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Analysis of a genetic-interaction network<p>Statistical and computational methods for the extraction of biological information from dense multi-mode genetic-interaction net-works were developed and implemented in open-source software.</p>

Abstract

Different modes of genetic interaction indicate different functional relationships between genes.
The extraction of biological information from dense multi-mode genetic-interaction networks
demands appropriate statistical and computational methods. We developed such methods and
implemented them in open-source software. Motifs extracted from multi-mode genetic-interaction
networks form functional subnetworks, highlight genes dominating these subnetworks, and reveal
genetic reflections of the underlying biochemical system.

Background
The cell is an elaborate network of biomolecular and environ-
mental interactions that together bring about complex phe-
notypes. Understanding the functional consequences of
molecular interactions is fundamental to understanding phe-
notypes. A highly successful approach is the use of genetic
interactions. Genetic interactions describe the phenotypic
consequences of combinations of genetic perturbations.
Genetic interactions combined with molecular interaction
data can delineate information flows through complex bio-
chemical systems. The concept of the molecular signaling
pathway owes much to this approach.

A genetic interaction comprises phenotype measurements of
four genotypes: the reference genotype (wild type (WT)); a
single gene perturbation A; a perturbation B of a different
gene; and the double perturbation AB. By themselves, the sin-
gle perturbations link individual genes to specific phenotypes
and biological processes. Studying a double perturbation
defines functional relationships between the perturbed genes.
The relative ordering of the four phenotype measurements

defines different genetic-interaction modes [1]. Genetic-
interaction modes indicate one or more possible molecular
relationships, for example, upstream/downstream. Networks
of genetic interaction, and the molecular wiring, constrain
these possibilities. In this way, genetic-interaction modes are
a reflection of the underlying biochemical system.

Geneticists have formalized collections of genetic interactions
into genetic-interaction networks of perturbed-gene nodes
and genetic-interaction edges. Tong et al. [2] created a net-
work consisting of edges representing a single type of genetic
interaction, synthetic lethal. Zhang et al. [3] integrated this
network with disparate data types, including protein-protein
and protein-DNA interactions, sequence homologies, and
expression correlations. In this study, network patterns were
used to reduce the overall system into a thematic map of bio-
logical relationships. The E-MAP method [4,5] creates high-
density genetic-interaction networks consisting of aggravat-
ing or alleviating edge types. This method has been fruitful for
identifying both system-level and protein-complex-level
functional modularity.
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Further work has generated networks of multiple genetic-
interaction modes (edge types). In Drees et al. [1], all possible
genetic interactions were classified into nine modes, of which
four are asymmetric (directed edges). A multi-mode genetic-
interaction network was derived from a large set of quantita-
tive phenotype data. This work revealed local and global
genetic-interaction patterns suggesting the prevalence of
information contained in the structure and distribution of
genetic interactions within the network. Further network
information can be extracted from such complex networks by
identifying significantly repeated genetic-interaction pat-
terns, network motifs [6-8]. In this study, we report a net-
work-motif analysis of the dense multi-mode genetic-
interaction network of Drees et al. [1].

Results and discussion
Multi-mode genetic-interaction network
In the network of Drees et al. [1], there are 1,760 genetic inter-
actions among 128 perturbed genes controlling the agar-inva-
sion phenotype of diploid budding yeast. The perturbations
included gene deletions as well as overexpressers and domi-
nant alleles. This yeast-invasiveness network contains all
nine possible genetic-interaction modes, including noninter-
acting, epistatic, synthetic, suppressive, additive, conditional,
asynthetic, nonmonotonic, and double-nonmonotonic inter-
action. Four of these modes (epistatic, suppressive, condi-
tional, and nonmonotonic) are directional, giving thirteen
possible edges between any pair of nodes. Note that the
genetic-interaction modes discussed in this paper refer to
those defined in Drees et al. [1], and that there are semantic
differences between the Drees definitions and other genetic-
interaction classifications. Example interactions for each
mode are shown in Additional data file 22.

Genetic-interaction patterns reflect the underlying 
molecular system
Prior to rigorous statistical motif analysis, we inspected the
yeast-invasiveness network to discern possible patterns of
genetic interactions reflecting the underlying molecular sys-
tem. Figure 1 shows genetic interactions among components
of three main signaling pathways controlling yeast invasive-
ness [9-23]. Subsequently, we investigated our preliminary
observations (described below) quantitatively and globally in
the network.

We initially observed that there are local patterns incorporat-
ing both edge type and network topology. For example, con-
sider the interactions between the overexpressers of CDC42
and GLN3 and the deletions of DIG2 and TPK2. Both CDC42
and GLN3 interact asynthetically with DIG2 and nonmonot-
onically with TPK2, creating a two-mode bi-fan interaction
pattern.

Also, we observed that patterns of genetic interaction can
reflect the direction of information flow through the molecu-

lar network. For instance, epistatic interactions involving the
STE12 overexpresser originate from upstream signaling com-
ponents. Also, many genetic interaction modes occur repeat-
edly between parallel information paths. For instance, the
HOG1 deletion interacts synthetically with deleted compo-
nents of the cAMP pathway and additively with over-
expressed components of the filamentation/invasion MAP-
kinase (fMAPK) pathway.

Statistical model of a null hypothesis
Biologically relevant genetic-interaction patterns can be iden-
tified by finding those occurring more frequently in the
genetic network than expected at random. This can be done
by comparing the number of times a given pattern occurs in
the genetic network to the number of times it occurs in a set
of properly randomized networks. The randomized networks
represent a statistical null hypothesis and effectively model
the level of pattern noise in the network [7,24]. In this way,
significance can be assigned to each identified pattern. In this
study we highlight those patterns with a significance level of
p < 0.05/n, using the Bonferroni multiple-hypothesis-testing
correction, where n is the number of patterns tested in each
analysis. Algorithms were developed to create the set of rand-
omized networks modeling a null hypothesis. The yeast-inva-
siveness network contains nine edge types of which four are
directed. Randomized networks were generated by a Monte
Carlo method iteratively selecting a pair of edges at random
and swapping their edge types. See Materials and methods for
details.

Randomizations were subject to specific constraints to pre-
clude the introduction of biases to the results. Each edge rep-
resents the results of a given experiment (repeated
measurement of the phenotypes of WT, A, B, and AB). Every
genetic experiment creates a resulting genetic edge, with non-
interacting edge types used in the cases of genetically nonin-
teracting loci. This causes the topology of the network (the
simple presence or absence of an edge of any type linking each
pair of nodes) to be determined by experimental design (the
set of experiments performed or not performed), not by
genetics. Thus, for proper randomization the network topol-
ogy is held constant. The results could also be biased by the
selection of mutant alleles included in the experiments. As
described in Additional data file 22, the data for a genetic
interaction consist of the ordering of four phenotypes: WT, A,
B, and AB. The single-mutant phenotypes could be biased by
the selection of mutant alleles. To preclude this allele-selec-
tion bias, in our Monte Carlo switching we restricted edge-
type swaps to those in which the two edges have the same rel-
ative ordering of A, B, and WT. Lastly, in some of the analyses
below, molecular data are mapped onto the genetic network.
In these cases the genetic-interaction edge types are rand-
omized under the above constraints, while the molecular data
are held constant. Note that our randomization methods are
strictly conservative and restrict the number of significant
motifs. Such methods are necessary to ensure that the
Genome Biology 2007, 8:R160
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Multi-mode genetic-interaction motifs and the underlying molecular systemFigure 1
Multi-mode genetic-interaction motifs and the underlying molecular system. Genetic-interaction edges are superimposed onto a diagram of the cAMP, 
fMAPK, and HogMAPK signaling pathways. Gene perturbations are marked: hc, high copy overexpresser; Δ, deletion.
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calculated significance is due to biological significance rather
than experimental design.

Genetic-interaction network motifs
To identify genetic-interaction network patterns that reflect
biological relationships such as those illustrated in Figure 1,
we identified network motifs. Network motifs are small
repeatedly occurring multi-element components of a net-
work, where the repetition suggests functional significance.
Such methods have been successful in extracting information
from various other network types [6-8,25,26], as well as iden-
tifying general themes in the evolved organization of molecu-
lar systems [3].

The simplest network patterns containing information about
the genetic-interaction modes and their system-level organi-
zation are 3-node motifs (3n-motifs). Using the null hypo-
thesis method described above, we enumerated all 3n
patterns in the yeast invasiveness network and tested each
one for biological significance. We found 27 significant motifs
among the 489 different patterns observed in the network
(5.5%). Many of these motifs occur hundreds or thousands of
times in the yeast-invasion network. Examples are shown in
Figure 2a. The full set is found in Additional data file 1.
Homogeneous-edge-type motifs were found frequently, with
9 of the 13 possible homogeneous 2-edge patterns being sig-
nificant (3n-motifs 1, 4, 5, 6, 9, 10, 11, 23, 27). Examples of
such motifs occur in Figure 1. Their global frequency may
reflect the tendency of gene perturbations to show 'mono-
chromatic' interaction [1,27]. Many heterogeneous motifs
also were found (3n-motifs 2, 3, 7, 8, 12, and so on), as were
various fully connected motifs (for example, 3n-motifs 22, 24,
25, 26, and so on).

We also identified significant 4-node patterns (4n-motifs).
Because the number of pattern instances contained in a net-
work scales combinatorially with local network density and
pattern order (number of nodes in the pattern), the full enu-
meration of 4n pattern instances was computationally infea-
sible. Thus, a sampling algorithm (Materials and methods)
[28] was employed. Of the 1,505 4n patterns sampled from
the original network, 190 (12.6%) were repeated significantly.
The full list of 4n-motifs can be found in Additional data file
4. Figure 2b shows examples. We found 4n-motifs exhibiting
the edge-type homogeneity detected among 3n-motifs, as
well as mixed-edge-type motifs.

We noted that specific nodes (gene perturbations) often
appear repeatedly among the numerous instances of a spe-
cific motif. This suggested that the instances of motifs are
connected structural units of larger single-motif subnet-
works. Such subnetworks can highlight the main perturba-
tions contributing to a motif, and show the large scale
organization of instances of the motif. Figure 3 shows an
example of single-motif subnetworks, and additional exam-
ples are in Additional data file 23. In Figure 3 is the incoming
epistatic motif network of 3n-motif 9. In an epistatic interac-
tion, the phenotype of the double mutant is the same as one
of the two gene perturbations, and depending on the allele
type (hypermorphic or hypomorphic), orders the epistatic
gene upstream or downstream (see mode definitions in Drees
et al. [1]). In this way, epistatic interactions have been com-
monly used to help identify and delineate directed informa-
tion flows in biochemical systems. As shown in Figure 3, the
epistatic motif network is organized around six main gene
perturbation hubs: the overexpressions of STE20, STE12,
CDC42 and GLN3, and the deletions of IPK1 and HSL1.
Extending the concept of single epistatic interactions, these
repeated interactions suggest critical hubs of information
flow, and genes whose influences are likely to flow through
them.

Molecular information and genetic-interaction 
network motifs
Figure 1 illustrates genetic-interaction patterns describing
specific functional relationships within and between the sign-
aling pathways. To identify significant relationships between
genetic interactions and molecular-function data, we inte-
grated these data types [1-5,29-32]. Patterns from such inte-
grated networks can be tested for statistical significance
allowing for the identification of significant network motifs.
In our case, these motifs are genetic-interaction patterns that
exhibit significance in the context of the molecular system [2].

Filamentation/invasion signaling is a directed system that
can be characterized loosely by the molecular functions of the
system components. Plasma-membrane receptors transfer
information to cytoplasmic signaling components that then
regulate nuclear transcription factors. These molecular func-
tions capture a first approximation of the directionality of the
system. By mapping the GoSlim [33] 'molecular function'
annotations onto the nodes of the yeast-invasiveness net-
work, we identified genetic-interaction network motifs
involving these loosely directed relationships.

Motifs in the yeast-invasiveness genetic-interaction networkFigure 2 (see following page)
Motifs in the yeast-invasiveness genetic-interaction network. (a) Examples of significant 3-node motifs. The number of instances of each motif is indicated 
as is the p value. A statistical cutoff of p = 0.05/489 = 1.02 × 10-4 was used to define significant patterns. (b) Examples of significant 4-node motifs. The 
number of occurrences is shown as the percentage of the full number of patterns sampled. P values are shown and a statistical cutoff of p = 0.05/1,505 = 
3.32 × 10-5 was used to define significant patterns. The full collection of motifs is in Additional data files 1 and 4.
Genome Biology 2007, 8:R160
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Figure 2 (see legend on previous page)
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Figure 4a,b shows examples of the significant 2-node and 3-
node motifs for the molecular-function annotations, respec-
tively. The full sets are found in Additional data files 7 and 10,
respectively. Of the 575 observed 2-node GoSlim molecular
function patterns in the original network, 6 (1.0%) were
found significant (2nGO-motifs). Of the 23,286 observed 3-
node molecular-function patterns, 116 (<0.5%) were found
significant (3nGO-motifs). These significant patterns illus-
trate a correspondence between the genetic-interaction

modes and the underlying biochemical system. For example,
2nGO-motif 1 (Figure 4a) shows additive interactions
between perturbations of protein-binding proteins and tran-
scriptional regulators. Among the instances of this motif are
additive interactions of a deletion of DIG2 with overexpres-
sion of FLO8 and deletion of SFL1. The Dig2 protein binds
and inhibits the Ste12 protein, a transcriptional activator of
the filamentation/invasion MAP-kinase (fMAPK) pathway.
DIG2 deletion interacts additively with perturbations of

Motif subnetworksFigure 3
Motif subnetworks. An example of a motif subnetwork. A motif subnetwork is the union of all instances of a specific motif. Shown here is the subnetwork 
of 3n-motif 9. The gene perturbations comprising the genetic interactions are marked with the suffixes: hc, high copy overexpresser; Δ, deletion.
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FLO8 and SFL1, encoding transcription factors of a different
filamentation/invasion-promoting pathway, the cyclic-AMP
pathway. The additive interaction reflects the separate contri-
butions of these pathways. As another example, 3nGO-motif
166 (Figure 4b) shows perturbations of protein kinase/trans-
ferase activity proteins interacting supressively to transcrip-
tional regulator proteins and to hydrolase activity proteins. In
the context of filamentation signaling, environmental signals
are transmitted through hydrolase (for example, GTPase) and
kinase activity proteins to transcriptional regulators. In a
suppressive genetic interaction, a suppressor gene perturba-
tion ameliorates the effects of the suppressed perturbation,
indicating the suppressor perturbation reverses or short-cir-
cuits the suppressed perturbation. A specific instance of this
is that a deletion of the cAMP-dependent protein kinase sub-
unit Tpk3 abrogates the effects of overexpression of both the
membrane localized hydrolase Cdc42 and the transcriptional
regulator Ste12. Cdc42 is an upstream activator of the fMAPK
signaling pathway, and Ste12 is a downstream transcription
factor of the same pathway [9,10,34,35]. This motif instance
suggests that loss of TPK3 activity in the parallel cAMP path-
way offsets the effects of overexpression of CDC42 or STE12
activity in the fMAPK pathway.

To investigate the distribution of these motif examples within
the full network, motif subnetworks were generated. Figure
5a,b shows the motif subnetworks for 2nGO-motif 1 and
3nGo-motif 166, respectively. The 2nGo-motif 1 network is
organized around the transcription factor tri-hub MSN1,
PHD1, and FLO8, and the two separate single transcription
factor hubs, SFL1 and GLN3. This network exhibits a high
degree of mutually informative genetic interactions. Each of
the eight protein binding proteins that interact with the tri-
hub (AGA1, BMH1, LIN1, SSA4, MSN5, URE2, DIG2, and
ENT1) interacts with each tri-hub member. This suggests
overlapping pathway functionality within the set of protein
binding proteins and within the set of transcription factors.
This motif-instance organization contrasts with that of 3nGo-
motif 166. The 3nGo-motif 166 subnetwork centers on the
single protein kinase/transferase hubs TPK3, PBS2, HOG1,
and HSL1. These kinases are information flow constriction
points in their respective signaling pathways: TPK3 in the
cAMP pathway, PBS2 and HOG1 in the osmolarity sensing
pathway, and HSL1 in the morphogenic checkpoint pathway.
In contrast to the 2nGo-motif network, these single hubs pri-
marily act independently of each other, with two hubs having
at most only two nodes in common. This likely reflects the dif-

Examples of motifs integrating gene annotationsFigure 4
Examples of motifs integrating gene annotations. Examples of significant (a) 2-node and (b) 3-node motifs involve genetic-interaction edges and GOSlim 
molecular-function gene-annotation nodes. The number of instances and calculated p value of each motif is indicated. For the 2nGO-motifs a statistical 
cutoff of p = 0.05/575 = 8.7 × 10-5 was used. For the 3nGO-motifs a statistical cutoff of p = 0.05/23,286 = 2.14 × 10-6 was used. The full collection of motifs 
is in Additional data files 7 and 10.
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fering roles these pathways play in the invasion phenotype.
Interestingly, the osmolarity sensing kinases Pbs2 and Hog1
show differing interaction patterns, although they are impli-
cated in the same pathway. This possibly reflects subtly differ-
ing roles of the two kinases. These examples illustrate how the
aggregation of motif information in motif subnetworks high-
lights biological information not present in individual motif
instances.

Comparing network patterns in a similar genetic-
interaction network
The diversity of networks that can be formed from 13 edge
types and large numbers of nodes is enormous. Thus, the
yeast-invasiveness genetic-interaction network probably con-
tains a sample of biologically relevant genetic-interaction
motifs. To gauge the scope of our analysis we made a compar-
ison of motifs in the yeast invasiveness network (derived from
yeast diploid strains) to a similar network, a yeast diploid
agar-adhesion network. The adhesion network was created in
parallel to the invasion network reported in Drees et al. [1]
(data not shown), and although the two phenotypes are
related, many genetic interactions differed between the two
(652 of 1,751 (37.2%)). To compare the networks, we enumer-
ated their 3-node motifs. For consistency, we pruned the net-
works such that they had exactly the same topological set of
nodes (128) and edges (1,751). We found 27 motifs in both the
invasion network and the adhesion network out of 419 and
414 candidate patterns (6.4% and 6.5%, respectively). Of
these 27 motifs, 20 (74%) were common to both. This indi-
cates that although common genetic-interaction motifs exist
in the two networks, each genetic network also contains a
unique subset. The fact that these are related phenotypes
underscores this observation.

To further understand the different motif sample spaces of
the two networks, we compared the null hypotheses gener-
ated by the invasion and adhesion networks. Using the 378 3n
patterns common to both networks, we compared the mean
number of times each pattern occurred in the adhesion rand-
omized network set to that of the invasion randomized net-
work set. By making this comparison across all patterns, an
understanding of how similar the global null hypotheses are
is obtained [24]. The comparison was accomplished by calcu-
lating the correlation coefficient between the mean number of
occurrences of the 378 network patterns in the adhesion and
invasion randomized network, obtaining a value of 0.974. A
completely correlated null hypothesis would have given a cor-
relation coefficient close to 1, while a completely uncorrelated
null hypothesis will give a value close to 0 (due to randomiza-

tion). This shows that though the networks contain different
motif sets, they display similar null hypotheses. These obser-
vations demonstrate the significance of the network compar-
ison and suggest that there is no universal set of genetic-
interaction motifs that will apply uniformly to all genetic-
interaction networks. Rather, analyses of each network will
be necessary.

Open source software
To facilitate the application of the analyses used in this study
to other networks, we developed an open source software
package entitled Network Motif Finder. Network Motif
Finder was designed to identify motifs in any network type,
and to include any number of edge and node types. Network
Motif Finder acts as a plugin to the network analysis platform
Cytoscape [36], and identifies significant multi-mode genetic
interaction patterns. In addition, Network Motif Finder has
the functionality of extracting motif sub-networks as shown
in Figures 3 and 5. The plugin is available as open source, with
a user manual, at [37].

Conclusion
In this study we develop methods to address the challenges of
analyzing complex genetic-interaction networks. Specifically,
we use statistical techniques to identify biologically signifi-
cant multi-mode genetic interaction network patterns, net-
work motifs. Utilizing randomized null hypotheses of the
genetic network, those patterns that occur more frequently
than randomly expected can be identified. These motifs high-
light biologically informative network patterns of the genetic
network. Further, the union of all instances of a motif forms a
motif subnetwork. These subnetworks illustrate the distribu-
tion of the motif instances within the full genetic network.
This allows for the identification of all genes involved in such
a motif and can highlight those genes that dominate the
motif's occurrence. In this way, motif subnetworks extract the
biological information that was identified by motif analysis.

We also identified network motifs that reflect the underlying
biochemical network. This was done by integrating our
genetic network with gene-annotation data. In this way, we
describe an unbiased approach to understand how genetic
interactions reflect the biological properties of the underlying
system. Lastly, this analysis has been developed into an open
source plugin to the network analysis software Cytoscape,
allowing users to analyze their own multi-mode genetic-inter-
action network datasets.

Annotation-motif subnetworksFigure 5 (see following page)
Annotation-motif subnetworks. (a) The union of all instances of 2nGO-motif 1, which comprises perturbations of protein binding proteins and 
transcriptional regulators acting additively. (b) The union of all instances of 3nGO-motif 166, which comprises perturbations of protein kinase/transferase 
activity proteins interacting supressively to transcriptional regulator proteins and to hydrolase activity proteins. Gene perturbations are marked: hc, high 
copy overexpresser; Δ, deletion.
Genome Biology 2007, 8:R160
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Figure 5 (see legend on previous page)
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Materials and methods
Network randomization
Statistical significance of each network pattern was calculated
by comparing the number of times the pattern occurred in the
observed genetic-interaction network, to a set of randomized
networks. The randomized networks represent the null hypo-
thesis. To ensure that pattern significance was due solely to
the genetics of the system and not experimental design, we
constrained our randomizations in the following way. First,
as described in the text, the topology of the genetic interaction
network defines which genetic interaction experiments were
conducted, while the interaction types describe the genetic
results. Thus, in all our randomizations, the topology of the
network is held constant and the genetic interaction types
(edge colors) are switched. Second, as described in Drees et
al. [1] and Additional data file 22, each genetic interaction
consists of the four phenotypes: ΦWT, ΦA, ΦB, ΦAB. These
quantitative phenotypes are ordered into 1 of 75 possible
genetic interaction inequalities, and the inequalities are
grouped into 9 possible genetic interaction types. As the phe-
notypes of the single genetic perturbations (ΦA, ΦB) are
dependent on experimental allele selection, it is necessary to
avoid randomizing these single-gene phenotypes to prevent
allele-selection bias in the results. Thus, in our Monte Carlo
switching we strictly maintain the ordering of each edge's sin-
gle-perturbation and wild-type phenotypes (ΦWT, ΦA, ΦB).
In all randomizations we uniformly chose a random pair of
ordered edges and exchanged their genetic interaction types
only if the inequality relationship of ΦWT, ΦA, and ΦB
(regardless of ΦAB) was identical for both edges. In the case
of nonidentical inequality relationships, we retested after
swapping the positions of ΦA and ΦB in the inequality of the
second edge of the pair and exchanged only if the resulting
edge inequality relationship of ΦWT, ΦA, and ΦB was identi-
cal. These methods conserve the total number of each genetic
interaction edge type in all randomizations and ensure that
statistical significance does not depend on initial experimen-
tal design or allele selection.

We employed a Monte Carlo method of genetic-interaction
edge-type switching for the randomization algorithm. Each
edge was switched in the Monte Carlo algorithm at least ten
times per randomization. This level of switching has been
shown to provide good mixing [24]. A sample size of 1,000
randomized networks to represent the null hypothesis was
used for each analysis unless specified below. Modifications
to this scheme were employed for the motifs involving anno-
tation data and are described below. All algorithms are imple-
mented in our open-source software package, Network Motif
Finder.

In the motif analyses including GOSlim annotations, the posi-
tions of the GOSlim node annotations were held constant,
and only the genetic interaction types were randomized as
described above. This ensures that the underlying molecular
structure of the system remains constant, while only the

resulting genetic relationships are randomized. As well, we
identified both 2-node and 3-node motifs. In the enumeration
of 3-node network pattern instances the total number of 2-
node network pattern instances was held constant. This
ensures that the significance of a 3-node pattern is due to its
3-node architecture and not because it contained a significant
2-node pattern. Edge directions are conserved in this restric-
tion. Also, the relationships between node annotations and
the single gene perturbation data were maintained. Due to the
extra calculations that are made during these randomizations
this algorithm was much slower, particularly for the 3-node
analysis. To compensate, we reduced the sample size repre-
senting the null hypothesis in the 3-node analysis from 1,000
to 500. This null hypothesis reduction was conducted for the
dual invasion/adhesion network comparison as well.

Lastly, to avoid significance due to multiple testing, we cor-
rected our significance threshold by applying the conservative
Bonferroni correction. Specifically, a statistical threshold of p
< 0.05/n was used, where n is the total number of patterns
tested for significance in each analysis. For the 3n-motifs, 4n-
motifs, 2nGO-motifs, and 3nGo-motifs, n was 489, 1,505,
575, and 23,286, respectively. To obtain a p value resolution
greater than what is possible empirically (p < 1 × 10-3 for a
1,000 randomized network set), we parametrically fit the null
hypothesis network pattern distributions to Gaussian (or
Poisson when the pattern's mean count was <3). Please see
Additional data files 3, 6, 9, 20 and 21 for the network pattern
distributions and parametric fits.

Motif enumeration techniques
In all analyses except those containing 4-node patterns, a full
enumeration of the network pattern instances was conducted.
However, this was not computationally feasible for the 4-
node patterns, and a sampling algorithm was employed [28].
There are >3 × 106 individual 4-node network pattern
instances in our analyzed network; we sampled 100,000
without replacement. This sample rate is comparable to those
used in other sampling studies [38].

In enumerating network patterns involving GoSlim annota-
tions, we needed to account for genes having multiple anno-
tations. For instance, a particular GoSlim molecular function
gene may be annotated as both a transferase and a protein
kinase. In enumerating a specific network pattern, we allowed
genes sharing a single common annotation to be considered
equal. For instance, consider the set of 1-node patterns anno-
tated transferase, transferase/protein kinase, and protein
kinase, respectively. In our scheme, we would have three pat-
terns (transferase, transferase/protein kinase, and protein
kinase), containing two, three, and two instances,
respectively.

In the general motif analysis we identified motifs containing
purely noninteracting edge types. It is possible that these
motifs occur due to gene perturbations irrelevant to the
Genome Biology 2007, 8:R160
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filamentation phenotype. In our analyses using GoSlim anno-
tations, we included such motifs when stating the percentage
of significant patterns, but removed them from the Additional
data files to avoid highlighting relatively uninformative
patterns.

GoSlim molecular function annotations
The GoSlim molecular function annotations were down-
loaded on 5 June 2006 from the Saccharomyces Genome
Database [39].

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 is a table listing the
full collection of 3n-motifs. Additional data file 2 is an xml file
listing the network pattern structure, significance, and
number of instances of each 3node network pattern found in
the genetic network. Additional data file 3 is a table listing the
random distribution, parametric fit, and significance of the
top 100 significant 3-node network patterns found in the
genetic network. Additional data file 4 is a table listing the full
collection of 4n-motifs. Additional data file 5 is an xml file
listing the network pattern structure, significance, and
number of instances of each 4-node network pattern found in
the genetic network. Additional data file 6 is a table listing the
random distribution, parametric fit, and significance of the
top 100 significant 4-node network patterns found in the
genetic network. Additional data file 7 is a table listing the full
collection of 2nGO-motifs. Additional data file 8 is an xml file
listing the network pattern structure, significance, and
number of instances of each 2nGO network pattern found in
the genetic network. Additional data file 9 is a table listing the
random distribution, parametric fit, and significance of the
top 100 significant 2nGO network patterns found in the
genetic network. Additional data file 10 is a table listing the
full collection of 3nGO-motifs. Additional data files 11 and 12
are xml files listing the network pattern structure, signifi-
cance, and number of instances of each 3nGO network pat-
tern found in the genetic network. Additional data file 13 is an
xml document describing the genetic perturbations used to
construct the genetic interaction network. Additional data file
14 is a Cytoscape attribute file containing the genetic inequal-
ity relationships for all edges of the genetic interaction net-
work Additional data file 15 is a Cytoscape network file of the
genetic interaction network. Additional data file 16 is a Cyto-
scape network file containing a subset of the full genetic inter-
action network. Additional file 17 is a Cytoscape attribute file
containing GOSlim molecular function attributes. Additional
file 18 is the NetworkMotifFinder Cytoscape plugin file. Addi-
tional file 19 is a software tutorial for the NetworkMotifFinder
plugin. Additional data files 20 and 21 are table listings of the
random distribution, parametric fit, and significance of the
top 200 significant 3nGO network patterns found in the
genetic network. Additional data files 22, 23, 24, 25 contain
the supplemental figures. Additional data file 22 contains

supplemental Figure 1, which defines the genetic interactions
used in this study. Additional data file 23 contains supple-
mental Figure 2a,b, which gives further examples of 3n-motif
subnetworks. Additional data file 24 contains supplemental
Figure 2c,d, which give further examples of 3n-motif
subnetworks. Additional data file 25 contains supplemental
Figure 2e, which gives further examples of 4n-motifs.

Additional data file 1Full collection of 3n-motifsFull collection of 3n-motifs.Click here for fileAdditional data file 2Network pattern structure, significance, and number of instances of each 3node network pattern found in the genetic networkNetwork pattern structure, significance, and number of instances of each 3node network pattern found in the genetic network.Click here for fileAdditional data file 3Random distribution, parametric fit, and significance of the top 100 significant 3-node network patterns found in the genetic networkRandom distribution, parametric fit, and significance of the top 100 significant 3-node network patterns found in the genetic network.Click here for fileAdditional data file 4Full collection of 4n-motifsFull collection of 4n-motifs.Click here for fileAdditional data file 5Network pattern structure, significance, and number of instances of each 4-node network pattern found in the genetic networkNetwork pattern structure, significance, and number of instances of each 4-node network pattern found in the genetic network.Click here for fileAdditional data file 6Random distribution, parametric fit, and significance of the top 100 significant 4-node network patterns found in the genetic networkRandom distribution, parametric fit, and significance of the top 100 significant 4-node network patterns found in the genetic network.Click here for fileAdditional data file 7Full collection of 2nGO-motifsFull collection of 2nGO-motifs.Click here for fileAdditional data file 8Network pattern structure, significance, and number of instances of each 2nGO network pattern found in the genetic networkNetwork pattern structure, significance, and number of instances of each 2nGO network pattern found in the genetic network.Click here for fileAdditional data file 9Random distribution, parametric fit, and significance of the top 100 significant 2nGO network patterns found in the genetic networkRandom distribution, parametric fit, and significance of the top 100 significant 2nGO network patterns found in the genetic network.Click here for fileAdditional data file 10Full collection of 3nGO-motifsFull collection of 3nGO-motifs.Click here for fileAdditional data file 11Network pattern structure, significance, and number of instances of each 3nGO network pattern found in the genetic networkNetwork pattern structure, significance, and number of instances of each 3nGO network pattern found in the genetic network.Click here for fileAdditional data file 12Network pattern structure, significance, and number of instances of each 3nGO network pattern found in the genetic networkNetwork pattern structure, significance, and number of instances of each 3nGO network pattern found in the genetic network.Click here for fileAdditional data file 13Description of the genetic perturbations used to construct the genetic interaction networkDescription of the genetic perturbations used to construct the genetic interaction network.Click here for fileAdditional data file 14Cytoscape attribute file containing the genetic inequality relation-ships for all edges of the genetic interaction networkCytoscape attribute file containing the genetic inequality relation-ships for all edges of the genetic interaction network.Click here for fileAdditional data file 15Cytoscape network file of the genetic interaction networkCytoscape network file of the genetic interaction networkClick here for fileAdditional data file 16Cytoscape network file containing a subset of the full genetic inter-action networkCytoscape network file containing a subset of the full genetic inter-action network.Click here for fileAdditional data file 17Cytoscape attribute file containing GOSlim molecular function attributesCytoscape attribute file containing GOSlim molecular function attributes.Click here for fileAdditional data file 18NetworkMotifFinder Cytoscape plugin fileNetworkMotifFinder Cytoscape plugin file.Click here for fileAdditional data file 19Software tutorial for the NetworkMotifFinder pluginSoftware tutorial for the NetworkMotifFinder plugin.Click here for fileAdditional data file 20Random distribution, parametric fit, and significance of the top 200 significant 3nGO network patterns found in the genetic networkRandom distribution, parametric fit, and significance of the top 200 significant 3nGO network patterns found in the genetic network.Click here for fileAdditional data file 21Random distribution, parametric fit, and significance of the top 200 significant 3nGO network patterns found in the genetic networkRandom distribution, parametric fit, and significance of the top 200 significant 3nGO network patterns found in the genetic network.Click here for fileAdditional data file 22Supplemental Figure 1: definition of the genetic interactions used in this study.Supplemental Figure 1: definition of the genetic interactions used in this study.Click here for fileAdditional data file 23Supplemental Figure 2a,b: further examples of 3n-motif subnetworks.Supplemental Figure 2a,b: further examples of 3n-motif subnetworks.Click here for fileAdditional data file 24Supplemental Figure 2c,d: further examples of 3n-motif subnetworks.Supplemental Figure 2c,d: further examples of 3n-motif subnetworks.Click here for fileAdditional data file 25Supplemental Figure 2e: further examples of 4n-motif subnetworks.Supplemental Figure 2e: further examples of 4n-motif subnetworks.Click here for file
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ΦA = phenotype of genetic perturbation A; ΦAB = phenotype
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significant 4-node network patterns; fMAPK = filamentation/
invasion MAP-kinase pathway.
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