Estimation and correction of non-specific binding in a large-scale
spike-in experiment

Eugene F Schuster”, Eric Blanc', Linda Partridge* and Janet M Thornton”
Addresses: “European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton Cambridge CB10 1SD, UK. "MRC Centre for

Developmental Neurobiology, King's College London, Guy's Hospital Campus, London SE1 1UL, UK. *Department of Biology, University
College London, Darwin Building, Gower Street, London WC1E 6BT, UK.

Correspondence: Eugene F Schuster. Email: schuster@ebi.ac.uk

Published: 26 June 2007 Received: 13 December 2007
. ) Revised: | | May 2007
Genome Biology 2007, 8:R126 (doi:|0.1186/gb-2007-8-6-r126)

Accepted: 26 June 2007
The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2007/8/6/R 126

© 2007 Schuster et al.; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The availability of a recently published large-scale spike-in microarray dataset helps
us to understand the influence of probe sequence in non-specific binding (NSB) signal and enables
the benchmarking of several models for the estimation of NSB. In a typical microarray experiment
using Affymetrix whole genome chips, 30% to 50% of the probes will apparently have absent target
transcripts and show only NSB signal, and these probes can have significant repercussions for
normalization and the statistical analysis of the data if NSB is not estimated correctly.

Results: We have found that the MAS5 perfect match-mismatch (PM-MM) model is a poor model
for estimation of NSB, and that the Naef and Zhang sequence-based models can reasonably
estimate NSB. In general, using the GC robust multi-array average, which uses Naef binding
affinities, to calculate NSB (GC-NSB) outperforms other methods for detecting differential
expression. However, there is an intensity dependence of the best performing methods for
generating probeset expression values. At low intensity, methods using GC-NSB outperform other
methods, but at medium intensity, MAS5 PM-MM methods perform best, and at high intensity,
MAS5 PM-MM and Zhang's position-dependent nearest-neighbor (PDNN) methods perform best.
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Conclusion: A combined statistical analysis using the MAS5 PM-MM, GC-NSB and PDNN
methods to generate probeset values results in an improved ability to detect differential expression
and estimates of false discovery rates compared with the individual methods. Additional
improvements in detecting differential expression can be achieved by a strict elimination of empty
probesets before normalization. However, there are still large gaps in our understanding of the
Affymetrix GeneChip technology, and additional large-scale datasets, in which the concentration of
each transcript is known, need to be produced before better models of specific binding can be
created.
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Background

Despite the ubiquitous use of Affymetrix GeneChip arrays
(Affymetrix has recorded more than 3,600 publications with
data collected on this platform), we have a limited under-
standing of the technology. The physico-chemical details of
hybridization of target mRNA on these arrays are still
incomplete and models for specific and non-specific DNA-
RNA interactions are continuously being refined (a recent
example can be found in [1]). A deeper understanding of these
processes is required to better separate experimental varia-
tion from biological variation. For example, it would allow for
addressing the influence of the amount of labeled RNA on the
intensity of the probes that do not specifically bind any tran-
script in the RNA sample. The removal of non-specific signal
will lead to improvements in normalization, and it may also
lead to more effective normalization methods, as normaliza-
tion methods still suffer from some shortcomings [2].

The Affymetrix technology is remarkably simple and uniform
throughout a large number of different array types: every fea-
ture on the chip contains millions of identical 25 nucleotide
long DNA molecules covalently bound to the GeneChip array.
Features are paired on the chip, the two members' sequences
being identical except for the central (13th) nucleotide, which
is changed to the complementary base in one of the members.
The sequence exactly complementary to the target sequence
is called PM for perfect match, while the other is called MM
for mismatch. A MM probe is designed to measure the non-
specific binding (N'SB) of its partner PM probe. Feature pairs
that probe a specific transcript are grouped into a reporter
set. Depending on the GeneChip array type, reporter sets are
made of 11 to 16 individual feature pairs, or reporters.

Processing raw Affymetrix expression data usually consists of
three different operations on the data: the first operation is
the separation of the signal due to specific hybridization of the
target sequence to the probe from non-specific signal associ-
ated with a background signal from the chip surface and the
non-specific binding of labeled cRNA. The second operation
is the normalizing of this specific signal between experiments,
and the third part is the summarizing of the signals from each
probe into a synthetic expression value for the whole
probeset. These different aspects of normalization may or
may not be separate in the actual software implementation of
the algorithm, and their order of application is not necessarily
identical for different algorithms. An additional normaliza-
tion at the probeset level may also improve the performance
of a method.

In order to carry out a detailed analysis of the impact of the
probe sequence on the observed intensity, one ideally needs a
pool of mRNA where the concentration of every transcript is
known. A large number of different target sequences is also
required to sample the sequence space spanned by the
probes. The influence of non-specific hybridization can also
be studied, as various levels of target 'promiscuity’ are inevi-
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table as soon as the number of target sequences is large.
Because of the huge effort required to generate such a control-
led dataset, hybridization modeling and normalization cali-
bration to date have been done on high-quality, but much
smaller spike-in experiments. But recently, a larger scale
dataset of known composition (the GoldenSpike dataset) has
been made publicly available [3], consisting of six hybridiza-
tions, three replicates of two different cRNA compositions,
hereafter called control (C) and spike-in (S), as the cRNA con-
centration in the latter samples are always equal to or higher
than in the former samples.

Unlike other spike-in experiments in which transcripts are
spiked into biological samples of unknown composition (for
example, the Latin-square dataset [4]), all transcripts are
known within the GoldenSpike dataset. All the cRNA samples
are made of 3,859 clones of known sequence, 1,309 of which
have a higher cRNA concentration in the S samples, while the
cRNA concentrations of the remaining 2,550 clones are iden-
tical in all samples. The concentrations of the cRNA pools
span slightly more than one order of magnitude, and the
cRNA concentrations of the S samples are between one and
four times larger than the corresponding clones' cRNA con-
centrations in the C sample.

This experimental setup represents a biological situation
where roughly one-quarter of the genome is expressed, and
among those expressed genes, about one-third are differen-
tially expressed; however, compared to a 'normal’ dataset,
there are no 'down-regulated' clones, so the data are unusual
and heavily imbalanced. This dataset provides a harsh test for
normalization methods, as most of them assume a considera-
ble degree of similarity between the mRNA concentration dis-
tribution within each experiment. The large differences in
amounts of labeled cRNA in the GoldenSpike dataset violate
this normalization assumption, and the effects are further
increased by the absence of biological variability, as replicates
are only technical.

The cRNA samples were generated from PCR products from
the Drosophila Gene Collection (DGC release 1.0) [5]. Plates
of PCR products (13 separate plates in total) were mixed into
17 pools. Each pool was labeled and added to the final cRNA
sample at specific concentrations and hybridized to the
Affymetrix DrosGenome1 GeneChip array. This means that
the absolute concentration of an individual cRNA transcript
is not known, and the concentrations of transcripts within a
pool will vary greatly depending on the quality of the PCR
amplification for an individual clone. However, the relative
concentration between C and S samples for individual tran-
scripts will be known and the same for every transcript within
a pool. Choe and colleagues [3] used the GoldenSpike dataset
to compare several algorithms commonly used in microarray
analysis and developed a 'best-route' method for the normal-
ization and statistical testing of microarray data. To avoid the
problems associated with the imbalance of transcript levels in
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C and S samples, they normalized the data using a subset of
probesets that were known to be at the same concentration in
each sample. In the GoldenSpike normalization method, non-
specific binding is corrected by subtracting the MM signal
from its partner PM signal using the MAS5 method [6,7], and
the PM-MM signals are normalized separately with the loess,
quantiles [8], constant and invariantset [9] methods available
in BioConductor [10] to create four separate expression
measures at the probe level. The PM-MM signals within a
probeset are then summarized into one expression value by
both the tukey-biweight [6,7] and the medianpolish [8] sum-
mary methods to create eight different expression measures.
The final step of the GoldenSpike normalization is loess nor-
malization of the probeset expression values for each expres-
sion measure [3].

Using receiver-operator characteristics (ROC) curves, the
Cyber-T method was determined to be the most sensitive for
detecting fold changes and reducing false positives (FPs)
compared to a t-test or significance analysis of microarrays
(SAM [11]) method [3]. The Cyber-T method is based on the
t-test method but uses a signal intensity-dependent standard
deviation to reduce the significance of high fold changes in
probesets with low signal intensity [12]. To identify a 'robust'
set of probesets that exhibit differential expression, Choe et
al. [3] also recommended a method that combines the test
statistics as calculated by Cyber-T of the eight expression val-
ues methods. For multiple hypothesis testing correction, the
sample label permutation method (as used in SAM) was used
to estimate the number of FPs [13-15] and generate g-values
(analogous to false discovery rates (FDRs)).

It has been suggested that there are serious problems with the
GoldenSpike dataset [16]. Some of the problems are associ-
ated with using the dataset to evaluate statistical inference
methods, as the distribution of P values for null probesets
(that is, probesets with equal concentrations in C and S sam-
ples) is biased for low values and is not uniformly distributed
between 0 and 1. For the GoldenSpike dataset, there is a bias
for null probesets to have low P values, and the bias results in
the calculated FDRs being much higher than the actual. We
suggest that P value bias is partially due to the MAS5 PM-MM
method to correct for non-specific binding.

Due to the high number of FPs at low intensity using MAS5
PM-MM, we were motivated to re-analyze the GoldenSpike
dataset to assess the performance of the probe sequence-
dependent models (the Naef [17] and Zhang [18] models).
These empirical models adjust probe signal intensity based
on probe sequence. For example, probes that contain many
adenines tend to have lower intensity than probes with many
cytosines, especially if the adenines and cytosines are in the
center of the probe. We tested the ability of the models to esti-
mate NSB of empty probesets and then used the publicly
available implementations of the models to compare 300 dif-
ferent combinations of NSB correction/probe-level normali-
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zation/probe = summary/probeset-level  normalizations.
Performance of each method was based mainly on the rates of
finding true positives (TPs), and FPs and the estimation of
FDRs. We also assessed the benefits of combining the statis-
tical analysis of several methods.

Given that there are thousands of transcripts in the Golden-
Spike dataset, we were able to expand the analysis of the data
to include performance measures of methods at different
intensities to detect any changes in performance for probesets
with intensities dominated by NSB (empty or low intensity)
and those dominated by specific-binding signal (medium and
high intensity).

Results and discussion

Alignment of transcripts to probesets

The cRNA samples used in the GoldenSpike dataset were gen-
erated from 3,859 clones, and we were able to generate "tran-
script’ sequence information for 3,851 of the clones based on
recent sequence information. From this information, we
aligned the transcript sequences to the PM probes and found
all the exact matches to PM probes. We were able to map the
transcripts that had the same concentration in C and S sam-
ples, also referred to as having a fold change of 1 (FC = 1), to
at least one probe within a probeset for 2,495 probesets.
Spiked-in transcripts that had a higher concentration in S
samples (FC > 1) were mapped to 1,284 probesets. Of the
remaining probesets, 10,104 were unbound or ‘empty'
probesets, and 127 probesets could be mapped to multiple
transcripts. For mixed probesets, 58 can be aligned to only FC
= 1 transcripts and 69 can be aligned to at least one FC > 1
transcript (Additional data file 1). Choe and colleagues [3]
found alignments to a similar number of probesets (2,535 FC
=1,1,331 FC > 1, 13 mixed, and 10,131 empty).

Greater NSB signal in spike-in samples than control
samples

In the GoldenSpike dataset, there is a large difference
between NSB signal in C and S samples. For un-normalized
PM probes that have been summarized into probesets, empty
probesets are 50% brighter in the S samples compared to the
Csamples (Figure 1a). The difference in NSB signal is also evi-
dent in low intensity FC = 1 and FC > 1 probesets, and we sug-
gest this difference is due to the different amounts of labeled
cRNA added to each hybridization.

The C and S samples in the GoldenSpike dataset have similar
amounts of total RNA hybridized to the Affymetrix chips but
have different amounts of labeled transcript. The S samples
have almost twice the amount of labeled cRNA hybridized to
each replicate chip as C samples (due to the 'spiked-in' tran-
scripts). For the samples to have the same amount of total
RNA hybridized, the C samples were supplemented with
unlabeled poly(C) RNA. As the cRNA in the C and S samples
are made from the same PCR amplification and labeling reac-
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Plot of mean log2 difference versus mean log2 intensity (MA plot) of C and S samples. MA plots for the (a) PM-only and (b) MAS5 PM-MM summary
methods. Log2 differences greater than 0 imply that the average log2 intensity values in S samples are greater than C samples. Grey points represent
empty probesets, black points represent FC = | probesets, and red points represent 'differentially expressed' FC > | probesets. The green X' is located at

the mean log2 difference and mean log2 intensity of empty probesets.

tion, the difference in the total amount of labeled RNA
hybridized to the chips is the most likely explanation for the
empty and low intensity probesets in the S samples being sig-
nificantly higher than in the C samples. Proper correction for
NSB would result in empty and FC = 1 probesets having a log2
difference of zero between C and S replicates.

MASS5 PM-MM is a poor model for estimating NSB
False positives for differentially expressed genes

The most common model for the removal of non-specific
binding signal is the MAS5 PM-MM model. In this model, the
MM probe intensity is an estimate for the non-specific bind-
ing of its partner PM probe. However, this model does not
seem to correct for non-specific binding as the intensities of
empty S probesets are still roughly 50% greater than empty
probesets in C samples (Figure 1b).

If NSB signal is not estimated correctly, then normalization
can potentially distort the analysis of the data. This is clearly
demonstrated by normalizing the GoldenSpike dataset with
the method recommended by Choe et al. [3] (the GoldenSpike
method) using all null probesets (empty and FC = 1) as a sub-

set for normalization. Normalization cannot compensate for
improper correction of NSB signal, and null-probeset nor-
malization will shift the log2 difference between empty
probesets towards zero, at the expense of low intensity FC = 1
probesets, which become down-regulated (Figure 2a). If only
FC = 1 probesets are used as a subset for normalization, then
the FC = 1 probesets behave as expected (log2 differences cen-
tered around zero), but the empty probesets are up-regulated
(Figure 2b). By comparing the number of probesets with g-
values (an estimate of FDRs) below 0.10 as calculated by the
Cyber-T method recommended in Choe et al. [3], the total
number of FPs is reduced by normalization using all null
probesets compared to FC = 1 probesets, but the number of
FC = 1 FPs is greater (Table 1).

P value distributions of null probesets

The g-value of a probeset is defined as an estimate of the pro-
portion of FPs among all probesets with equal or lower g-val-
ues. To calculate g-values, a test statistic is generated for the
data and for permutations of the data. The permutations are
based on randomly re-assigning the sample labels (for exam-
ple, given the six GoldenSpike RNA samples and three C/S

Genome Biology 2007, 8:R126
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Plot of mean log2 difference versus mean log2 intensity (MA plot) showing FPs. MA plots are for probes normalized with the GoldenSpike method using
(@) all null probesets (empty and FC = ) as a subset and (b) only FC = | probesets as a subset. In the plots, red spots represent FC > | probesets that
are called significantly differentially expressed (q < 0.1) by the modified Cyber-T method suggested by Choe et al. (that is, TPs). Pink spots represent FC >
| false negatives. Grey symbols represent empty probesets that are not called significantly differentially expressed (true negatives), and blue symbols
represent empty probesets that are called significantly differentially expressed (FPs). Black symbols represent FC = | true negatives, and green symbols

represent FC = | FPs.

Table |

False positives using the GoldenSpike MAS5 PM-MM methods

Total Null subset normalization FC = | subset normalization
Empty 10,104 487 1,729
FC =1 2,495 251 180
FC> | 1,284 1,015 1,057

All probesets with g-values below 0.10 based on the GoldenSpike normalizations and Cyber-T statistical analysis [3].

replicates, there are nine permutations of sample labels that
do not match the 'correct’ labeling), and for a particular test
statistic cutoff, the mean number of probesets called signifi-
cant after sample label permutation is an estimate of the
number of FPs for that cutoff value and used to calculate g-
values [11,15]. At a given test statistic, if 100 probesets are sig-
nificant when the sample labels are correct and on average 10
probesets are significant when the sample labels are per-
muted, then the estimate of FDR for that cutoff value (g-
value) is 0.10.

Proper estimation of g-values requires that null probesets
have a uniform distribution of P values [19], but in the Gold-
enSpike dataset, the differences in NSB results in many null
probesets having low P values. After NSB correction and nor-
malization, the log2 mean difference between null probesets
in C and S samples should be centered around zero and the P
values for null probesets should be uniformly distributed
between 0 and 1, but after MAS5 PM-MM correction, these
requirements are not met (Figures 2 and 3). This results in g-
values that considerably underestimate the true g-values

Genome Biology 2007, 8:R126

R126.5

-
o,
o
]
o
o
[=§
]
o
w
[]
Y
5
fal
=




R126.6 Genome Biology 2007, Volume 8, Issue 6, Article R126 Schuster et al.

http://genomebiology.com/2007/8/6/R126

(@ (b)

3,000
3,000

2,500
2,500

2,000
2,000

Frequency
1,500
1
Frequency
1,500
1

1,000
1,000

500
500

(c)

2,000 2,500 3,000
1

Frequency
1,500

o

T T T T T 1 T T T
0.4 0.6 0.2 0.4

P-values (random) P-values

T T 1 T T T T T 1
0.6 0.8 0.4 0.6

(nully P-values (FC=1)

Figure 3
Histograms of P values for all null probesets. (a) The expected distribution of P

values for null probesets is a uniform distribution between 0 and |,

generated at random. The observed P value distribution after normalization using all (b) null probesets as a subset and (c) only FC = | probesets as a
subset are shown. MAS5 PM-MM was used for NSB correction, probes were normalized with the loess method, probes were summarized into probesets

with medianpolish, and P values were generated with Cyber-T.

[3,16], and our analysis shows that at a 0.10 g-value cutoff,
the real g-value is 0.77 for FC = 1 probeset normalizations. We
suggest that to reduce the number of FPs, it is essential to
make a better estimate of NSB signal and/or to better detect
and remove all probesets that are not bound by their target
transcript. For example, if all empty probesets are removed
and the g-values are re-calculated, then a g-value of 0.10
would correspond to a true g-value of 0.28.

While the differences in NSB signal in C and S samples
account for a significant proportion of null probesets with low
Pvalues, there are other issues that will effect the P value dis-
tribution of null probesets. A single C and S sample was gen-
erated and an aliquot from each sample was used to create
each replicate, and technical variation in the methods to gen-
erate each hybridization could result in subtle P values biases
if not accounted for in the statistical analysis. For example,
the mean raw PM values for FC = 1 probesets (1,898, 2,210
and 2,495 for C replicates, and 2,257, 1,803, and 2,466 for S
replicates) suggests different sized aliquots and possible pair-
ing between C and S replicates based on aliquot size. Also,
most fluidics stations can only hybridize four samples at one
time, and with six replicates, there might be two batches of
hybridizations. It is beyond the scope of this manuscript to
address all the possible sources of technical variation and
account for it in statistical models, as we have concentrated
on using the GoldenSpike dataset to infer the best methods to
correct NSB and have not used the dataset to evaluate statis-
tical methods. With only three replicates, it is also unlikely

that technical variation can be properly taken into account.
For example, analysis of the Latin Square spike-in experi-
ment (3 replicates of 14 samples with 42 spiked-in tran-
scripts) [4] revealed similar bias null probesets having low P
values bias for null probesets, even when the set of TPs was
expanded to include probesets that do not perfectly match the
spiked-in transcripts [20].

Probe sequence-dependent models for NSB correction
Having shown that PM-MM is a poor model for estimating
NSB signal, we tested if the non-specific binding signal could
be better modeled with the Zhang and Naef probe sequence-
dependent models for short oligonucleotide binding. To do
this, we used the GoldenSpike dataset at the level of the
probes rather than at the level of probesets and took great
care to align the probe sequences on the clones' sequences
when available. When there was no complete clone sequence,
we used the Drosophila Genome Release 4.0 [21] to pad the
missing sequence. To reduce any effect of promiscuity, we
used only empty probes that cannot be mapped to any clone,
even when up to six alignment errors are considered.

We tried to evaluate the success of two models describing
NSB of empty probes: a model based on Naef et al. [17] that
assumes that the affinity of a probe can be described as the
sum of the single nucleotide affinities across the probe. The
second model is based on Zhang's position-dependent-near-
est-neighbor (PDNN) model [18], in which the affinity of a
probe can be described by the sum of all nearest-neighbor di-
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Agreement between model parameters from the six replicates. (a) The Naef model scaled affinity parameters. They show good consistency, except for
the behavior of guanine near the probe attachment point (nucleotide position 25). (b) Zhang model scaled 'binding energy' parameters for each of the
three control samples (red circles, triangles and crosses) and for each of the three spike-in samples (green circles, triangles and crosses) for each di-
nucleotide pair. In addition, the average over the six samples is indicated with black circles and the average over the two sets of energy parameters
distributed for seven chip types distributed with Perfect Match [26] is indicated with black triangles and squares. The Zhang energy parameters are not as
consistent as the Naef parameters, especially for AG and GA di-nucleotides. (c) Zhang's weights parameters for the six experiments (red), their mean
(black line) and the average of the weights for the seven sets of weights (for non-specific and specific binding) distributed with the PDNN program (dotted
lines). The parameters refined here show a clear difference from the averages over the two sets of weights distributed with PDNN. In all cases, these

weights confirm the importance of the central part of the probe.

nucleotides within a probe, but the influence of each di-
nucleotide is weighted depending on its position in the probe.
Both models are described in Materials and methods.

Figure 4a shows that the Naef model predicts a low affinity for
sequences with many adenines (A), while a sequence with
many cytosines (C) would have a high affinity. Using the Naef
model, fitted parameters for contributions of signal at each
position of a probe show a good consistency across all six RNA
samples (both C and S samples), and the model could reason-
ably reproduce the observed intensities of the empty probes
(Table 2).

The Zhang model predicts that probes with many GC di-
nucleotides would have a high signal especially if the GC di-
nucleotides are in the middle of the probe, as shown in Figure
4b,c. The fitted binding energy parameters derived for each
di-nucleotide in the six experiments are not as consistent as
the parameters fitted in the Naef model, but the parameters
fitted for the weights associated with each di-nucleotide posi-
tion are more consistent and confirm the importance of the
central part of the probe. Table 2 shows that the Zhang model
seems to predict the observations better than the Naef model
despite having fewer parameters, which apparently contra-
dicts a previous observation that di-nucleotide binding was
not the main effect in the binding [17]. However, our fitted

parameters for the Zhang model were significantly different
from those publicly available for four human chips and three
mouse chips.

We had also planned to use the GoldenSpike dataset to inves-
tigate the specific binding signal using models derived from
the Zhang and Naef models described above, taking
advantage of the fact that the clones' cRNA concentrations are
approximately known. Unfortunately, a detailed inspection of
the data suggested that there is a very high variability between
clone concentrations within a single PCR pool and we were
not able to use this dataset to model specific binding.

Comparing methods to generate probeset expression
values

Normalization methods

Our results emphasize that these sequence-based models are
powerful predictors of NSB, and should be applied before fur-
ther analysis, which agrees with previous observations [22].
Using BioConductor [10], we have combined various back-
ground and NSB correction methods to different normaliza-
tions and probeset-summarization methods to generate 300
different methods. When possible, we have normalized the
probes using the probes within FC = 1 probesets as a subset
for normalization; otherwise, all probes were used for nor-
malization. All probeset values were imported into R, and
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Table 2

Results of fits on empty probes

Cl 2 c3 Sl S2 S3
Naef model 0.785 0.793 0.789 0.799 0.788 0.770
Zhang model 0.820 0.829 0.826 0.834 0.827 0.808
Naef scaling 0.782 0.790 0.788 0.796 0.787 0.766
Zhang scaling 0.821 0.830 0.828 0.835 0.830 0.810

The table shows the correlation coefficients between observed intensities for the empty probes on the three control (C) and spike-in (S)
experiments and the corresponding model predictions. The 'model' entries correspond to the correlation between observations and predicted
values for refinements of models, including the affinity, binding energy and weights parameters. The 'scaling' entries refer to the correlation between
the observation from the cross-validation set and the predicted values obtained by refining restricted models, where affinities, binding energies and
weights are kept constant at values obtained from the fits on the complete models (see Materials and methods). The agreement between the values
of correlation coefficients from both types of refinement suggests that the affinity, binding energy and weights parameters are general and do not
depend on the sequence or the experiment.
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(RMABG only) (MASSPM-MM) ( GC-NSB )

\

( Probe-level normalization )
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no subset FC=1 subset splines mean, splines nedian, splines

\4

( Probeset summarization )

( Medianpotish ) mas ) Avgoitt ) atypm ) Liwong ) ( FARMS )

Additional methods External software
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( Probeset-level normalization )
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Plier

Figure 5
Normalization methods. Diagram of methods used to create probeset expression values. When possible, probe-level normalization used FC = | probes as
a subset, and all probeset-level normalizations used FC = | probesets as a subset. For the normalization methods, additional parameters involve the use of

loess or spline to generate a normalization curve. See Materials and methods for more details. BG, background.
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normalized using FC = 1 probesets as a subset. (see Figure 5
and Materials and methods for more details).

Similar to the analysis in [3], we have compared several meth-
ods to generate probeset expression values, but we have cho-
sen to evaluate each method based on the following criteria:
the estimation of fold changes for FC = 2 probesets, the ability
to separate true fold changes from false fold changes, the rate
of finding TPs versus the rate of finding FPs, and the differ-
ence between calculated g-values and true g-values. There are
too many methods to discuss individually, and we have lim-
ited the discussion to groups of methods that have the same
NSB correction method and/or same probe summary
method, as the choice of NSB correction and probe summary
method seem to have the biggest influence on performance.

Accuracy and precision

It has been previously observed that background correction
"appears to improve accuracy but, in general, worsen preci-
sion" [23], and various methods have been put forward to
measure accuracy and precision. As the concentration of each
transcript is not known but the exact fold change is known in
the GoldenSpike experiment, we have chosen the mean log2
fold change for the probesets that can be aligned to tran-
scripts with a two-fold difference (FC = 2) between C and S
samples to be a measure of accuracy (mean of 125 probesets
with the lowest P values as calculated by Cyber-T). As a meas-
ure of precision, we have taken 1% of FC = 1 and 1% of empty
probesets with the lowest P values. Ideally, the log2 fold
changes of FC = 2 probesets would be 1 and easily distin-
guished from fold changes of null probesets, as empty and FC
= 1 probesets are expected to have a log2 fold change of zero.

Methods using GC robust multichip average (RMA) NSB cor-
rection (GC-NSB) are the most sensitive and have the highest
estimate of FC = 2 but also tend to have the highest estimates
of null fold changes. Conversely, methods using RMA back-
ground correction are the most specific and have the lowest
FC = 2 fold change estimate but also have the lowest null fold
change estimates. However, the method of probe summary
and probeset-level normalization influences both the esti-
mate of FC = 2 fold changes and the difference between FC =
2 and null fold changes (Figure 6a,b).

Performance measured by AUC

While differences between FC = 2 and null probeset fold
changes are interesting, it is not a good measure of perform-
ance for separating truly differentially expressed genes from
FPs. To measure the performance of each method, we calcu-
lated the area under the ROC (AUC) using Cyber-T P values
as predictions. To allow a comparison of AUC measures based
on the presence or absence of transcript, we also made two
AUC calculations for each method, one using only probesets
with 'present' transcripts (FC > 1, FC = 1, and mixed) and one
using all probesets (FC > 1, FC = 1, mixed, and empty).

Genome Biology 2007,  Volume 8, Issue 6, Article R126

The use of empty probesets results in a drop of AUC perform-
ance, especially when only background correction and not
NSB correction is used, and this suggests that empty
probesets are a more significant source of FPs that bound FC
= 1 probesets. The best performing methods for probesets
with present transcripts use GC-NSB, affyPLM or median-
polish probe summary and variance stabilization normaliza-
tion (vsn) probeset-level normalization, but there is little
difference between MAS5 PM-MM and GC-NSB methods
when the probesets are normalized with the loess method
(Figure 6c¢).

It is also clear in Figure 6¢ that the GoldenSpike method
(called GOLD in the Figures) for combining the statistical
analysis of eight different normalization methods [3] does not
result in performance gains compared to individual MAS5
PM-MM normalization methods. In fact, the combined statis-
tical analysis tends to under-perform the four individual nor-
malization methods that use medianpolish probe summary.

True g-values

The AUC performance measure compares only the rate of
finding TPs and FPs, and high scoring methods may not be
appropriate for a proper analysis of the data. For example,
some of the methods with high AUC performance scores give
poor estimates of true g-values, and users may not be able to
distinguish TPs from FPs with a reasonable P value or g-value
because all probesets have very low P values (Figure 7). To put
the AUC performance measure into context, we calculated g-
values for every method and compared the actual g-values to
a calculated g-value of 0.10.

In general, methods that correct for NSB tend to have more
accurate g-values when considering all probesets and only
probesets with present transcripts, but the g-values gener-
ated with all probesets are very poor estimates of the true g-
value. The method that gave the most accurate measure of g-
values for probesets with present transcripts was the Golden-
Spike method, suggesting that combining statistical analyses
might be a method to extract more accurate estimates of g-
values (Figure 6d).

The AUC performance and true g-value comparisons high-
light how difficult it is to compare methods to find a 'best
method', and it is best left to the user to determine which is
the best method in the context of their experiment. However,
it is very clear that empty probesets contribute a significant
number of FPs and greatly distort g-value calculation in the
GoldenSpike dataset, and users should gauge the contribu-
tion of probesets with absent transcripts to estimated FDRs.

Performance is dependent on probeset intensity

There has been speculation that the best methods for normal-
ization are dependent on transcript concentrations [23,24].
We have attempted to address the issue by comparing AUC
performance (FC > 1 probesets as TPs, all null probesets as
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Figure 6

Measures of performance. () Plot of mean log2 fold changes for FC = 2, empty and FC = | probesets for all 300 methods to generate probeset
expression values. The mean was generated from the probesets with the lowest Cyber-T P values, the lowest 90% for TPs (125 out of 139 for FC = 2) and
the lowest 1% for FPs (101 out of 10,104 for empty; 25 out of 2,495 for FC = I). (b) Plot of ratio of mean fold change of TPs (FC = 2) divided by mean fold
change of FPs (empty or FC = 1). (c) Plot of AUC scores for all probesets and for probesets that can be aligned to present transcripts (FC = |, FC > | and
mixed probesets). TPs were FC > | probesets and mixed probesets that could be aligned to spiked-in transcripts. All other probesets are true negatives.
The plot also includes AUC scores using the FP rate of empty probesets to show which methods work best to reduce FDRs associated with present or
absent transcripts. (d) Plot of observed FDR (true g-value) based on the calculated g-values below 0.10 when considering only probesets with present
transcripts. To show the contribution of probesets with absent transcripts to FDRs, the plot also includes the observed FDR when all probesets are used.

FPs) and true g-value calculations using probeset intensities
as an approximation of transcript concentration. Probesets
were classified as unbound, low intensity, medium intensity
and high intensity. After removal of unbound probesets, the
remaining probesets were placed in categories based on the
mean log2 probeset expression value in control replicate sam-
ples from a range of methods used to generate probeset
expression values and each subset has the same number of FC
> 1 probesets. For each category, the cel files were masked to
remove all probes that were not part of the probeset category,
and probeset expression values were re-calculated. Perform-
ance measures were generated for expression values

generated from 'masked’ cel files and from normalizations
using all probes, as there can be subtle but significant differ-
ences between the two methods (Figure 8).

Unbound probesets

We have defined unbound probesets as probesets that are
very unlikely to exhibit specific-binding signal (that is, empty
probesets and probesets that are specific for transcripts that
are too scarce to be detected). The default settings for the
MAS5 present/absent algorithm [7,25] are not stringent
enough to identify these probesets, as more than 25% of the
probesets classified as having present target transcripts are
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Plot of mean log2 difference versus mean log2 intensity (MA plot) between C and S samples for probesets normalized after loess and vsn. MA plots are for
probesets with GC-NSB correction, vsn probe-level normalization, medianpolish probe summary and (a) loess or (b) vsn probeset-level normalization.
The vsn probeset-level normalization method is better than the loess method at separating TPs from FPs (AUC score of 0.916 for loess and 0.928 for vsn),
but the null FC = | probesets after vsn probeset-level normalization are clearly not centered around zero and the method has more than 25% more FPs
with g-values below 0.10. Only probesets with present transcripts are shown (FC = |, black; FC > |, red).

empty probesets (1,227 out of 4,767 probesets). In addition,
there is a significant number of FC = 1 probesets that are not
likely to report target transcript specific signal.

A detailed analysis of the present/absent calls indicates two
failed labeling reactions, and almost 30% of the FC = 1 and FC
> 1 probesets classified as having an absent target transcript
come from these two plate-pool mixtures. To make the
GoldenSpike dataset, individual PCR-products from 96-well
plates were mixed into pools, and the 17 'concentration’ pools
can be broken down into a further 31 PCR-plate
combinations. This means that from a 96-well PCR plate, a
subset of PCR products were pooled together, and these sub-
set pools were probably labeled and then combined to make
the 17 final pools. The PCR products from plates 16 and 17
make the 0.27 ug pool, but within this pool 60% of the tran-
scripts from plate 17 are absent and less than 10% from plate
16 are absent. Similarly, PCR products from plates 5 and 6
make the 0.37 nug pool, but within this pool 57% of the

transcripts from plate 6 are absent and less than 5% from
plate 5 are absent. However, within the 1.23 pg pool, less than
1% of PCR products from plate 6 are called absent (Figure 9).

To select probesets that are likely to report only NSB signal,
we defined unbound probesets as having a mean log2
probeset expression value below 4 for C and S replicates (after
GC-NSB correction). There are 10,322 probesets (9,820
empty, 438 FC = 1, 51 FC > 1 and 13 mixed) classified as
unbound probesets, and such a strict cutoff is likely to reflect
a realistic level to detect true fold changes. Out of the 300
methods to generate expression values, the highest AUC score
is 0.697 and reflects a high cost for finding TPs. A P value or
g-value cutoff designed to find 5 out of the 51 FC > 1 probesets
would result in 225 FPs, and 771 FPs to find 10. The unbound
probesets are likely to contribute only to FPs, and any statis-
tical significance associated with these probesets should be
ignored or the probesets should be removed from any
analysis.
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Figure 8

Plot of mean log2 difference versus mean log2 intensity (MA plot) when all
probesets are normalized. MA plot for high intensity probesets when all
probesets are normalized (grey) and when only the high intensity
probesets are used after cel file masking (black). Normalization method is
GC-NSB correction, loess probe-level normalization, medianpolish
summary and vsn probeset-level normalization.

Low intensity probesets

There are some problems with interpreting AUC and true g-
value scores of low intensity probesets, as the performance
measures are affected by the presence of empty probesets
(Figure 10), and AUC and g-values have been calculated
without empty probesets (see Additional data file 2 for calcu-
lations with empty probesets).

There is a clear AUC and g-value performance gain in using
NSB correction (MAS5 PM-MM or GC-NSB), and GC-NSB/
(affyPLM or medianpolish probe summary)/vsn probeset-
level normalization are the best performing methods, reflect-
ing the performances for all probesets with present
transcripts, but for all methods, more than 50% of all
probesets with g-values below 0.10 are FPs. Typically, there is
little difference between performance scores when normali-
zation is done with all probesets or only low intensity
probesets, except for some gains in performance for GC-NSB/
(affyPLM or medianpolish)/loess probeset-level
normalization and loss of performance for some GC-NSB/vsn
probeset-level normalization methods when all probesets are
used (Figure 11a,b).

Medium intensity probesets
The AUC performance of medium intensity probesets is bet-
ter than low intensity probesets, suggesting that the influence

http://genomebiology.com/2007/8/6/R126

of NSB signal is diminished in medium intensity probesets,
and when only medium intensity probesets are normalized,
AUC performance for RMA background and MAS5 PM-MM
methods improves. The best performance is achieved with
MAS5 PM-MM/(affyPLM or medianpolish) probe summary/
loess probeset-level normalization methods, and the best per-
forming methods when considering all probesets (GC-NSB/
(affyPLM or medianpolish probe summary)/loess probeset-
level normalization) perform worse than the equivalent
MAS5 PM-MM and RMA background correction methods
(Figure 11¢).

The g-value calculations are also more accurate than low
intensity probesets, and MAS5 PM-MM /medianpolish probe
summary/(loess or vsn) probeset-level normalization meth-
ods have the best combination of AUC and g-value perform-
ance, but the combined statistical analysis results in the most
accurate FDR estimate (Figure 11d).

High intensity probesets

The AUC performance of high intensity probesets is less than
medium intensity probesets, probably due to the chemical
saturation of high intensity probesets. When considering nor-
malization with only high intensity probesets, the PDNN and
the MAS5 PM-MM/(affyPLM or medianpolish) probe sum-
mary/(loess or vsn) probeset-level normalization methods
perform best. When considering normalization of all
probesets, GC-NSB/(affyPLM or medianpolish) probe sum-
mary/vsn probeset-level normalization methods have the
best AUC performance but very poor g-value calculations. In
general, the g-value estimates are more accurate than low and
medium intensity probesets, and for the PDNN methods and
the combined statistical method, the estimates of 0.10 g-val-
ues are very accurate and have the best balance between AUC
performance and g-value accuracy (Figure 11e,f).

Performance of high intensity MM probesets

Given that detecting differential expression is restricted at
high intensity, we have used MM probes to detect differential
expression for the highest intensity probesets (for the top 3%
of probesets, the mean log2 expression value for all 300
methods is >12), as confirmation of previous work that
showed MM probes can be used to overcome the compression
of fold change at very high intensity [24]. For the MM
probesets, the estimates of FC > 1 fold changes and the AUC
performance after GC-NSB correction and loess probeset-
level normalization tends to be better than PM probeset val-
ues. However, the accuracy of g-value calculations is lower
than the equivalent PM probesets (Figure 12).

The 'alchemy' method

Combining methods

It is not practical to subdivide a microarray dataset by
probeset intensity and analyze each subset individually with
the best performing methods (for example, GC-NSB methods
for low intensity probesets, and MAS5 for medium intensity,
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Figure 9

Present/absent calls for each PCR pool. Influence of plate amplification on presence detection and probe brightness. The hybridized cRNA is made of clone
pools of given concentrations, and each such pool is made from clones amplified from different plates. The plate numbers are given on the horizontal axis,
while the nominal pool concentration is indicated by the color. The top two figures show the false negative ratio (that is, the proportion of probesets
falsely called absent) for (a) C and (b) S samples, as all probesets that can be mapped to a clone should be called present. (c,d) The average PM probe
intensity of clean probes prior to any normalization or NSB correction. Clean probes match perfectly their target sequence with little promiscuity from
other clones' sequences. The figure shows important variations in the amplification efficiency from one plate to the next. The plots show that the
proportion of false negatives is highly inversely correlated to the average probe intensity and identifies two 'failed' labeling reactions (plate 17 of
concentration 0.27 pg pool, plate 6 of concentration 0.37 g pool).

MASs5 or PDNN for high intensity probesets, and MM probes  'alchemy' method; see Additional data file 4 for scripts). The
for very high intensity probesets). Instead, we have chosen 10~ benefit of this method is that the combination of four MAS5,
methods that have complementary strengths and weaknesses ~ four GC-NSB and two PDNN methods to generate expression
for input into the GoldenSpike statistical method (the  values outperforms the individual methods and the
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Figure 10

Plot of mean log2 difference versus mean log2 intensity (MA plot) for low
intensity probesets. MA plots are for low intensity probesets with GC-
NSB correction. In the plots, blue spots represent empty probesets with q
< 0.1, and these probesets are FPs. Grey symbols represent empty
probesets, which are true negatives (TNs). Black symbols represent FC =
I TNs, and green symbols represent FC = | FPs. Red spots represent FC
> | TPs and pink spots false negatives (FNs).

GoldenSpike method (combined analysis of eight MAS5 PM-
MM methods) in AUC performance and true g-value tests.
The alchemy method also outperforms the GoldenSpike
method when only subsets of probesets are used in the statis-
tical analysis (low, medium, and high intensity probesets and
probesets that can be aligned to FC = 1 and FC > 1 tran-
scripts). However, the new method does not solve the prob-
lem of FPs associated with the differences in NSB of empty
and low intensity probesets and results in very poor FDR esti-
mates when considering all probesets.

For the GoldenSpike dataset (and probably other datasets),
we suggest that unbound probesets are very likely to be FPs,
and if there are many unbound probesets with low g-values,
then the unbound probesets can be removed before normali-
zation or before statistical analysis. For the combined
analysis using the 10 methods we suggest, the calculated 0.10
g-value is 0.71 when considering all probesets and 0.22 when
considering only 'bound’ probesets, that is, all probesets are
used in normalization but empty probesets were removed
from the statistical analysis (Figure 13). Alternatively, the
accuracy of g-value calculations can be estimated by dividing
the number of unbound probesets called positive by the total
number of probesets called positive (Figure 14), but the sen-
sitivity of detecting true differential expression is greater
when considering only bound probesets. At a true 10% FP

http://genomebiology.com/2007/8/6/R126

rate, there are 114 FPs and 1,019 TPs when using all probesets
and 124 FPs and 1,109 TPs when only 'bound’ probesets are
used for statistical analysis (Table 3).

Conclusion

The knowledge of all transcripts in the GoldenSpike dataset
makes it an invaluable resource for understanding the prop-
erties of Affymetrix short-oligonucleotide whole genome
chips, even though the dataset is far from ideal, with major
differences in the amount of labeled cRNA hybridized in C
and S samples and the substantial imbalance of transcripts
due to the spike-in.

Our analysis of the GoldenSpike dataset extends the perform-
ance analysis started by Choe et al. [3] to include empirical
models and re-enforces the importance of considering probe
sequence for NSB estimation. The empirical probe-sequence
models have greatly improved our understanding of the
Affymetrix GeneChip technology and indicate that we have a
good understanding of NSB signal of empty probesets. The
probe-sequence based models are significantly better at esti-
mating and correcting NSB signal than the MAS5 PM-MM
method, but the improvement in performance of the GC-NSB
single-nucleotide model is only evident with empty and low
intensity probesets. At medium and high intensity, where
NSB signal contributes significantly less to probeset intensity,
the MAS5 PM-MM method allows for better detection of
spiked-in transcripts, and at high intensity, the PDNN model
works well. This suggests that our understanding of the spe-
cific binding signal is poor, and any statistical analysis of an
individual method is subject to the faults of that method. We
suggest a method that combines the GC-NSB, PDNN and
MAS5 PM-MM methods. The statistical analysis combining
the methods may compensate for the shortcomings of the
individual methods and result in better estimates of FDRs.
However, a combined statistical analysis is far from ideal, and
a better model of DNA-RNA interaction would be preferable.

Hopefully, the GoldenSpike dataset will result in improve-
ments in both the Naef and Zhang models for separating NSB
signal from specific binding signal. There are still big
improvements needed, especially for modeling the specific
binding signal and correcting for chemical saturation, which
require additional large-scale datasets in which the concen-
tration of every transcript is known.

Materials and methods

Mapping of clones to probes

To achieve a faithful picture of the binding between the clones
and the microarray chip, we have mapped all probes'
sequences onto the clones' sequences, allowing up to eight
alignment errors, either with the PM sequence, or with the
MM sequence. In order to perform these alignments, we had
to have a careful look at the clone sequences. Out of the 3,870
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Performance measures for low, medium and high intensity probesets. For each intensity subset of probesets (low, medium and high), 301 methods (Figure
5) were used to generate expression values. All probes that could not be mapped to the subset of interest were masked, and the remaining probesets
were normalized with the FC = | probesets within each subset. AUC performance scores for (a) low, (c) medium and (e) high intensity probesets were
generated for each method using FC > | probesets and mixed probesets that can be aligned to spiked-in transcripts as TPs. True negatives were FC = |
probesets, empty probesets and mixed probesets that can be aligned only to FC = | probesets. (b,d,f) Plots of observed FDR (true g-value) for low (b),
medium (d) and high (f) intensity probesets based on the calculated g-values below 0.10. AUC and g-values were generated for each subset of probesets
using a FC = | normalization using all probesets with present transcripts (Figure 6). These values show that some methods (for example, GC-NSB with vsn
probeset-level normalization) perform very differently depending on the subset of probesets used for normalization.
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Performance measures for very high intensity MM probesets. (a) Plot of mean log2 fold changes for FC = 2 probesets with g-values below 0.10 for MM
and PM very high intensity probesets. Very high intensity probesets have a mean log2 expression value greater than 12 across all 301 methods used to
generate expression values. (b) Plot of ratio of mean fold change of TPs (FC = 2) divided by mean fold change of FPs (empty and FC = |) with g-values
below 0.10. (c) Plot of AUC scores for very high intensity probesets that can be aligned to present transcripts based on Cyber-T P values. TPs were FC >
| probesets and mixed probesets that could be aligned to spiked-in transcripts. All other probesets are true negatives. (d) Plot of true g-values based on
the calculated g-values below 0.10. BG, background.
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Performance measures for the combined method. (a) Plot of AUC scores for true positive rate (TPR) versus false positive rate (FPR) based on Cyber-T P-
values for individual methods and g-values for the combined statistical methods (GOLD and ALCHEMY). True positives were FC > | probesets and mixed
probesets that could be aligned to spiked-in transcripts. All other probesets are true negatives. Performance measures are based on a subset of probesets
with present transcripts. Additional AUC scores were calculated using all probesets to show the influence of probesets with absent transcripts. (b) Plot of
true g-values based on the calculated g-values of 0.10. (c) Methods used in the alchemy method; the order of processing is NSB correction/probe-level

normalization/probe summary/probeset-level normalization.

clones used in the experiments, 3,859 are unique (11 are
duplicated on two plates), 3,721 are fully sequenced, and 130
have partial sequence information (120 have 5' and 3'
sequences, 7 only 5' sequence and 3 are not attached to any
sequence, but are still connected to a known gene) and 8 do
not have any kind of sequence information. The fly genome
release 4.0 [21] was used to fill the missing sequences for
these 130 incomplete clones, against which the partial
sequences were aligned to determine the missing parts. This
padding was not possible for four clones that have 5' and 3'
partial sequences, because the 5' and 3' sequences appeared
on very distant genomic locations. Sequence completion was
also impossible for one clone with only 5' sequence available,
because the only match was on the reverse strand of a known
gene. For the other 125 incomplete clones, the sequences were
completed with genomic sequences, rather than transcribed
sequences, since in most cases there was no known transcript
compatible with the clone's partial sequence. In total, there
were complete experimental sequences for 3,721 clones, the
fly genome was used to complete the sequences of 125 clones,
and for 13 clones, no sequence information at all was used,
either because they did not have any sequence information in
the first place, or because the partial sequence information
was in contradiction with the fly genome. To this extent, we
were able to get an almost exact picture of the cRNA contents
in the samples.

NSB models

We proceeded by considering all alignments with eight or
fewer errors, and we were able to classify PM and MM probes
according to the strength of their binding with potentially
many different clone sequences. To perform NSB model
refinements, we retained empty probes that do not bind any
clone with less than seven alignment errors; 54,559 empty
probes (25,780 PM and 28,779 MM) matching the criterion
above were selected. Finally, 5% of probes at each end (most
and least bright) were removed from all computations to
reduce the influence of possible outliers, which may arise
from contamination by the clones of unknown sequence.

The predicted brightness of our implementation of Naef [17]
and Zhang [18] models can be written:

B =~ a + bexp(Ax) ()]
B=a+b/(1+ exp(wTAe)) (2)

where B is the probe's observed brightness, a a constant back-
ground and b is proportional to the amount of NSB, which is
assumed to be identical between all empty probes, but which
may depend on the specific experiment, as is the 'optical
background' a. The other parameters, the relative affinities x,
the binding energies e and the weights w (necessary because
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R126.17

Finding true g-values. (a) Plot of the percentage of all probesets called 'differentially expressed' that are unbound probesets at various g-value cutoffs. (b)
Mean log2 intensity versus mean log2 difference between C and S replicates for all probesets. Probesets are colored based on their classification. Empty
probesets are grey, and those that can be mapped to a transcript are colored by fold change as indicated by the colored lines, which represent the true
fold change of each classification. (c) Same plot as (b), but probesets are colored by g-values. Green symbols represent probesets with calculated g-values
below 0.10, and red symbols represent probesets with g-values < 0.0003 (observed FDR of 10%).

3

Table 3 o)
§

True positives and false positives 3-
I
o

Category All probesets Bound probesets Total %

Empty 102 59 10,104 ~

FC=1 12 63 2,495

Mixed, FC = | | 9 58

Mixed, FC > | 43 50 69

FC=12 | 9 168

FC=1.5 123 150 169

FC=17 144 167 179

FC=2 125 134 139

FC=125 161 166 176

FC=3 89 90 92

FC=35 166 170 186

FC=4 167 173 175

TP detected 1,019 1,109 1,353

FP detected 114 124 12,657

The number of TPs and FPs at a true g-value of 0.10 for the alchemy method when all probesets are used and when only a subset of probesets with

detected transcripts (bound - low, medium and high intensity probesets) are used.
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the center of the probe contributes more to the brightness
than either end) are assumed to be independent of a particu-
lar experiment, and perhaps even valid for different types of
GeneChip arrays. The probe sequence is represented by the
matrix A, which is such that A;is 1 when the nucleotide at
position iis of type j (j = 1, 2, 3 or 4 for A, C, G and T) and 0
otherwise.

We treated each chip independently and optimized the mod-
els' parameters by a least-squares fit against a subset of
30,000 empty probes, leaving the remaining 24,559 empty
probes for cross-validation. The fits were based on log values,
to reduce the dynamic range of the observations. This version
of the Naef model contains 77 parameters (2 scaling
parameters a and b, and affinities for A, C and G for each of
the 25 nucleotide positions; the affinity for T is constrained by
the three others). The Zhang model contains only 42
parameters (2 scaling parameters, 16 binding energies and 24
weights, 1 per di-nucleotide position). The ratio of
observations to parameters is greater than 350 (Naef model)
and 650 (Zhang model), taking into account the trimming of
the 5% most and least bright probes for each experiment. The
parameter optimization results are summarized in Figure 4.

We also tested the fitted parameters on the cross-validation
probes, to ensure that the binding affinities x, or the binding
energies e and their corresponding weights w were equally
able to reproduce intensities from another set of sequences.
For this operation, we first put the x affinities, binding ener-
gies e and weights w on the same scale for the six
experiments. We then used the mean values of those scaled
parameters over the six experiments as fixed parameters for
the 'scaling fits', allowing for a scaling parameter s in the
exponent's argument in equations 1 and 2. Therefore, three
variables (a, b and s) were optimized against the cross-valida-
tion probe intensities. The agreement between the cross-vali-
dation intensities and the corresponding modeled values
obtained from those fits is very close to the agreements
reached by the models where x, e, and w were refined.

Normalization

With the exception of PDNN calculations in Perfect Match
[26], all of the analysis and graphics produced for this publi-
cation used the statistical program R version 2.3.1 [27] and
packages within BioConductor [10]. When possible, we broke
the process into background/NSB correction (RMA back-
ground [8], MAS5 PM-MM [6,7] and GC-RMA [22]), probe-
level normalization (loess, constant [6,7], quantiles [8], vsn
[28] and invariantset [9]), probe summary into probeset val-
ues (medianpolish [8], li-wong [9], tukey-biweight [6,7],
farms [29], affyPLM [30], and avgdiff) and probeset-level
normalization (vsn and loess). In addition, we calculated
probeset values with RMA [8], GC-RMA [22] and probe
logarithmic intensity error (PLIER) estimation [31] within
BioConductor and with the DNA-Chip Analyzer (dChip) [9]
and Perfect Match [26] software. All probeset values were

http://genomebiology.com/2007/8/6/R126

imported into R, and normalized using FC = 1 probesets as a
subset.

Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 is a table of the
alignment of clones to probesets. Columns represent (in
order): Affy, Affymetrix probeset identifier; Clone, the Dro-
sophila Gene Collection clone that aligns to that probeset; C,
the concentration pool of that clone in C samples; S, the con-
centration pool of the clone in S samples; fold, the fold change
between S and C samples for the clone; score, alignment score
indicating the quality of the alignment (14 = alignment to all
14 probes in probeset); pool, pool number; well, well position
in PCR-plate; plate, plate number. Additional data file 2 is a
figure showing performance measure for low intensity
probesets with and without empty probesets. AUC perform-
ance and g-value estimates for low intensity probesets when
empty probesets are (a, ¢) excluded from the analysis and (b,
d) included. TPs are FC > 1 probesets and mixed probesets
that can be aligned to spiked-in transcripts. True negatives
are FC = 1 probesets, empty probesets and mixed probesets
that can be aligned only to FC = 1 probesets. Expression val-
ues were generated by masking all probes that could not be
mapped to the low intensity probesets, re-calculating the
probeset expression values and calculating the AUC and g-
values. AUC and g-values were also generated from FC = 1
normalizations using all probesets with present transcripts.
See legend for coloring of symbols. Additional data file 3
includes modified GoldenSpike scripts for use in R with Bio-
Conductor. Additional data file 4 includes scripts to run the
alchemy method in R with BioConductor (requires Additional
data file 3)
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