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Subtelomere structure<p>The sequence divergence within subtelomeric duplicon families varies considerably, as does the organization of duplicon blocks at sub-telomere alleles; a class of duplicon blocks was identified that are subtelomere-specific.</p>

Abstract

Background: Human subtelomeric segmental duplications ('subtelomeric repeats') comprise
about 25% of the most distal 500 kb and 80% of the most distal 100 kb in human DNA. A systematic
analysis of the duplication substructure of human subtelomeric regions was done in order to
develop a detailed understanding of subtelomeric sequence organization and a nucleotide
sequence-level characterization of subtelomeric duplicon families.

Results: The extent of nucleotide sequence divergence within subtelomeric duplicon families
varies considerably, as does the organization of duplicon blocks at subtelomere alleles.
Subtelomeric internal (TTAGGG)n-like tracts occur at duplicon boundaries, suggesting their
involvement in the generation of the complex sequence organization. Most duplicons have copies
at both subtelomere and non-subtelomere locations, but a class of duplicon blocks is identified that
are subtelomere-specific. In addition, a group of six subterminal duplicon families are identified that,
together with six single-copy telomere-adjacent segments, include all of the (TTAGGG)n-adjacent
sequence identified so far in the human genome.

Conclusion: Identification of a class of duplicon blocks that is subtelomere-specific will facilitate
high-resolution analysis of subtelomere repeat copy number variation as well as studies involving
somatic subtelomere rearrangements. The significant levels of nucleotide sequence divergence
within many duplicon families as well as the differential organization of duplicon blocks on
subtelomere alleles may provide opportunities for allele-specific subtelomere marker
development; this is especially true for subterminal regions, where divergence and organizational
differences are the greatest. These subterminal sequence families comprise the immediate cis-
elements for (TTAGGG)n tracts, and are prime candidates for subtelomeric sequences regulating
telomere-specific (TTAGGG)n tract length in humans.

Background
Segmental duplications, defined operationally as duplicated
stretches of genomic DNA at least 1 kb in length with >90%
nucleotide sequence identity, comprise roughly 5% of euchro-
matin in the human genome [1]. They are preferential sites of

genomic instability, associated with recurrent pathology-
associated chromosome breakpoints [2], large-scale copy
number polymorphisms [3,4], and evolutionary chromosome
breakpoint regions [5]. While they are distributed throughout
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the human genome, they tend to cluster near centromeres
and telomeres [1].

Human subtelomeric segmental duplications ('subtelomeric
repeats') comprise about 25% of the most distal 500 kb and
80% of the most distal 100 kb in human DNA [1,6]. From
extensive early work on these complex regions it was recog-
nized that telomere-adjacent sequence stretches contained
low copy subtelomeric repeat segments of varying sizes and
degrees of divergence [7,8]. The first completed sequences of
human subtelomere regions revealed at least two general
classes of duplicons, sometimes separated by internal
(TTAGGG)n-like islands; large and highly similar centromer-
ically positioned subtelomere duplications and more abun-
dant, dissimilar distal duplicons [9]. While it is now well-
established that subtelomeric repeat (Srpt) regions are com-
posed of mosaic patchworks of duplicons [10,11], genome-
wide analyses of these regions are revealing new details. The
patchworks of subtelomeric duplicons appear to arise from
translocations involving the tips of chromosomes, followed by
transmission of unbalanced chromosomal complements to
offspring [12]. The overall size, sequence content, and organ-
ization of subtelomeric segmental duplications relative to the
terminal (TTAGGG)n repeat tracts and to subtelomeric sin-
gle-copy DNA are different for each subtelomere [6], and the
large-scale polymorphisms (50 kb to 500 kb) found near
many human telomeres seem to be due primarily to variant
combinations of subtelomeric segmental duplications
[10,11,13]. Thus, the architecture of each human subtelomere
region is determined largely by its specific subtelomeric seg-
mental duplication content and organization, which vary
from telomere to telomere and are often allele-specific.

Terminal (TTAGGG)n tracts lie immediately distal to subtelo-
meric segmental duplication regions and form the ends of
chromosomes. The lengths of (TTAGGG)n tracts have been
shown to vary from telomere to telomere within individual
cells [14-16] and between alleles at the same telomere [17-19].
Individual-specific patterns of relative telomere-specific
(TTAGGG)n tract lengths have a significant heritable compo-
nent closely associated with the telomeres themselves
[19,20], and these patterns appear to be defined in the zygote
and maintained throughout life [16]. Since the immediate
effects of (TTAGGG)n tract loss on cell viability and chromo-
some stability may be attributable to the shortest telomere(s)
in a cell, rather than to average telomere length [18,21], indi-
vidual-specific patterns of allele-specific (TTAGGG)n tract
lengths may be crucial for the biological functions of telom-
eres and the effects of telomere attrition and dysfunction
associated with aging, cancer, stress and coronary artery dis-
ease [22-24].

The overall picture of duplicated subtelomeric DNA that has
emerged is one of a very plastic and rapidly evolving genome
compartment. Some of the DNA segments within this subte-
lomeric compartment can exchange sequences with each

other inter-chromosomally [12]; these genomic fragments
behave essentially as a multi-allelic subtelomeric gene family,
with paralogs on separate subtelomeres sometimes sharing
higher sequence similarity than alleles on homologous chro-
mosomes. Thus, in order to track individual subtelomere alle-
les in these regions, it will be essential to define markers that
can distinguish the allele not just from its homolog, but from
each of its paralogs. This is a fundamental challenge in devel-
oping subtelomeric markers, and one that requires a detailed
understanding of both subtelomeric sequence organization
and the nucleotide sequence-level characterization of dupli-
con families. We therefore set out to characterize these fea-
tures systematically based upon the available human DNA
sequence.

Results
Subtelomeric duplicon definition
Subtelomeric regions of human chromosomes are known to
be composed, in part, of mosaic patchworks of duplicons [10-
12,25]. In order to analyze their sequence organization in a
systematic manner, we developed a set of rules to identify
modules of DNA defined by sequence similarity between seg-
ments of subtelomeric DNA from single telomeres and the
assembled human genome. A hybrid reference genome com-
posed of 500 kb subtelomere assemblies [6] incorporated
into human genome build 35 at the appropriate subtelomere
coordinates (Additional data file 1) was used for this purpose.
The hybrid build used in the current analysis essentially
replaces some of the build 35 subtelomeres with more com-
plete and rigorously validated subtelomere assemblies [6],
but is otherwise identical to the build 35 public reference
sequence.

The sequence of the most distal 500 kb of each human subte-
lomere region from this reference hybrid build was used to
query the complete hybrid reference genome sequence as
described in Materials and methods and in Additional data
file 2. Adjacent and properly oriented BLAST matches with
≥90% nucleotide sequence identity and ≥1 kb in size were
assembled into chains; the query sequence and each aligned
region identified in this manner were termed 'duplicons'
defined by that query, and this set of homologous sequences
is a single 'module'. Each module was thus defined by a set of
pairwise alignments with the query subtelomere sequence,
and a percent nucleotide sequence identity for the non-
masked parts of each chained pairwise alignment was derived
from the BLAST alignments. In cases where more than one
duplicon was defined by matches to a segment of subtelomere
query sequence, the average percent identity of all pairwise
alignments in the module was also calculated (the %IDavg).
Interestingly, in most cases the best nucleotide sequence
identity between the query subtelomere sequence and the
duplicons was very similar to the average pairwise nucleotide
sequence identity, indicating that either subtelomeric dupli-
cations within a group of this class occurred in a relatively
Genome Biology 2007, 8:R151



http://genomebiology.com/2007/8/7/R151 Genome Biology 2007,     Volume 8, Issue 7, Article R151       Ambrosini et al. R151.3

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

narrow evolutionary time window, or gene conversion of
duplicated sequences within the group has occurred at a rela-
tively constant rate. The full set of modules, including the
coordinates of their genomic alignments, is presented in
Additional data file 3.

Figure 1 illustrates this analysis graphically for the 7p subte-
lomere region. Each rectangle in Figure 1 represents a sepa-
rate duplicon; for example, the chromosome 7
intrachromosomal duplicons (pink, above the coordinate
line) include two large blocks and many smaller ones, with
each duplicon corresponding to distinct, internal chromo-
some 7 coordinates. The large (90 kb) duplicon at the bottom
of the figure matches a subtelomeric segment of chromosome
11 (bounded light green rectangle) whereas chromosome 1 is
the site of 25 distinct 7ptel duplicons of various sizes, 9 of
which are subtelomeric (bounded brown rectangles) and 16
non-subtelomeric (unbounded brown rectangles). The

remaining duplicons defined by pairwise alignment with the
7ptel query sequence are designated in a similar fashion.

This systematic analysis resulted in the definition of 1,151
subtelomeric modules whose coordinates define duplicon
families; 461 modules define duplicon families located exclu-
sively in subtelomere regions, whereas the remainder have
copies in both subtelomeric and non-subtelomeric DNA. The
duplication module numbers are broken down by subte-
lomere in Additional data file 4. The abundance and genomic
distribution for the subtelomere modules and each of their
duplicons are summarized in Figure 2. In addition to the
expected subtelomeric enrichment of duplicons, they are also
localized at many pericentromeric loci and at a relatively
small number of internal chromosome sites. Internal loci par-
ticularly enriched for subtelomeric duplicons include 2q13-
q14 (at the site where ancestral primate telomeres fused to
form modern human chromosome 2), 1q42.11-1q42.12,
1q42.13, 1q43-q44, 3p12.3, 3q29, 4q26, 7p13, 9q12-q13, and
Yq11.23. These sites have been documented previously in
genome-wide analyses of segmental duplications [26] and
represent sites that were apparently susceptible to either
donation or acceptance of these duplicated chromosome seg-
ments in recent evolutionary time.

Subtelomeric duplicon characterization
The defined subtelomere modules and their duplicons were
characterized according to size and nucleotide sequence sim-
ilarity. Duplicons that occupy subtelomeric sequences were
generally both larger and more abundant than those occur-
ring elsewhere in the genome (Additional data file 5), consist-
ent with the notion that subtelomeric location in humans is
permissive for and/or somehow promotes large duplication
events. Although smaller and fewer, non-subtelomeric copies
of duplicons tended to cluster at the relatively few pericentric
and interstitial loci described above (Figure 2).

Figure 3 shows the results of an analysis of duplicon number
as a function of percent nucleotide identity. There is a bimo-
dal distribution of duplicon number versus percent nucle-
otide sequence identities, with peaks at 98% and 91% (Figure
3, left panels). The 98% peak was highly enriched in subtelo-
meric duplicons. The combined large size and high sequence
similarity of a subset of subtelomeric duplicons is highlighted
in the right panels of Figure 3, which plots the total bases cov-
ered by the duplicons as a function of the nucleotide sequence
identity. The bimodal distribution of duplicon peaks might
suggest two evolutionary waves of duplications, with the
more recent one accounting for most of the large subtelom-
eric duplicons; this sort of punctuated duplication pattern is
reminiscent of that observed by Eichler and co-workers [27]
for segmentally duplicated DNA in a pericentromeric chro-
mosome region. Alternatively, the 98% peak may be due to
maintenance of sequence similarity by ongoing interchromo-
somal gene conversion between the large subtelomeric
duplicons.

Duplicon substructure of the 7p subtelomere regionFigure 1
Duplicon substructure of the 7p subtelomere region. The most distal 140 
kb of the chromosome 7p reference sequence is shown oriented with the 
telomeric end on the left (34 kb of unsequenced 7p DNA lie beyond the 
sequenced region shown, and the remaining 350 kb of the 7p subtelomere 
region centromeric to that shown does not contain duplicated DNA). The 
distance from the end of the sequence to the start of the terminal repeat 
array is indicated by the vertical arrow at the telomeric end of the 
sequence. The position and 5'-3' G-strand orientation of (TTAGGG)n 
elements are shown as black arrows. Duplicated genomic segments are 
identified by chromosome (color) and whether they are subtelomeric 
(bounded rectangles), non-telomeric (unbounded rectangles), or intra-
chromosomal (located above the subtelomere coordinates).
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Genomic distribution of subtelomeric dupliconsFigure 2
Genomic distribution of subtelomeric duplicons. The total number of duplicon bases for each 1 Mb interval in the human genome is indicated by the 
following color designations: red, greater than 500 kb; purple, 100-500 kb; aqua, 50-100 kb; green, 5-50 kb; and blue, 1-5 kb. The positions of the 
centromeric gaps in build 35 are indicated as black cylinders.

Duplicon number, size, and total bases covered as a function of percent nucleotide sequence identityFigure 3 (see following page)
Duplicon number, size, and total bases covered as a function of percent nucleotide sequence identity. Duplicon number (left panels) and the total bases in 
duplicons (right panels) are shown on the Y-axis, and percent nucleotide sequence identity for the non-RepeatMasked bases is shown on the X-axis. The 
size ranges (kb) of duplicons in each category are indicated by the colors shown in the key at the bottom of the figure.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

Subtelomeric duplicon abundance

1-5 kb
5-50 kb

50-100 kb
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Figure 3 (see legend on previous page)
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Subtelomeric duplicon organization and divergence
Visual inspection of the duplicon organization for the subte-
lomeres revealed several key features (Figure 4, Additional
data files 6-47). The internal (TTAGGG)n sequences are usu-
ally oriented towards the telomere and almost always co-
localize to duplicon boundaries. The orientations of the dupli-
cons in the segmentally duplicated regions are similarly
maintained, consistent with a recent model for their genera-
tion that features subtelomeric translocation of chromosome
tips followed by transmission of unbalanced subtelomeric
chromosome complements [12]. In an unusual case where the
orientations are opposite to the telomere (Figure 4, 5p tel-
omere), the (TTAGGG)n occurs head-to-head with one in the
normal orientation, perhaps indicating the relic of a head-to-
head telomere fusion event transmitted in the germline. Sub-
telomeric internal (TTAGGG)n-like sequences at duplicon
boundaries suggest the possibility of internal binding/inter-
action sites for some (TTAGGG)n-binding protein compo-
nents found primarily at terminal (TTAGGG)n tracts;
published data showing TRF2 and TIN2 localization at inter-
nal (TTAGGG)n tracts resulting from a fused human chromo-
some pair support this idea [28]. The subtelomeric internal
(TTAGGG)n-like islands range in size up to 823 base-pairs
(bp), with most in the 150-200 bp range; they vary consider-
ably in similarity to canonical (TTAGGG)n repeats [6] as well
as in the relative abundance of (TTAGGG)n-related motifs.
Several of the (TTAGGG)n-related motifs found in these
islands were detected previously in proximal regions of tel-
omeres (for example, TGAGGG, TCAGGG, TTGGGG [29,30]
(H Riethman, unpublished)). A more detailed analysis of
these interesting sequence islands and their comparison with
a more comprehensive set of telomere-proximal sequences
than is currently available might shed light on their origins
and the relative timing of their internalization.

For any given segment of a subtelomere, the level of nucle-
otide sequence similarity with duplicated DNA depends
entirely on the specific duplicon content and organization and
does not necessarily correlate with its distance from the tel-
omere terminus (Additional data files 6-47, bottom panels).
Large duplicons with relatively high sequence similarity
amongst family members cover a large proportion of the
duplicated sequence space, but occupy only a subset of subte-
lomere regions and exist at variable distances from the termi-
nal (TTAGGG)n tract. Since many of the currently incomplete
assemblies terminate within these large duplicons, the actual
sequence organization is still unknown for these chromosome
ends (1p, 3q, 6p, 7p, 8p, 9q, 11p, 19p). For assemblies com-
pleted or very nearly completed that contain the large dupli-

cons, there is a consistent pattern of higher divergence in
(TTAGGG)n-adjacent subterminal sequence than in adjacent
large duplicon regions (4q, 5q, 6q, 10q, 15q, 16q, and 17q, bot-
tom panels). For subtelomeres that lack the large duplicons,
there is typically a much lower degree of sequence similarity
throughout these subtelomeric duplication regions (often 90-
96% nucleotide sequence identity; 1q, 2p, 4p, 5p, 10p, 13q,
14q, 18p, 19q, 21q, 22q). The 3p, 14q, and 20p subtelomeres
have unsequenced gaps adjacent to their terminal
(TTAGGG)n tracts; hybridization experiments showed that
3p and 14q have small Srpt regions, whereas that for 20p is
more extensive and contains large duplicons (H Riethman,
data not shown).

The duplicon sequence similarity characteristics of a small
group of telomeres falls outside of the general patterns men-
tioned above. The 16p reference allele subtelomere and the
Xq/Yq subtelomere have small, highly similar subterminal
duplicons and more divergent adjacent subtelomeric ones,
whereas the 2q, 12p, 17p, and 20q subtelomeres have moder-
ately sized duplicons with <96% to 98.5% similarity through-
out the duplicated regions. The 9p subtelomere has
subterminal duplicons with high sequence similarity (98.5-
99%) and several large blocks of sequence that correspond to
the 2qfus internal site and several internal loci on chromo-
some 9 (Additional data file 22) [31].

The telomere assemblies analyzed here represent only a sin-
gle reference sequence, and there is extensive evidence for
large copy number polymorphism at many of these chromo-
some ends [32-35]. Known major variant alleles differ quite
dramatically in sequence organization from the shown refer-
ence alleles. For example, the 16p allele shown is one of at
least three large variants of this subtelomere [32]; finished
sequence data from part of a second allele show the presence
of additional duplicated DNA sequences, including several
large duplicons bearing very high sequence similarity (97-
98.5%) with those characterized in this study (data not
shown). Similarly, the 11p reference allele assembly shown
here is part of a long segmental variant of this subtelomere;
the short version (whose existence has been validated by clon-
ing and mapping (H Riethman, data not shown)) ends at an
internal (TTAGGG)n sequence present within the long allele
(coordinate 115 kb), and has a structure similar to the 17p sub-
telomere (compare Additional data files 26 and 37). As addi-
tional variant subtelomeres are cloned and characterized, it is
likely that further combinations of duplicons will be discov-
ered on alleles that may, in many instances, be more similar
to their paralogs than their homologs.

Duplicon organization of selected telomeresFigure 4 (see following page)
Duplicon organization of selected telomeres. The sequences are oriented with the telomeres at the left, with the distance from the end of the sequence to 
the start of the terminal repeat array indicated by the vertical arrow at the telomeric end of the sequence. The position and 5'-3' G-strand orientation of 
(TTAGGG)n elements are shown as black arrows. Note the co-localization of nearly all of the internal (TTAGGG)n islands with duplicon boundaries. The 
duplicon substructure for each of the 43 non-satellited telomeres is shown in Additional data files 6-47.
Genome Biology 2007, 8:R151
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Figure 4 (see legend on previous page)
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Subtelomere-only sequence blocks
Systematic analysis of each subtelomere revealed a limited set
of subtelomeric segments whose sequence aligned exclusively
with other subtelomeric DNA sequences (detailed in Addi-
tional data file 48). The 11 largest stretches of these subte-
lomere-only duplicon blocks, each greater than 10 kb in
length, are summarized in Table 1. The size and subtelomere
origin of the largest homology block for each of these duplicon
families is indicated, along with the number of copies and the
range of pairwise nucleotide sequence identities of the subte-
lomere alignments to the query DNA segments. It should be
noted that some of the duplicons are smaller than the largest
query block, either because they are missing some of the
sequences or because they are from the edge of an incomplete
subtelomeric sequence assembly. The subtel-only blocks
include portions of the largest duplicated regions with highest
sequence similarity among copies (blocks 1, 2, 3, 6, 6', and 12)
in addition to several blocks with somewhat lower sequence
similarity among copies. Because they are restricted exclu-
sively to subtelomeres and are of sufficient size and sequence
similarity to be detected by FISH-based approaches, this class
of duplicon blocks is an attractive starting point for develop-
ing subtelomere paint probes for tracking somatic changes to
subtelomeres in situ. Their delineation here will permit the
development of sequence-based copy number quantification
assays to assist in the analysis of subtelomere allele dosage
changes in both germline DNA and the somatic evolution of
genomes in cancer.

Subterminal sequence blocks
Adjacent to some of the terminal (TTAGGG)n sequences and
to many internal (TTAGGG)n sequences are stacks of small
duplicons (for example, 7p in Figure 1, 19p, 10q, 16q, 9q, 6p in
Figure 4, and telomeres 2p, 3q, 4p, 4q, 5q, 6q, 8p, 11p, 17q,
18p, 19q, 21q, 22q in Additional data files 6-47). This subter-
minal duplicon class has sequence similarity to DNA posi-
tioned adjacent to the terminal (TTAGGG)n tract of at least

one chromosome end. To more formally define these
sequences, we examined the duplicon structure of each of the
finished and near-finished (within 5 kb of the terminal
(TTAGGG)n) subtelomere assemblies [6,36] and identified
subterminal sequence segments that are flanked by terminal
(TTAGGG)n and by a position <25 kb from the terminal
(TTAGGG)n that corresponds to a boundary of multiple
duplicons. These sequences were termed subterminal mod-
ules and were used as query sequence to define subterminal
duplicons that contained sequence aligned to them using the
criteria outlined in Additional data file 2. Six subterminal
duplicon families were defined in this manner (Additional
data file 49). Together with six one-copy DNA (TTAGGG)n-
adjacent regions (7q, 8q, 11q, 12q, 18q, and Xp/Yp), these
duplicon families represent the global set of sequences occu-
pying the DNA space immediately cis to terminal (TTAGGG)n
tracts. As such, they are among the sequences most likely to
directly impact terminal (TTAGGG)n tract regulation [19].

Table 2 shows the telomere and the defining subterminal seg-
ment sizes for these six duplicon families, as well as the copy
number for each family. The copies are categorized according
to those that occur in other subterminal regions (<25 kb from
any known terminal (TTAGGG)n tract; subterm), those that
occur in subtelomeric repeat regions but are not subterminal
(subtel), and those that occur in non-subtelomeric regions
(non_subtel). Subterminal duplicons that occur at internal
subtelomeric sites are often adjacent to internal (TTAGGG)n
tracts and are evident graphically as stacks of duplicated DNA
segments (for example, 7p in Figure 1, and 19p, 10q, 16q, 9q,
and 6p in Figure 4). However, some duplicons in such stacks
are bounded by an internal (TTAGGG)n and some are not.
The same situation can be visualized at several subtelomeric
sites defined by stacks of subterminal duplicons but that lack
internal (TTAGGG)n (for example, telomere 5p in Figure 4,
and telomeres 1p, 1q, 5p, 6q, 16q from Additional data files 6-
47). The simplest explanation for these observations is that

Table 1

Large subtelomere-specific duplicons

Subtel block Telomere Size (kb) Duplicated blocks Percent identity Named transcripts

1 1p 25 4 97.15-98.42 Sim to protein phosphatase 1 inhibitor subunit 2

2 15q 88 7 97.84-98.33 OR4F3, OR4F4, OR4F5, OR4F29, OR4F21, OR4F16, OR4F17, C6orf88

3 1p 35 1 97

5 2p 17 5 90.49-92.00 Sim to RPL23AP7

6 3q 38 5 97.15-97.89 Sim to RPL23AP7

6' 11p 11 1 97.98 RYD5

7 4q 28 1 * DUX4

8 4q 14 6 91.33-94.60 TUBB4q

10 2q 49 1 96.47 FBXO25

11 9q 36 6 91.26 - 95.68 IL9R

12 12p 15 1 97.89 IQSEC3

* Block 7 corresponds to the D4Z4 tandem repeat on the 4q and 10q subtelomeres, for which no percent identity is calculated because of the very large 
number and diverse % identities of the BLAST alignments among tandem D4Z4 repeats.
Genome Biology 2007, 8:R151
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these duplicon edges correspond to the positions of terminal
translocations where (TTAGGG)n sequences on the recipient
telomeres were lost or where the (TTAGGG)n motif was orig-
inally present but has decayed beyond recognition.

A limited set of non-subtelomeric copies of subterminal
duplicons also exist (Table 2, Additional data file 49). Their
genomic locations suggest sites of ancestral telomere-associ-
ated chromosome rearrangements, including a well-docu-
mented telomere fusion at 2q13-q14 [37] and ancestral
inversion of a chromosome arm followed by duplication of
pericentromeric sequences (see legend to Additional data file
49).

The relationship between subterminal duplicon copies within
a family and between several related subterminal families
(also detailed in the legend to Additional data file 49) is com-
plex and broadly consistent with an earlier model of subte-
lomere structure (based upon the first completely sequenced
subtelomeres) featuring a subterminal 'compartment' with
more active recombinational features than the larger and less
abundant centromerically positioned subtelomere duplica-
tions [9]. In particular, many of the subterminal intra-family
and cross-family homology regions are relatively short, their
positions within the subterminal blocks vary, and they are
located at different distances from the terminal (TTAGGG)n
tract. In addition, there are several alternative organizations
of high-copy repetitive elements (masked and not examined

in detail in this study) within these subterminal blocks. Fur-
ther refinement of the classification of these subterminal fam-
ilies appears feasible and will benefit from more extensive
sampling of (TTAGGG)n-adjacent sequences from additional
alleles.

Discussion
Tracking subtelomere alleles using conventional DNA mark-
ers is currently very difficult. All but six of the most distal 30
kb euchromatic subtelomere segments are composed exclu-
sively of segmental duplications, and for a significant number
of subtelomeres the duplication regions can be far more
extensive (hundreds of kilobases) as well as highly variable in
size and duplication content among alleles. Most of this sub-
telomeric DNA lies outside of the 'Hapmappable' genome;
using single nucleotide polymorphisms to follow haplotypes
in these regions is virtually impossible using current high-
throughput technologies because of subtelomeric duplication
content. Our high-resolution analysis of subtelomeric dupli-
cation sequence content and organization demonstrates sig-
nificant differences in the levels of sequence similarity
between distinct subtelomere duplicon families as well as
large variations in the types and sequence organization of
duplicons present at particular subtelomeres. These differ-
ences may offer opportunities for distinguishing individual
subtelomere alleles in the context of genomic DNA samples,
ultimately permitting large-scale studies associating subte-

Table 2

Subterminal duplicons

Subterm block Telomere Size (kb) Duplicated blocks Location %ID Named transcripts

A 2p 7 6 Subterm 91.74-92.46 Sim to RPL23AP7, FAM41C

A 2p 7 12 Subtel 91.24 - 92.65 Sim to RPL23AP7, FAM41C

A 2p 7 1 Non_subtel 91.8 Sim to RPL23AP7, FAM41C

B 4p 17 10 Subterm 90.67-98.39 Sim to RPL23AP7, FAM41C

B 4p 17 16 Subtel 90.57-93.66 Sim to RPL23AP7, FAM41C

B 4p 17 1 Non_subtel 91.9 Sim to RPL23AP7, FAM41C

C 9p 10 6 Subterm 98.29-99.00 Sim to MGC13005, sim to DDX11, CXYorf1-related

C 9p 10 1 Non_subtel 98.27 Sim to MGC13005, sim to DDX11, CXYorf1-related

D 10q 22 10 Subterm 90.7-96.65 Sim to RPL23AP7, FAM41C

D 10q 22 15 Subtel 91.68-96.09 Sim to RPL23AP7, FAM41C

D 10q 22 2 Non_subtel 93.69-95.80 Sim to RPL23AP7, FAM41C

E 17p 21 5 Subterm 95.97-97.16

F 18p 15 1 Subterm 99.00

F 18p 15 1 Subtel 93.58

F 18p 15 8 Non_subtel 91.19-94.27
Genome Biology 2007, 8:R151
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lomere haplotypes or haplotype combinations with particular
phenotypes.

Our analysis of subtelomeric duplicon substructure and
nucleotide sequence similarity provides a different and more
detailed perspective on subtelomere sequence organization
than the subtelomere paralogy analysis included as part of the
Linardopoulou et al. [12] study. The starting point for our
analysis was a comprehensive set of manually curated and
physically mapped subtelomere sequence assemblies [6], and
we incorporated all segmental duplications of the
subtelomeric sequences (both non-subtelomeric and subtelo-
meric) into our duplicon definition and analysis strategy; this
led to the systematic and comprehensive definition and
sequence characterization of duplicons anchored to each sub-
telomere (Additional data files 6-47). The paralogy map
derived from the Linardopoulou et al. [12] analysis does not
incorporate non-subtelomeric homology blocks or the newer
subtelomeric sequence included in our assemblies. Because
of these differences, the paralogy blocks they define overlap
with, but do not correspond to, any of the subtel-only blocks
or subterminal blocks defined in this study (Additional data
file 50). In addition, we determined raw percent nucleotide
sequence similarity numbers directly from the pairwise
blastn alignments of RepeatMasked sequence, rather than
calculating this parameter from alignments of non-Repeat-
Masked DNA post-processed to exclude gaps and small inser-
tions/deletions from alignment percent identity scoring [12].
This accounts for the generally higher divergence between
our duplicon sequence alignments compared to those of
Linardopoulou et al. [12], and helps to focus attention on
sequence differences most likely to be useful for allelic and
paralog discrimination.

Duplicons and sets of adjacent duplicon blocks that comprise
segmentally duplicated subtelomeric DNA were classified
according to several practically useful and perhaps biologi-
cally significant groups. Duplicon blocks that occur only in
subtelomeric regions (Table 1) can be used to develop
sequence-based approaches to the analysis of subtelomere
variation and subtelomeric somatic evolution of individual
genomes, without interfering background signals from non-
subtelomeric sites. Subterminal duplicon blocks of sequence
(Table 2) were defined that, together with six one-copy sub-
terminal regions, comprise all of the cis-elements adjacent to
terminal (TTAGGG)n tracts. These sequences are believed to
be involved in telomere-specific and allele-specific
(TTAGGG)n tract regulation [19], and are amongst the first
non-(TTAGGG)n sequences expected to be affected by tel-
omere dysfunction, aberrant telomere replication, and tel-
omere instability. Their delineation and analysis of their
variation are crucial for understanding the role of human sub-
telomeres in telomere length regulation and telomere biology.

Subtelomeric duplicons are known to harbor protein-encod-
ing genes and predicted protein-encoding genes as well as

pseudogenes and many transcripts of unknown function
[6,12,35] (H Riethman, unpublished). Known genes embed-
ded in the subtelomere-specific duplicons and in the subter-
minal duplicons are listed in Tables 1 and 2, respectively; a
comprehensive listing of RefSeq matches with these dupli-
cons is given in Additional data files 51 and 52. For several
subtelomeric transcript families (IL9R, DUX4, FBXO25)
functional evidence for protein expression from at least one
transcript locus is available [38-40]. However, for most tran-
script families the evidence for encoded protein function
relies upon the existence of one or more actively transcribed
loci with open reading frames predicted to encode evolution-
arily conserved proteins [41-44]. While these data strongly
suggest that one or more members of each of these gene fam-
ilies encode functional protein, in most cases pseudogene
copies of the respective gene family co-exist amongst the
duplicons and a great deal of work lies ahead in terms of deci-
phering the functions of individual members of subtelomeric
gene families as well as their evolution. In this light, it is
important to note that only a single reference sequence has
been sampled in this analysis, and given the abundant large-
scale variation in these regions, there are certain to be many
additional members of most of these gene families yet to be
discovered in the human population.

One of the most intriguing transcript families embedded in
the subtelomere repeat region is one predicted to encode
odorant receptors [35,41], in subtelomere-specific duplicon
block 2 (Table 1). The highly variable dosage and polymorphic
distribution of these genes in humans reflect a recent and
evolutionarily rapid expansion of this gene family. Subtelom-
eric duplicon regions of yeast, Plasmodium, and trypano-
somes are each associated with rapid duplication and
generation of functional diversity in their embedded genes
(discussed in [10]), and it is intriguing to speculate that simi-
lar mechanisms are active in human evolution. A very inter-
esting transcript family of unknown function (CXYorf1-
related) is embedded in subterminal duplicon block C (Table
2); many of these transcripts are predicted to encode variants
of an evolutionarily conserved open reading frame with one
copy in the mouse genome [44]. This transcript family varies
widely in both dosage and telomere distribution in individual
genomes, and usually terminates less than 5 kb from the start
of the terminal (TTAGGG)n tract; thus, individual telomeric
transcription sites for this family might be differentially sus-
ceptible to position effects depending on local telomeric chro-
matin/heterochromatin status and on chromosome-specific
telomere lengths.

From our analysis, it is clear that most subterminal duplicon
sequences are more divergent than the large duplicons that
exist more centromerically, both in nucleotide sequence sim-
ilarity and in sequence organization. This divergence might
be exploited to develop subterminal allele-specific PCR
assays to track some of these sequences genetically in the con-
text of total genomic DNA. For both the highly similar and the
Genome Biology 2007, 8:R151
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more divergent duplicon families, coupling quantitative PCR
assays designed to amplify sequences across these regions
with new bead-based single molecule characterization and
sequencing methods [45,46] might provide an extremely
powerful means for determining both the copy number and a
global set of short-range subtelomere haplotypes within an
individual genome. Thus, subtelomere variation might be
linked with phenotypes at this level. Extending these global
short-range sequence haplotypes into longer-range subte-
lomere allele haplotypes will be more challenging, and may
require the isolation, detailed characterization, and perhaps
complete sequencing of many additional variant subtelomere
alleles.

Conclusion
This comprehensive analysis of the segmental duplication
substructure in human subtelomere regions yielded a number
of insights with important biological implications. The locali-
zation of interstitial subtelomeric (TTAGGG)n-like sequences
at duplicon boundaries suggests their involvement in the gen-
eration of the complex sequence organization. Their existence
at subtelomeres suggests the possibility of internal binding/
interaction sites for some (TTAGGG)n-binding protein com-
ponents found primarily at terminal (TTAGGG)n tracts. Iden-
tification of a class of duplicon blocks that are subtelomere-
specific will facilitate high-resolution analysis of subtelomere
repeat copy number variation as well as studies involving
somatic subtelomere rearrangements. Finally, the significant
levels of nucleotide sequence divergence within many dupli-
con families as well as the differential organization of dupli-
con blocks on subtelomere alleles may provide opportunities
for allele-specific subtelomere marker development; this is
especially true for subterminal regions, where divergence and
organizational differences are the greatest. These subtermi-
nal sequence families comprise the immediate cis-elements
for (TTAGGG)n tracts, and are prime candidates for subtelo-
meric sequences regulating telomere-specific (TTAGGG)n
tract length in humans. Their delineation and analysis of their
variation will be crucial for understanding the role of human
subtelomeres in telomere length regulation and telomere
biology.

Materials and methods
'Hybrid' genome build
Both build 35 subtelomeres and the Riethman et al. [6] sub-
telomere sequences are based upon the same mapping data
[6,36], but the manually curated subtelomere assemblies [6]
are more complete, containing some subtelomere sequences
missing and/or misincorporated in the public builds. A single
hybrid reference genome was therefore created and used in
the current analysis, so that duplicons could be identified and
consistently defined in the context of the highest quality
sequence available. The centromeric single-copy regions of
our assemblies matched build 35 perfectly, so the 500 kb sub-

telomeric assemblies [6] (see also Riethman Lab Website
[47]) were substituted for build 35 sequence at the appropri-
ate sequence coordinates (given in Additional data file 1; for
each of the non-acrocentric chromosome ends the appropri-
ate p-arm sequence was attached at the p-arm coordinate.
The reverse complement of the q-arm sequences were
attached at the indicated q-arm coordinates).

Rules for modules of BLAST hits
Duplicon modules were defined by processing the results of
BLAST [48] searches of in-house curated subtelomere
sequence with repeats masked by RepeatMasker [49] and
Tandem Repeats Finder [50] against the hybrid build 35
genome build described above. Blast hits (≥90% identity and
≥100 bp length) were segregated according to chromosomal
location and orientation. Any blast hits that were colinear,
within 25 kb of each other in both loci, and uninterrupted by
other hits from the same group were combined to form these
duplicons. Our methods were tolerant of large insertions and
deletions (for example, of retrotransposons) but not rear-
rangements. Groups of combined blast hits ≥1 kb were
defined as duplicons, and those smaller were discarded. The
percent identity of each pairwise alignment was derived
directly from the blastn output; no post-processing of align-
ments to remove small insertions and deletions as described
by Linardopoulou et al. [12] was done.

Subtel-only block definition and characterization
The master module list (Additional data file 3) was scanned
for regions in which the query sequences shared homology
with other subtelomeres but not any non-subtelomeric
regions. A representative was taken from the longest stretch
of query associated with each of these regions. This subse-
quence was passed through the module definition pipeline
described above (Additional data file 2) to give sets of dupli-
cons whose boundaries correspond precisely with the deline-
ated subsequence.

Subterminal block definition and characterization
We examined the duplicon structure (Figures 1 and 4, Addi-
tional data files 6-47) of each of the finished and near-fin-
ished subtelomere assemblies (finished to within 5 kb of the
terminal (TTAGGG)n) [6] and identified subterminal
sequence segments that are flanked at one end by a terminal
(TTAGGG)n and at the other by a position within 25 kb of the
terminal (TTAGGG)n that corresponds to the boundary of
multiple duplicons. These sequence blocks were used as
query sequence to define subterminal duplicons that con-
tained sequence aligned to the query subterminal block using
the criteria outlined in Additional data file 2. The six subter-
minal families represent a minimally redundant set of such
subterminal blocks.
Genome Biology 2007, 8:R151
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Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 provides coordi-
nates of build 35 to which the 500 kb subtelomeric [6] assem-
blies were added prior to the subtelomeric duplicon analysis.
Additional data file 2 is a definition of subtelomeric dupli-
cons. Additional data file 3 is a table giving duplicon defini-
tion and characterization. Additional data file 4 is a summary
of modules defined by similarity to human subtelomeric
DNA. Additional data file 5 gives the number and size range
of duplicons found in non-subtelomeric genome regions and
in subtelomeric genome regions. Additional data files 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47 show the duplicons defined in the terminal 500
kb of all non-satellited telomeres (1p-Yq); each has a top
panel and a bottom panel, with the top panel showing
duplicon origin and organization and the bottom panel show-
ing the % nucleotide sequence similarity for each of these
duplicons. Additional data file 48 is a table listing duplicon
blocks that are specific for subtelomeric regions of the human
genome. Additional data file 49 is a table listing duplicon
blocks that are adjacent to terminal (TTAGGG)n repeats.
Additional data file 50 is a Comparison of subtel-only and
subterminal duplicon blocks defined in this work with the
subtelomeric homology blocks reported in Linardopoulou et
al. [12]. Additional data file 51 is a table listing subtel-only
block transcript matches. Additional data file 52 is a table list-
ing subterminal block transcript matches.
Additional data file 1Coordinates of build 35 to which the 500 kb subtelomeric [6] assemblies were added prior to the subtelomeric duplicon analysisThe p-arm sequence as given was attached at the p-arm coordinate, and the reverse complement of the q-arm sequences were attached at the indicated q-arm coordinatesClick here for fileAdditional data file 2Definition of subtelomeric dupliconsDuplicon modules were defined by processing the results of BLAST searches of in-house curated subtelomere query sequences (see text and Materials and methods). Colinear and properly oriented pairs of BLAST matches to the query sequence were joined into a chain if not separated by greater than 25 kb and not uninterrupted by other hits from the same query sequence. Groups of chained blast hits spanning ≥1 kb of the subject sequence were defined as duplicons. These methods were tolerant of insertions and deletions <25 kb in size (for example, of retrotransposons) but not tolerant of rearrangements.Click here for fileAdditional data file 3Duplicon definition and characterizationEach module is defined by a set of pairwise alignments, and each reference sequence in these sets is represented as a single row in this table. The first column (module) contains an identifier for the particular copy of the module (duplicon) indicated in the next three columns. These columns (query sequence) list the subtelomeric location of the query sequence defining the module (see Materials and methods). The 'aligned sequences' column shows the locations of other duplicons in this module, matched by the query. The coor-dinates in this column refer either to our published subtelomeric assemblies (designated by chromosome and arm p or q) or the human genome build 35 (all other designations). The %IDeach is percent nucleotide sequence identity across the chained pairwise alignment, excluding masked sequence. The %IDavg is the average percent identity of all pairwise alignments in the module. This was the number used for %ID in charts and analyses in this paper. The final column shows a 1 if the module contains intrachromosomal non-subtelomeric sequence matches, and 0 if it does not.Click here for fileAdditional data file 4Summary of modules defined by similarity to human subtelomeric DNAThis table shows the numbers of duplicon modules defined per sub-telomere. The complete list of these modules is included in Addi-tional data file 3. The 'subtelomeric' column shows the total number of modules for each subtelomere region (since each mod-ule is defined by a set of subtelomeric coordinates). The 'non-sub-telomeric' column lists the subset of these modules with homology to duplicated regions that lie outside the subtelomeres. A compari-son of these non-subtelomeric duplicons to the subtelomeric copies is included in Figure 3 and in Additional data file 5. The 'intra-chro-mosomal' column indicates the subset of modules with homology to a different region on the same chromosome.Click here for fileAdditional data file 5Number and size range of duplicons found in non-subtelomeric genome regions and in subtelomeric genome regionsSubtelomeric regions correspond to the set of query sequences enu-merated in Additional data file 1 and the average percent identity across the sequences to which each is aligned. The non-subtelom-eric regions correspond to the aligned sequences that fall outside the subtelomere regions (the subset listed in Additional data file 2).Click here for fileAdditional data file 6Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 1pThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 7Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 1qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 8Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 2pThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 9Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 2qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 10Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 3pThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 11Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 3qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 12Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 4pThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 13Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 4qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 14Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 5pThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 15Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 5qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 16Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 6pThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 17Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 6qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 18Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 7pThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 19Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 7qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 20Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 8pThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 21Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 8qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 22Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 9pThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 23Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 9qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 24Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 10pThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 25Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 10qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 26Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 11pThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 27Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 11qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 28Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 12pThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 29Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 12qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 30Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 13qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 31Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 14qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 32Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 15qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 33Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 16pThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 34Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 16qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 35Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 17pThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 36Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 17qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 37Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 18pThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 38Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 18qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 39Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 19pThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 40Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 19qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 41Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 20pThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 42Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 20qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 43Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 21qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 44Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: 22qThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 45Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: Xp, YpThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 46Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: XqThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 47Duplicons defined in the terminal 500 kb of all non-satellited tel-omeres: YqThe subtelomere sequences shown are the assemblies published previously [6] and are available at the Riethman Lab website [47]. The telomeric end of each sequence assembly is located at the left. The distance from the end of the sequence to the start of the termi-nal repeat array is indicated by the vertical arrow at the telomeric end of the sequence. The position and orientation of (TTAGGG)n tracts are shown as black arrows. Top panels: duplicated genomic segments are identified by chromosome (color) and whether they are subtelomeric (bounded rectangles), non-subtelomeric (unbounded rectangles), or intra-chromosomal (located above the subtelomere coordinates). Each rectangle represents a separate duplicon. Bottom panels: duplicated genomic segments are the same as in the top panels, but identified by nucleotide sequence similarity with the query subtelomere sequence (color scheme as indicated in the key).Click here for fileAdditional data file 48Duplicon blocks that are specific for subtelomeric regions of the human genomeThis table shows blocks of modules that occur exclusively in subte-lomere regions. The first column gives an identifier for each block. The next three columns (query sequence) give the subtelomeric location that defines the block (which will consist of one or more adjacent modules). For completeness, in some cases aligned sequences have been included in these blocks even though they fell below thresholds for module definition. The percent identity of the chained alignments between the sequences is indicated (excluding masked sequence). Named genes/gene families that have tran-scripts matching part or all of the respective duplicon blocks are listed in the last column. Block 7 is the D4Z4 tandem repeat on the 4q and 10q subtelomeres, for which no percent identity is calcu-lated because of the very large number and diverse percent identi-ties of the BLAST alignments among tandem D4Z4 repeats.Click here for fileAdditional data file 49Duplicon blocks that are adjacent to terminal (TTAGGG)n repeatsThis table shows blocks of modules that are adjacent to the ends of finished telomeres (see Materials and methods). The columns describe the same categories of information as indicated in Addi-tional data file 48. A limited set of non-subtelomeric copies of sub-terminal duplicons exist (Additional data file 49). Their genomic locations suggest sites of ancestral telomere-associated chromo-some rearrangements, including a well-documented telomere fusion at 2q13-q14 [37] that contains representatives of subtermi-nal duplicon families A, B, C, and D (Additional data file 49). The non-subtelomeric site of a duplicon from family D at 3p12.3 is the tip of an extended duplication region; the DNA on the centromeric flank of this site contains 4q and 10q subtelomere homology, including beta satellite repeat structure resembling part of the D4Z4 repeat. Subterminal family F contains several non-subtelom-eric sites of duplicons; those on chromosomes 22q, 14q, and 12p are very close to the respective centromeres (Additional data file 49), indicating potential ancestral inversion of a chromosome arm fol-lowed by duplication of pericentromeric sequences as a mechanism for the genesis of the non-subterminal copies of this subterminal sequence family. The sequence similarity between subterminal duplicon copies within a family is mainly in the 90-96% range for subterminal blocks A, B, and D (Table 2; see Additional data file 49 for the rare exceptions.). As with the subtel-only blocks, some of these duplicons correspond to only part of the subterminal block sequence. There is also some overlap in sequences occupied by sub-terminal duplicon blocks A, B, and D; this is reflected in their occu-pancy of parts of the same transcript families RPL23A7 and FAM41C (Table 2). The cross-family homologies between subter-minal blocks A, B, and D are also in the 90-96% identity range but the positions of the duplicons within the blocks vary and are located at different distances from the (TTAGGG)n tract; also, there are several alternative organizations of high-copy repetitive elements (masked and not examined in detail in this study) within these sub-terminal blocks. Thus, there might be more frequent shuffling of subterminal sequences than sequences located more centromeri-cally, at least within a subset of subtelomere alleles; this idea is broadly consistent with an earlier model of subtelomere structure featuring compartments with distinct functional properties [9]. Further refinement of the classification of these subterminal fami-lies appears feasible and will benefit from more extensive sampling of (TTAGGG)n-adjacent sequences from additional alleles. Subter-minal Block F contains one duplicon on 10p with very high similar-ity to the 18p query sequence, suggesting a very recent duplication event; the remaining duplicons were all in the 91-94% identity range. Block C has the highest sequence similarity among all sub-terminal duplicon sequence families, and has a copy at the 2q fusion locus. Block E (96-97%) is unusual in that it corresponds to a portion of subtelomere-only duplicon family 6 (Table 1), and is the only subterminal duplicon sequence family with subtel-only properties. This particular sequenced allele of 17p might have formed by the truncation of a chromosome end within this large subtelomere-only duplicon, as there is mapping evidence for sev-eral longer alleles of the 17p telomere (H Riethman, unpublished). It is interesting to note that (TTAGGG)n tracts at 17p and, indeed, on this particular allele of 17p tend to be consistently among the shortest in the human genome [19,51].Click here for fileAdditional data file 50Comparison of subtel-only and subterminal duplicon blocks defined in this work with the subtelomeric homology blocks reported in Linardopoulou et al. [12]Comparison of subtel-only and subterminal duplicon blocks defined in this work with the subtelomeric homology blocks reported in Linardopoulou et al. [12]Click here for fileAdditional data file 51Subtel-only blocks transcript matchesCandidate transcripts were identified by blasting the representative subtelomere-only query sequences (Additional data file 48) against the NCBI RefSeq mrna database (downloaded 24 July 2006) [52]. Human mRNAs with 90% or greater homology were run through Spidey [53] against the set of subtelomere-only duplicon block rep-resentatives. This table has been filtered to those hits above 95% identity according to the Spidey predictions. The first and second columns indicate the subtelomere-only block and RefSeq accession that align to each other. The third is the description line from the RefSeq database. The fourth and fifth columns are the percent identity and percent coverage of the aligned mRNA as reported by Spidey.Click here for fileAdditional data file 52Subterminal blocks transcript matchesCandidate transcripts were identified by blasting the representative subterminal query sequences (Additional data file 49) against the NCBI RefSeq mrna database (downloaded 24 July 2006) [52]. Human mRNAs with 90% or greater homology were run through Spidey [53] against the set of subterminal duplicon block repre-sentatives. The first and second columns indicate the subterminal block and RefSeq accession that align to each other. The third is the description line from the RefSeq database. The fourth and fifth col-umns are the percent identity and percent coverage of the aligned mRNA as reported by Spidey.Click here for file

Acknowledgements
John Rux and the Wistar Bioinformatics Facility provided programming and
computational support. Financial support was provided by NIH HG00567
and CA 25874, and by the Commonwealth Universal Research Enhance-
ment Program, PA Dept of Health.

References
1. Finishing the euchromatic sequence of the human genome.

Nature 2004, 431:931-945.
2. Stankiewicz P, Lupski JR: Genome architecture, rearrange-

ments and genomic disorders.  Trends Genet 2002, 18:74-82.
3. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Maner S,

Massa H, Walker M, Chi M, et al.: Large-scale copy number pol-
ymorphism in the human genome.  Science 2004, 305:525-528.

4. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y,
Scherer SW, Lee C: Detection of large-scale variation in the
human genome.  Nat Genet 2004, 36:949-951.

5. Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler
G, Auvil L, Beever JE, Chowdhary BP, Galibert F, Gatzke L, et al.:
Dynamics of mammalian chromosome evolution inferred
from multispecies comparative maps.  Science 2005,
309:613-617.

6. Riethman H, Ambrosini A, Castaneda C, Finklestein J, Hu XL,
Mudunuri U, Paul S, Wei J: Mapping and initial analysis of human
subtelomeric sequence assemblies.  Genome Res 2004, 14:18-28.

7. Brown WR, MacKinnon PJ, Villasante A, Spurr N, Buckle VJ, Dobson
MJ: Structure and polymorphism of human telomere-associ-
ated DNA.  Cell 1990, 63:119-132.

8. Royle NJ, Hill MC, Jeffreys AJ: Isolation of telomere junction
fragments by anchored polymerase chain reaction.  Proc Biol
Sci 1992, 247:57-67.

9. Flint J, Bates GP, Clark K, Dorman A, Willingham D, Roe BA, Micklem

G, Higgs DR, Louis EJ: Sequence comparison of human and
yeast telomeres identifies structurally distinct subtelomeric
domains.  Hum Mol Genet 1997, 6:1305-1313.

10. Mefford HC, Trask BJ: The complex structure and dynamic
evolution of human subtelomeres.  Nat Rev Genet 2002,
3:91-102.

11. Der-Sarkissian H, Vergnaud G, Borde YM, Thomas G, Londono-
Vallejo JA: Segmental polymorphisms in the proterminal
regions of a subset of human chromosomes.  Genome Res 2002,
12:1673-1678.

12. Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, Trask
BJ: Human subtelomeres are hot spots of interchromosomal
recombination and segmental duplication.  Nature 2005,
437:94-100.

13. Riethman H, Ambrosini A, Castaneda C, Finklestein JM, Hu XL, Paul
S, Wei J: Human subtelomeric DNA.  Cold Spring Harb Symp Quant
Biol 2003, 68:39-47.

14. Lansdorp PM, Verwoerd NP, van de Rijke FM, Dragowska V, Little
MT, Dirks RW, Raap AK, Tanke HJ: Heterogeneity in telomere
length of human chromosomes.  Hum Mol Genet 1996,
5:685-691.

15. Zijlmans JM, Martens UM, Poon SS, Raap AK, Tanke HJ, Ward RK,
Lansdorp PM: Telomeres in the mouse have large inter-chro-
mosomal variations in the number of T2AG3 repeats.  Proc
Natl Acad Sci USA 1997, 94:7423-7428.

16. Graakjaer J, Pascoe L, Der-Sarkissian H, Thomas G, Kolvraa S, Chris-
tensen K, Londono-Vallejo JA: The relative lengths of individual
telomeres are defined in the zygote and strictly maintained
during life.  Aging Cell 2004, 3:97-102.

17. Baird DM, Rowson J, Wynford-Thomas D, Kipling D: Extensive
allelic variation and ultrashort telomeres in senescent
human cells.  Nat Genet 2003, 33:203-207.

18. der-Sarkissian H, Bacchetti S, Cazes L, Londono-Vallejo JA: The
shortest telomeres drive karyotype evolution in trans-
formed cells.  Oncogene 2004, 23:1221-1228.

19. Britt-Compton B, Rowson J, Locke M, Mackenzie I, Kipling D, Baird
DM: Structural stability and chromosome-specific telomere
length is governed by cis-acting determinants in humans.
Hum Mol Genet 2006, 15:725-733.

20. Graakjaer J, Bischoff C, Korsholm L, Holstebroe S, Vach W, Bohr VA,
Christensen K, Kolvraa S: The pattern of chromosome-specific
variations in telomere length in humans is determined by
inherited, telomere-near factors and is maintained through-
out life.  Mech Ageing Dev 2003, 124:629-640.

21. Hemann MT, Strong MA, Hao LY, Greider CW: The shortest tel-
omere, not average telomere length, is critical for cell viabil-
ity and chromosome stability.  Cell 2001, 107:67-77.

22. Wright WE, Shay JW: Historical claims and current interpreta-
tions of replicative aging.  Nat Biotechnol 2002, 20:682-688.

23. Aviv A, Levy D, Mangel M: Growth, telomere dynamics and suc-
cessful and unsuccessful human aging.  Mech Ageing Dev 2003,
124:829-837.

24. Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Caw-
thon RM: Accelerated telomere shortening in response to life
stress.  Proc Natl Acad Sci USA 2004, 101:17312-17315.

25. Riethman H, Ambrosini A, Paul S: Human subtelomere structure
and variation.  Chromosome Res 2005, 13:505-515.

26. Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, Adams
MD, Myers EW, Li PW, Eichler EE: Recent segmental duplica-
tions in the human genome.  Science 2002, 297:1003-1007.

27. Horvath JE, Gulden CL, Vallente RU, Eichler MY, Ventura M, McPher-
son JD, Graves TA, Wilson RK, Schwartz S, Rocchi M, et al.: Punctu-
ated duplication seeding events during the evolution of
human chromosome 2p11.  Genome Res 2005, 15:914-927.

28. Mignon-Ravix C, Depetris D, Delobel B, Croquette MF, Mattei MG:
A human interstitial telomere associates in vivo with specific
TRF2 and TIN2 proteins.  Eur J Hum Genet 2002, 10:107-112.

29. Baird DM, Jeffreys AJ, Royle NJ: Mechanisms underlying tel-
omere repeat turnover, revealed by hypervariable variant
repeat distribution patterns in the human Xp/Yp telomere.
EMBO J 1995, 14:5433-5443.

30. Baird DM, Coleman J, Rosser ZH, Royle NJ: High levels of
sequence polymorphism and linkage disequilibrium at the
telomere of 12q: implications for telomere biology and
human evolution.  Am J Hum Genet 2000, 66:235-250.

31. Fan Y, Newman T, Linardopoulou E, Trask BJ: Gene content and
function of the ancestral chromosome fusion site in human
chromosome 2q13-2q14.1 and paralogous regions.  Genome
Genome Biology 2007, 8:R151

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15496913
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11818139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11818139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15273396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15273396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15286789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15286789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16040707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16040707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16040707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14707167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14707167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2208276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2208276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1348122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1348122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9259277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9259277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9259277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11836503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11836503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12421753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12421753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16136133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16136133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15338601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8733138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8733138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9207107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9207107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15153177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15153177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15153177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12539050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12539050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12539050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14716292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14716292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14716292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16421168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16421168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12735903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12735903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12735903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11595186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11595186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11595186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12089552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12089552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12875746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12875746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15574496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15574496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16132815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16132815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15965031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15965031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15965031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11938440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11938440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7489732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7489732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10631154
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10631154
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10631154
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12421752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12421752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12421752


http://genomebiology.com/2007/8/7/R151 Genome Biology 2007,     Volume 8, Issue 7, Article R151       Ambrosini et al. R151.13

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

Res 2002, 12:1663-1672.
32. Wilkie AO, Higgs DR, Rack KA, Buckle VJ, Spurr NK, Fischel-Ghod-

sian N, Ceccherini I, Brown WR, Harris PC: Stable length poly-
morphism of up to 260 kb at the tip of the short arm of
human chromosome 16.  Cell 1991, 64:595-606.

33. Macina RA, Negorev DG, Spais C, Ruthig LA, Hu XL, Riethman HC:
Sequence organization of the human chromosome 2q
telomere.  Hum Mol Genet 1994, 3:1847-1853.

34. Macina RA, Morii K, Hu XL, Negorev DG, Spais C, Ruthig LA, Rieth-
man HC: Molecular cloning and RARE cleavage mapping of
human 2p, 6q, 8q, 12q, and 18q telomeres.  Genome Res 1995,
5:225-232.

35. Trask BJ, Friedman C, Martin-Gallardo A, Rowen L, Akinbami C,
Blankenship J, Collins C, Giorgi D, Iadonato S, Johnson F, et al.: Mem-
bers of the olfactory receptor gene family are contained in
large blocks of DNA duplicated polymorphically near the
ends of human chromosomes.  Hum Mol Genet 1998, 7:13-26.

36. Riethman HC, Xiang Z, Paul S, Morse E, Hu XL, Flint J, Chi HC, Grady
DL, Moyzis RK: Integration of telomere sequences with the
draft human genome sequence.  Nature 2001, 409:948-951.

37. Ijdo JW, Lindsay EA, Wells RA, Baldini A: Multiple variants in sub-
telomeric regions of normal karyotypes.  Genomics 1992,
14:1019-1025.

38. Vermeesch JR, Petit P, Kermouni A, Renauld JC, Van Den Berghe H,
Marynen P: The IL-9 receptor gene, located in the Xq/Yq pseu-
doautosomal region, has an autosomal origin, escapes X
inactivation and is expressed from the Y.  Hum Mol Genet 1997,
6:1-8.

39. Ostlund C, Garcia-Carrasquillo RM, Belayew A, Worman HJ: Intra-
cellular trafficking and dynamics of double homeodomain
proteins.  Biochemistry 2005, 44:2378-2384.

40. Hagens O, Minina E, Schweiger S, Ropers HH, Kalscheuer V: Char-
acterization of FBX25, encoding a novel brain-expressed F-
box protein.  Biochim Biophys Acta 2006, 1760:110-118.

41. Linardopoulou E, Mefford HC, Nguyen O, Friedman C, van den Engh
G, Farwell DG, Coltrera M, Trask BJ: Transcriptional activity of
multiple copies of a subtelomerically located olfactory
receptor gene that is polymorphic in number and location.
Hum Mol Genet 2001, 10:2373-2383.

42. van Geel M, Eichler EE, Beck AF, Shan Z, Haaf T, van der Maarel SM,
Frants RR, de Jong PJ: A cascade of complex subtelomeric dupli-
cations during the evolution of the hominoid and Old World
monkey genomes.  Am J Hum Genet 2002, 70:269-278.

43. Mah N, Stoehr H, Schulz HL, White K, Weber BH: Identification of
a novel retina-specific gene located in a subtelomeric region
with polymorphic distribution among multiple human
chromosomes.  Biochim Biophys Acta 2001, 1522:167-174.

44. Gianfrancesco F, Falco G, Esposito T, Rocchi M, D'Urso M: Charac-
terization of the murine orthologue of a novel human subte-
lomeric multigene family.  Cytogenet Cell Genet 2001, 94:98-100.

45. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA,
Berka J, Braverman MS, Chen YJ, Chen Z, et al.: Genome sequenc-
ing in microfabricated high-density picolitre reactors.  Nature
2005, 437:376-380.

46. Diehl F, Li M, He Y, Kinzler KW, Vogelstein B, Dressman D: BEAM-
ing: single-molecule PCR on microparticles in water-in-oil
emulsions.  Nat Methods 2006, 3:551-559.

47. The Riethman Lab Website   [http://www.wistar.upenn.edu/
riethman/]

48. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs.  Nucleic Acids Res 1997,
25:3389-3402.

49. Smit AFA, Green P: RepeatMasker.   [http://www.repeatmas
ker.org].

50. Benson G: Tandem repeats finder: a program to analyze DNA
sequences.  Nucleic Acids Res 1999, 27:573-580.

51. Martens UM, Zijlmans JM, Poon SS, Dragowska W, Yui J, Chavez EA,
Ward RK, Lansdorp PM: Short telomeres on human chromo-
some 17p.  Nat Genet 1998, 18:76-80.

52. The NCBI RefSeq mrna Database   [ftp://ftp.ncbi.nih.gov/blast/
db/]

53. Wheelan SJ, Church DM, Ostell JM: Spidey: a tool for mRNA-to-
genomic alignments.  Genome Res 2001, 11:1952-1957.
Genome Biology 2007, 8:R151

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1991321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1991321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1991321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7545974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7545974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7545974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8593610
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8593610
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9384599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9384599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9384599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11237019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11237019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1478643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1478643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9002663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9002663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9002663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15709750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15709750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15709750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16278047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16278047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16278047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11689484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11689484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11731935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11731935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11731935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11779631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11779631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11779631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11701968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11701968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11701968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16056220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16056220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16791214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16791214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16791214
http://www.wistar.upenn.edu/riethman/
http://www.wistar.upenn.edu/riethman/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.repeatmasker.org
http://www.repeatmasker.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9862982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9862982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9425906
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9425906
ftp://ftp.ncbi.nih.gov/blast/db/
ftp://ftp.ncbi.nih.gov/blast/db/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11691860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11691860

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Subtelomeric duplicon definition
	Subtelomeric duplicon characterization
	Subtelomeric duplicon organization and divergence
	Table 1 

	Subtelomere-only sequence blocks
	Subterminal sequence blocks

	Discussion
	Conclusion
	Materials and methods
	'Hybrid' genome build
	Rules for modules of BLAST hits
	Subtel-only block definition and characterization
	Subterminal block definition and characterization

	Additional data files
	Acknowledgements
	References

