response score' by averaging the gene expres-
sion levels for the 42 genes of the interferon-response gene
list. The interferon response did not significantly correlate
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with clinical parameters such as age of the patient, tumor size,
nodal stage or angio-invasion. It was, however, very signifi-
cantly correlated with tumor grade and estrogen receptor
status (p < 10°6; Additional data file 4), paralleling our in vitro
findings that cell lines representing estrogen-receptor
negative tumors preferentially induce the interferon-
response genes in co-culture.

We also investigated the relationship between the interferon-
response gene signature and three previously identified gene-
expression signatures, which were useful prognosticators in
this dataset. The first signature is a set of 70 genes [38], which
was identified in a supervised analysis of a subset of the NKI
early stage breast cancer dataset [35], to predict freedom
from metastasis at 5 years. The second signature was identi-
fied in vitro by exposing fibroblasts to serum to mimic a
wound response, and has been shown to predict risk of pro-
gression [39]. The third signature, the response to hypoxia in
vitro [25], is also associated with a poor prognosis. The inter-
feron signature was only very weakly correlated with either
the wound signature or the hypoxia signature, and
moderately correlated with the 70-gene prognostic profile,
whereas the wound signature and the 70-gene score were
more strongly correlated to one another (Figure 7). Thus, the
interferon response appears to be a distinct feature of breast
cancer biology, identifying a subgroup of cancers with a
higher propensity for progression.

STATI protein expression in a second independent
breast cancer dataset

As an independent test of the prognostic significance of inter-
feron-response gene expression in primary early stage breast
cancer we performed immunohistochemical staining for
STAT1 in a tissue collection derived from a case series of
women who underwent surgery for primary breast cancer at
the Vancouver General Hospital between 1974 and 1995 [40].
Consistent with the variation we found in interferon-response
gene expression in breast tumors, we found a large variability
in the expression of STAT1 protein, the principal transcrip-
tional regulator of the interferon response genes, in these
tumors. Of the 353 primary tumors with interpretable results,
102 displayed high (28.9%), 184 low (52.2%) and 67 absent
(18.9%) STAT1 expression. Paralleling the results from the
NKI dataset, patients from Vancouver with tumors displaying
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high STAT1 expression levels had a higher risk of death due to
breast cancer (33% dead from breast cancer at 10 years) than
patients with tumors showing low or absent STAT1 expres-
sion (25% dead at 10 years) (p = 0.056; Figure 8).

Discussion

The main objective of this study was to examine and charac-
terize the effects of heterotypic cellular interaction, to gain
insight into the underlying biology of these effects in normal
mammary tissue and breast cancer. To isolate specific, direct
interactions from more complex interactions involving multi-
ple cell types in a whole tissue or organism we used a simple
ex vivo co-culture model. Since some important heterotypic
interactions can require direct cell-cell contact, we focused on
a co-culture model where the two cell types were mixed. A
challenge in the analysis of a mixed co-culture model is the
separation of the interaction effects induced by signal
exchange between the two cell types from the simple additive
combination of their intrinsic gene expression patterns in the
overall gene expression profile of the co-culture. Our strategy
of normalizing for the simple additive effects based on a linear
regression model proved to be advantageous, since it does not
depend on prior knowledge of the exact proportional contri-
bution of the different cell types to the superposed gene
expression pattern. A similar approach has been described to
define the proportional contribution of different cell cycle
states in a mix of cells, although without taking into account
interaction effects [41]. This strategy was effective in isolating
the cell-cell interaction effects on gene expression.

We examined the effects on global gene expression of the
molecular crosstalk between stromal fibroblasts and each of a
diverse set of breast cancer cell lines or normal breast epithe-
lial cells as they interact in vitro. Not unexpectedly, the
picture of heterotypic interaction effects that emerged from
combinatorial co-cultivation of multiple different cell types
was complex, reflecting the different abilities of normal and
malignant cells to send and to respond to extrinsic signals.
The overall pattern of gene expression changes were domi-
nated by the type of epithelial cells. Against our expectations,
which were based on the knowledge that fibroblasts from dif-
ferent parts of the body show distinct gene expression pat-
terns [42] leading to different p hysiological properties that

Figure 4 (see following page)

Induction of interferon response in two types of breast cancer cell lines. (a) MDA-MB231 cells were incubated in conditioned media from CCL-171
monoculture, MDA-MB231 monoculture, T47D monoculture, CCL-171/MDA-MB231 co-culture and CCL-171/T47D co-culture. OAS2 gene expression
was determined by quantitative RT-PCR. The gene expression level of GAPDH was used for normalization between the samples. A strong induction of
OAS2 by the supernatant from the CCL-171/MDA-MB231 co-culture can be seen in MDA-MB231. (b) Incubation of T47D cells with conditioned media
from CCL-171 monoculture, MDA-MB23| monoculture, T47D monoculture, CCL-171/MDA-MB231 co-culture and CCL-171/T47D co-culture showed
that only the CCL-171/MDA-MB231 co-culture supernatant induced OAS2 gene expression, although to a much lesser extent than in MDA-MB231 cells.
(<) Gene expression levels of IFNS were determined by quantitative RT-PCR. CCL-171 cells show much higher IFN/ expression levels when isolated by
FACS after co-culture with MDA-MB231 than with T47D cells. Expression levels in tumor cells are shown as controls. The error bars show the standard

deviation from the normalized mean.
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IFNo1 +1FNB Interferon
response
genes
1 2 3

Figure 5

Model of interaction effects. Upon close cell-cell contact the tumor cells
(red) interact with the fibroblasts (yellow) (I), which express type |
interferon (IFNa and IFN£) (2). They in turn induce the interferon
response genes predominantly in the tumor cells (3).

persist through many passages of in vitro cultivation, the
source of the fibroblast had only a minor influence on gene
expression responses to heterotypic interaction in our co-cul-
ture system.

We cannot exclude the possibility that fibroblasts isolated
from within a tumor might show additional specific interac-
tion effects. Nevertheless, it would be surprising if carcinoma
associated fibroblasts failed to show the strong effects that we
consistently observed in co-cultures with fibroblasts of
diverse origin. We recognize that these experiments might be
insufficient to detect subtle differences between co-cultures
involving different types of fibroblasts. To rigorously evaluate
these differences a more extensive survey of co-culture condi-
tions would be needed.

In our co-culture system a subset of tumor-stroma combina-
tions showed induction of a set of genes characteristic of a
‘myofibroblast’ phenotype. In the same co-cultures, target
genes of the TGF-p pathway were induced in parallel. This
coordinated induction is in line with reports describing TGF-
B as the major trigger of a 'myofibroblast' phenotype [29]. In
vivo, activation of a contractile 'myofibroblast' phenotype in
the tumor stroma occurs in a subgroup of patients, leading to
shrinkage of the tumor environment causing skin dimpling
and nipple retraction, both cardinal signs indicative of breast
cancer. This example demonstrates how the analysis of
heterotypic interaction effects allows inferring signaling
pathways involved in specific physiological and morphologi-
cal changes of importance in breast cancer.

The most prominent recurring theme arising from the heter-
otypic interactions we examined was the induction of an
interferon-response program in cell lines derived from estro-
gen-receptor negative breast cancers upon co-culture with
fibroblasts. Interferon-response genes showed a strikingly
coordinated variation in expression in an analysis of diverse
tumors and multiple datasets. Differential regulation of the
interferon response genes has been observed in many human
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malignancies, including leukemias [43], ovarian cancer [44],
gastric cancer [45], lung cancer [46] and breast cancer
[30,43]. In breast cancer, in an attempt to validate the previ-
ously described intrinsic gene signatures [36,37], Hu et al.
[47] assigned a small group of tumors with very high gene
expression levels known to be induced by interferon as the
'interferon subtype' with a poor clinical outcome. Despite its
common occurrence, the origin and the consequences of this
phenomenon are unknown. Some reports have proposed that
this program might reflect a viral infection or invasion of
inflammatory cells in response to the tumor [43]. Our data
suggest that the interferon response is not necessarily
dependent on immune cells since our in vitro co-culture sys-
tem comprises only fibroblasts and epithelial cells and no
immune cells. Despite considerable effort to identify infective
agents, we could not find any evidence for an infection in our
cell culture causing the interferon response. Without exclud-
ing these possibilities, we propose that in a subset of breast
cancer, the interferon response arises as an effect of the inter-
action of the malignant epithelial cells with the stroma.

At a first glance, the proposed link between interferon signal-
ing and tumor-stroma interaction is surprising. However,
interferons are pleiotropic cytokines, and while best known
for their function as a viral defense mechanism they are also
involved in other biological processes [48], such as the induc-
tion of cell cycle arrest, apoptosis, cell differentiation,
immune stimulation and regulation of bone metabolism [49].
The induction of interferons at the interface between tumor
cells and the surrounding stroma may have profound
biological significance. In response to viral infection, induc-
tion of the interferon response genes, such as EIF2AK2, can
lead to a global arrest of translation and subsequent apoptosis
[50]. Interferon treatment has an anti-proliferative effect in
some cultured cancer cells, and some human cancers shrink
in response to interferon [51], leading to the speculation that
an interferon response might be linked to a better prognosis
[43]. In fact, our results show the opposite effect; patients
with breast cancers displaying high interferon-response gene
expression were 1.7 times more likely (95% confidence inter-
val 1.1-2.6; p = 0.018) to develop metastasis and 1.8 times
more likely to die of the disease (95% confidence interval 1.2-
2.7; p = 0.006) than patients with tumors showing low
expression levels of the interferon-response genes. Similar
results have been reported by others. For example, an
increase in EIF2AK2 expression and activity during tumor
progression had been described in melanoma and colorectal
cancer [52]. In breast cancer cells EIF2AK2 was elevated
compared to normal breast epithelial cells [53]. Also, IFI 27,
known to be inducible by IFNq, is frequently over-expressed
in breast cancer [54]. IFITM1 over-expression in gastric can-
cer cells was reported to enhance migration and invasion in
vitro [55]. These findings along with the observation that
interferon response gene expression in cancer is highly coor-
dinated, suggests the possibility that the interferon response
program can promote cancer progression.

Genome Biology 2007, 8:R191



http://genomebiology.com/2007/8/9/R191

Genome Biology 2007,  Volume 8, Issue 9, Article RI91 Buess et al.

(b)

o
o
1

Probability

© o o o
© v M ® ®©
1

5 10 15 20 25
Distant metastasis free survival time (y)

o

Hiail —

\ \ L
-

Probability
o o o =
A o o T

o
(M)

o

10 15 20
Overall survival time (y)

0 5 25

Figure 6

Interferon response gene expression in early stage breast cancer (a) The expression values of genes in the 'interferon response gene set' were extracted
from a published expression study of 295 early stage breast cancers from the Netherlands Cancer Institute [35]. Genes and samples are organized by
hierarchical clustering. The tumors segregated into two groups defined by high (red) or low (blue) expression levels of 29 genes matching the 'interferon
response gene set'. (b) Correlation of interferon response with distant metastasis free and overall survival. Kaplan-Meier curves for the clinical outcomes
of indicated tumors exhibiting high (red curve) and low (blue curve) interferon responses are shown.

The role of STAT1, the main regulator of the interferon
response genes, is controversial too. Our finding of a worse
outcome for patients with tumors with high levels of STAT1
protein expression support our results of STAT1 mRNA
expression levels and is in accordance with the expression
levels of the full set of interferon response genes. The mecha-
nism for the negative association between interferon
response gene induction and patient outcome is not yet
understood. Several mechanisms are possible. Up-regulation

of STAT1 was found to be associated with resistance to radio-
therapy [56]. IFITM1 was reported in another model to be
involved in IFNa induced radioresistance [57]. For patients
treated with radiotherapy, high expression of interferon
response genes leading to radioresistance of the tumors could
contribute to an unfavorable outcome compared to the more
radiosensitive tumors. Since all patients receiving breast con-
serving therapy from the NKI dataset underwent adjuvant
radiotherapy, this hypothesis cannot be further substantiated

Genome Biology 2007, 8:R191
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Figure 7

Correlation of the 70 genes signature [38], the wound signature [24], the hypoxia signature [25] and the interferon response score in the NKI dataset.
Pairwise scatterplot-matrix of four gene signatures. Pearson correlations are shown in the lower part of each plot.

from our data because of the lack of an appropriate control ~ The finding that an interferon response can be induced in
group. Another possible mechanism, independent from an  response to tumor-stroma interaction raises questions for
effect on therapeutic efficacy, could be mediated by an effect ~ further inquiry. First, our results do not allow us to distin-
on invasiveness of the tumor. Up-regulation of STAT1 has  guish whether the interferon response has any role in
been reported in breast cancer micrometastasis in the bone  contributing to tumor progression or is merely an incidental
marrow [58], suggesting a more metastasis-prone phenotype. feature of certain cancers that tend to be more aggressive. If it
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Immunohistochemical staining of STATI in a cohort of primary breast
cancers: Kaplan-Meier disease-specific survival curve for 353 primary
tumors assessed for STATI. The red curve shows 102 patients bearing
tumors with high STAT| expression whereas the blue curve represents
251 patients with low or absent STAT| expression. X = censored data.

should turn out that the interferon response has a contribut-
ing role in progression and metastasis in some tumors, ther-
apeutic application of interferon might be detrimental in such
cancers. Indeed, blocking the interferon response induction
as a therapeutic target using antibodies or small molecule
inhibitors might be beneficial in this situation. Second, apart
from infectious agents, molecular signals that can induce
interferon secretion are not well defined and the signals that
induce interferon secretion in the stromal fibroblasts in our
system are still to be discovered. One molecular mechanism
for induction of interferon could be stimulation of a member
of the toll like receptor family by a tumor cell associated
ligand. Endogenous ligands for toll like receptors have been
proposed, but further studies are needed to prove their exist-
ence [59]. In our experimental system close cell-cell contact
was needed to induce the interferon-response, suggesting
that a short-range signaling mechanism, perhaps involving a
cell-surface ligand, might be involved.

Molecular interactions between epithelial and mesenchymal
cells represent only a small part of the molecular conversation
among all the interacting cells in the breast cancer
microenvironment. The approach used in this work, employ-
ing an ex vivo model to develop gene expression signatures as
an experimentally tractable window on the more complex
interactions in vivo can be deliberately extended to other cells
types, such as endothelial, inflammatory and immune cells.
This technique may allow us to explore complex interactions
among the multiple molecules operating in these cells to
orchestrate the process of cancer progression and metastasis.
Our experience suggests that in vitro modeling of specific
processes and features of the tumor microenvironment can
provide a valuable interpretive framework for analyzing the

Genome Biology 2007,  Volume 8, Issue 9, Article RI91

gene expression patterns in more complex heterogeneous in
vivo samples and identify effects of heterotypic cellular
interactions.

Materials and methods

Cell culture

HMECs (Cambrex Bio Science Walkersville, Inc.,Walkers-
ville, MD, USA) were expanded in mammary epithelial basal
medium supplemented with bovine pituitary extract, human
epithelial growth factor, insulin and antibiotics (Clonetics,
Cambrex Bio Science Walkersville, Inc.). MCF-7, T47D,
MDA-MB231, MDA-MB436, SKBR-3, Hs578T, BT549, CCL-
171, HTB-125 (ATTC) and HDF (Cambrex Bio Science Walk-
ersville, Inc.) were propagated in DMEM supplemented with
10% FBS (HyClone, Logan, UT, USA), glutamine, 100 U/ml
penicillin and 100 pg/ml streptomycin (GIBCO, Grand
Island, NY, USA). For co-culture experiments the cells were
cultivated for 48 h at 50,000 cells/cm? in endothelial basal
media (Cambrex Bio Science Rockland, Inc., Rockland, ME,
USA) with 0.2% FBS, which was a good universal medium for
all cells involved. Separated co-cultures were kept in Tran-
swell ® chambers with a 0.4 um pore size (Costar, Corning
Inc., Corning, NY, USA). The cells for analysis were always
harvested from the bottom well and reciprocal interactions
were tested. Cells negatively tested for mycoplasma infection
using MycoAlert™ (Cambrex Bio Science Rockland, Inc.) and
VenorGem ® (Sigma, Saint Louis, MO) mycoplasma detection
kits used according to the manufacturers' instructions.

Flowcytometry

Cells were fixed and stained using the Cytofix/Cytoperm™
Kit (BD Biosciences, San Jose, CA, USA) according to the
manufacturer's instructions using 20 ug/ml STATia mAB
(Abcam, Cambridge, MA, USA) and a fluorescein-5-isothyo-
cyanate labeled goat anti-mouse IgG (Sigma-Aldrich, St
Louis, MO, USA) for detection. Goat serum 1:200 was used
for blocking. Analytical flow cytometry was done on a modi-
fied dual laser LSRScan (BD Immunocytometry Systems, San
Diego, CA, USA) in the Shared FACS Facility, Center for
Molecular and Genetic Medicine at Stanford, using FlowJo
software (TreeStar, Ashland, OR, USA) for data analysis.

For FACS sorting, cells were stained with the lipophilic carbo-
cyanine dye DiO (Vybrant ® DiO cell-labeling solution,
Molecular Probes™ Invitrogen, Eugene, OR, USA) in serum-
free DMEM medium for 20 minutes and washed three times
in calcium- and magnesium-free PBS according to the manu-
facturer's instructions before co-culturing. After 48 h, the
cells were detached by incubation in Trypsin/EDTA (GIBCO,
Grand Island, NY, USA) for 3 minutes and washed in ice-cold
PBS and then immediately put on ice. Cell sorting was done
on a MoFlow cell sorter (Becton Dickinson, Mountain View,
CA, USA) in the Shared FACS Facility, Center for Molecular
and Genetic Medicine at Stanford. The sorted cells were
harvested in TRIZOL ® LS Reagent (Invitrogen, Carlsbad, CA,

Genome Biology 2007, 8:R191

Buess etal. RI191.13



R191.14 Genome Biology 2007,

Volume 8, Issue 9, Article RI91 Buess et al.

USA). FlowJo software (TreeSTAR) was used for data
analysis.

RNA isolation and amplification

After discarding the culture medium and washing the cell
layer once with PBS, total RNA was isolated by lysing the cells
in the culture dish with RLT buffer (Qiagen, Valencia, CA,
USA) and extraction with the RNeasy ® Mini Kit (Qiagen).
Total RNA (500 ng) was amplified using the Message Amp ™
IT aRNA Kit (Ambion, Austin, TX, USA). The amplification
product was checked for integrity by electrophoresis in a 1%
agarose gel in MOPS buffer.

cDNA microarrays and hybridization

We used human ¢DNA microarrays containing 40,700 ele-
ments that represent 24,472 unique genes based on Unique
Clusters. Arrays were produced at the Stanford Functional
Genomic Facility. Complete details regarding the clones on
the arrays may be found at Stanford: functional genomics
facility [60]. cDNA produced from 6 pg amplified RNA were
hybridized to the array in a two-color comparative format,
with the experimental samples labeled with one fluorophore
(Cys) and a reference pool of mRNA (Universal human refer-
ence, Stratagene, La Jolla, CA, USA) labeled with a second
fluorophore (Cy3). Fluorescent dyes were purchased from
Amersham Pharmacia Biotech (Piscataway, NJ, USA).
Hybridizations were carried out using the standard protocol
described previously [61].

Data analysis and clustering

Array images were scanned using an Axon Scanner 4000B
(Axon Instruments, Union City, CA, USA), and image analysis
was performed using Genepix Pro version 5.0 3.0.6.89 (Axon
Instruments). The raw data files were stored in the Stanford
Microarray Database [62]; the data used for the paper are
available at the accompanying website [63]. Data were
expressed as the log, ratio of fluorescence intensities of the
sample and the reference, for each element on the array.

The (Cys5/Cy3) ratio is defined in the Stanford Microarray
Database as the normalized ratio of the background-cor-
rected intensities. Spots with aberrant measurements due to
obvious array artifacts or poor technical quality were
manually flagged and removed from further analysis. A filter
was applied to omit measurements where the fluorescent
signal from the DNA spot was less than 50% above the meas-
ured background fluorescence surrounding the printed DNA
spot in either the Cy3 or Cys channel. Genes that did not meet
these criteria for at least 80% of the measurements across the
experimental samples were excluded from further analysis.
Valid data were filtered to exclude elements that did not have
at least a three-fold deviation from the mean in at least three
samples. Data were evaluated by unsupervised hierarchical
clustering [64] and SAM [26] and displayed using Treeview
[65].
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Determination of the heterotypic interaction effect on
gene expression

To facilitate the identification of heterotypic interaction
effects on global gene expression in a mixed co-culture exper-
iment, we normalized the gene expression data based on the
proportional contribution of each cell type to transcript abun-
dance. Given that the average gene does not change due to
heterotypic interaction and that there are simple additive
effects to account for, we used a linear regression fit for nor-
malization. To determine the contribution of each cell type to
the combined gene expression pattern in the linear regression
model, the expression levels of the monocultures are the pre-
dictors and the expression levels of the co-culture, the
response.

Specifically, a set of equations (1-n) is established (one per
gene), as illustrated in the additional data file 5 in which the
expression level of gene n (e, co-culture) in the mixed co-cul-
ture equals the fraction a of mRNA from cell type 1 times the
relative expression level of gene n in type 1 mono-cultured
cells plus the fraction (1-a) of mRNA from cell type 2 times the
relative expression level of gene n in type 2 mono-cultured
cells multiplied by the interaction coefficient I,. We assume
that the average gene is not influenced by heterotypic interac-
tion in the mixed co-culture represented as I = 1. Since the
dataset over e, , is skewed, we empirically identified a linear
regression fit based on Gamma errors and identity link as a
good model to calculate a. Then the equations 1-n can then be
solved for I,_,, which results in a profile of interaction effects
for the genes, . These interaction effects can be analyzed in
much the same way as conventional gene expression
measurements.

Real time quantitative PCR

Total RNA (500 ng) was mixed with dT16 primer in a volume
of 11 pl, incubated at 65°C for 10 minutes and immediately
put on ice. Following addition of 100 units Superscript II
reverse transcriptase (GIBCO, Carlsbad, CA, USA), reverse
transcription was performed for 2 h at 42°Cin 1x RT reaction
buffer (GIBCO), 10 uM dithiothreitol, 500 uM dNTP (Amer-
sham Biosciences, Pittsburgh, PA, USA) with 2.5 uM dT16
primer in a volume of 20 ul. PCR reactions were performed in
a final volume of 20 pl with cDNA prepared from 20 ng RNA
and a final concentration of 1x SYBR ®Green PCR Master Mix
(ABI, Foster City, CA, USA) and 200 nM of each primer
(sequences: GAPDH, forward GAAGGTGAAGGTCGGAGTC,
reverse GAAGATGGTGATGGGATTTC; OAS2, forward
GGAATACCTGAAGCCCTACGAA, reverse CCTGCAGACGT-
CACAGATGGT; IFNa, forward CCTCGCCCTTTGCTT-
TACTG, reverse GCCCAGAGAGCAGCTTGACT; IFNGB,
forward ACCTCCGAAACTGAAGATCTCCTA, reverse TGCT-
GGTTGAAGAATGCTTGA). The reaction was run in an ABI
7700 Sequence Detection System with the following cycling
conditions: 50°C for 2 minutes, 94°C for 10 minutes, then 40
cycles of 94°C for 15 s and 60°C for 60 s. For each gene a
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standard curve was prepared and triplicate measurements
were performed for each sample.

Immunohistochemistry

Large biopsy or tissue microarray sections were cut from par-
affin blocks, deparaffinized in xylene, and hydrated in a
graded series of alcohol. The slides were pretreated with cit-
rate buffer and a microwave step. Immunostaining was
performed using the DAKO Envision+ System, Peroxidase
DAB, (DAKO, Cambridgeshire, United Kingdom) for STAT1a
monoclonal antibody (1:100 dilution; Abcam).

We stained 1,024 tissue cores from 521 donor blocks. Immu-
nohistochemistry images were acquired with the BLISS
Microscope System (Bacus Laboratories, Lombard, IL, USA).
Staining results were assessed using a three-point scoring
system, where 0 = invasive tumor cells present in the tissue
core and no staining seen, 1 = invasive tumor cells present
with weak staining intensity and/or < 20% of the cells
stained, and 2 = invasive tumor cells present with strong
staining in > 20% of the cells. Tissue cores that failed to
adhere to the glass slide, did not contain invasive carcinoma
or were otherwise uninterpretable were excluded. Scoring of
the arrays was analyzed using the Deconvoluter software as
previously described [66], with each sample receiving the
higher of the scores for two replicate cores.

Human breast cancer dataset

The dataset for breast cancer contained 295 tumors analyzed
on a 25,000 spot oligonucleotide array as described [35]. In
brief, patients were diagnosed and treated at the NKI for early
stage breast cancer (stage I and II) between 1984 and 1995.
The clinical data were updated in January 2005. The median
follow-up for patients still alive is now 12.3 years.

The interferon response gene list consists of 42 genes repre-
sented by 49 image clones on the cDNA Stanford array.
Clones having the same Unigene locus were removed. The
gene sequences were mapped to spots on the NKI array using
Unigene build number 184 (released on 9 June 2005) to give
29 unique spots. In order to overcome possible overweighting
of clones from Unigene clusters that were matched to more
than one probe on the NKI array, expression values derived
from probes that were not matched to the same Unigene
cluster were averaged. Expression measurements for each
gene were mean centered. The resulting dataset was
subjected to hierarchical clustering with average linkage clus-
tering [64] and displayed with Treeview [65].

Distant metastasis was analyzed as first event only (distant
metastasis-free probability). If a patient developed a local
recurrence, axillary recurrence, contralateral breast cancer or
a second primary cancer (except for non-melanoma skin can-
cer), she was censored at that time and subsequent distant
metastases were not analyzed. This is based on the theoretical
possibility that the locally recurrent or second primary can-
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cers could be a source for distant metastases. An ipsilateral
supra-clavicular recurrence was soon followed by a distant
metastasis in all but one patient. An ipsilateral supra-clavicu-
lar recurrence was thus considered the first clinical evidence
for metastatic disease for this analysis and patients were not
censored at the time of ipsilateral supra-clavicular recur-
rence. Overall survival was analyzed based on death from any
cause and patients were censored at last follow up. Kaplan-
Meier survival curves were compared by the Cox/Mantel log/
rank test using Winstat for Microsoft Excel (RFitch Software,
Staufen, Germany). Multivariate analysis by the Cox propor-
tional hazard method was performed using the software pack-
age SPSS R 11.5 (SPSS, Inc., Chicago, IL, USA).

A dataset of gene expression patterns from advanced breast
cancers was described by Sorlie et al. [36,37]. Expression data
from 19 image clones representing the interferon response
gene list were included in this dataset. Genes and samples
were organized by hierarchical clustering. Relapse-free and
overall survival were calculated as described above.

The independent breast cancer tissue microarray validation
series is as described [40]; immunohistochemical scores for
STAT1 were related to breast cancer-specific survival by Kap-
lan-Meier analysis with log-rank test.
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Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 is a table listing the
interferon response genes. Additional data file 2 shows the
expression of OAS2 measured by RT-PCR in the co-culture
CCL171/MDA-MB-231 and the expression of STAT1 meas-
ured by immunofluorescent staining and FACS analysis.
Additional data file 3 shows the analysis of the interferon
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response signature in advanced human breast cancers. Addi-
tional data file 4 shows box and scatter plots illustrating the
correlation of the interferon score to clinical parameters with
known prognostic significance. Additional data file 5 is an
illustration of the linear regression model used to normalize
for additive effects in the mixed co-culture gene expression
data.
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