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Conservation of protein interactions<p>The conservation of protein-protein interaction networks can be examined by mapping human proteins to yeast and other model organisms, revealing that protein complexes are preferentially conserved, and that such conservation can yield biological insights.</p>

Abstract

Background: Protein-protein interaction (PPI) networks have been transferred between
organisms using interologs, allowing model organisms to supplement the interactomes of higher
eukaryotes. However, the conservation of various network components has not been fully
explored. Unequal conservation of certain network components may limit the ability to fully
expand the target interactomes using interologs.

Results: In this study, we transfer high quality human interactions to lower eukaryotes, and
examine the evolutionary conservation of individual network components. When human proteins
are mapped to yeast, we find a strong positive correlation (r = 0.50, P = 3.9 × 10-4) between
evolutionary conservation and the number of interacting proteins, which is also found when
mapped to other model organisms. Examining overlapping PPI networks, Gene Ontology (GO)
terms, and gene expression data, we are able to demonstrate that protein complexes are
conserved preferentially, compared to transient interactions in the network. Despite the
preferential conservation of complexes, and the fact that the human interactome comprises an
abundance of transient interactions, we demonstrate how transferring human PPIs to yeast
augments this well-studied protein interaction network, using the coatomer complex and
replisome as examples.

Conclusion: Human proteins, like yeast proteins, show a correlation between the number of
interacting partners and evolutionary conservation. The preferential conservation of proteins with
higher degree leads to enrichment in protein complexes when interactions are transferred
between organisms using interologs.

Background
The evolution of high-throughput (HTP) technologies in the
post-genomics era has taken scientists from the characteriza-
tion of single proteins to the investigation of entire interac-
tomes. Biological techniques have been supplemented with in

silico approaches to map interactomes between species using
orthologs, making predictions about new interactions that
have not yet been demonstrated experimentally. This concept
of interologs was first proposed by Matthews et al. [1] to
transfer yeast protein-protein interactions (PPIs) to worm;
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however, only 16% to 31% of the interactions that were pre-
dicted were validated by yeast two-hybrid (Y2H) assay. Possi-
ble explanations for this modest result include technical
aspects of the Y2H assay, predictions from false positive PPIs,
or the lack of interaction conservation between species that
are distant by more the 900 million years. Another study
using interactions predicted from multiple organisms have
found greater conservation of interologs (50% to 100%), sug-
gesting that higher quality sources can improve the experi-
mental validation [2,3]. Finally, Yu et al. [4] found that
identifying interologs by a reciprocal best-hit approach
(RBH; see Materials and methods) had a 54% true-positive
rate, which was higher than both the method used by Mat-
thews et al., and the generalized interolog approach.

A combination of low-throughput (LTP) and HTP interaction
studies have produced large networks of interacting proteins
in Homo sapiens (human), Rattus norvegicus (rat), Mus
musculus (mouse), Drosophila melanogaster (fly),
Caenorhabditis elegans (worm), and Saccharomyces cerevi-
siae (yeast) (see Additional data file 1 for sources). In addi-
tion, manual curation of the scientific literature has resulted
in large PPI databases in machine readable format [5-9].
These resources have been supplemented by several groups,
leading to PPI databases using interologous prediction of
human interactions from model organisms [10-12], some of
which integrated predicted, curated, and experimentally
derived interactions [10,13].

Analyses of these large datasets revealed interesting charac-
teristics within interactomes. First, co-expressed genes
encode proteins that are more likely to interact than ran-
domly selected proteins [14,15]. Additionally, stable com-
plexes show a much higher level of co-expression than
transient complexes [16,17], as well as higher co-localization.
Furthermore, it was determined that highly connected pro-
teins ('hubs') can be subdivided into two classes: 'party' hubs,
which interact simultaneously with multiple partners; and
'date' hubs, which interact at different times and places [18]
based on the degree of co-expression. This agrees with the
analysis of Jansen et al. [16], as party hubs are found within
large stable complexes such as the 26S proteasome, which
show a high degree of gene co-expression.

Analysis of the yeast PPI networks has revealed that not all
interacting proteins display the same rate of evolutionary
conservation; higher degree proteins tend to display a slower
rate of evolution [19,20], and thus are more conserved [21].
Additionally, higher modularity in the PPI network is associ-
ated with an increased evolutionary retention rate [21-23].
Taken together, this suggests that highly interconnected hub
proteins, such as those found in stable complexes, are more
conserved evolutionarily. This was confirmed by Mintseris
and Weng [24], who found that stable interacting proteins
have greater conservation of the amino acid residues in the
interaction interfaces than transient ones.

In light of the differences in conservation of the proteins that
comprise the interactomes, it is important to re-examine the
conservation of interologous interactions across species. We
expect more highly connected proteins to be preferentially
conserved, particularly those from highly interconnected
complexes. Thus, we expect increased conservation of stable
complexes across species. However, the effect of evolutionary
distance on conservation has not yet been established, nor
how the preferential conservation of large complexes affects
the interologous transfer of networks between organisms.

While the previous work was carried out on yeast PPI net-
works, little is known about the properties of the human
interactome. Using the known human interactome (that is,
literature-based interactions from BIND, BioGrid, DIP,
HPRD, and MINT, plus HTP experiments; see Additional
data file 1) as a starting point, we created interologous net-
works in multiple organisms (see Additional data file 2) [25].
The evolutionary distance between yeast and any of the other
five organisms under consideration falls between 990 million
and 1.5 billion years. Fine detail in the changes in the net-
works may be difficult to observe over such large distances.
However, with a growing human PPI dataset (currently
33,713 known unique PPIs) we can compare it to mouse/rat
(91 million years), fly/worm (990 million years), and yeast
(1.5 billion years) [26,27]. This resource enables us for the
first time to evaluate the changes in predicted interaction net-
works over evolutionary distance.

From the above it follows that the evolutionary conservation
of PPIs across organisms is not uniform. Therefore, we exam-
ined the networks that are transferred between organisms for
the preferential conservation of protein complexes, and the
rate of PPI conservation as a function of evolutionary dis-
tance. We find that human proteins display a similar evolu-
tionary relationship as yeast proteins, with higher degree
proteins being conserved preferentially. Additionally, as the
evolutionary distance between organisms grows, the prefer-
ential conservation of interologs within stable complexes
increases.

Results
Properties of PPI networks
In order to characterize aspects of the predicted interaction
networks we must first establish the properties of interest. In
particular, we are interested in the conservation of stable
complexes versus transient interactions, and thus we need to
be able to distinguish between them. Stable complexes are
highly interconnected (high clustering coefficient, Cw), and
show a high degree of co-expression. As an example of a net-
work highly enriched in protein complexes, we examined the
yeast 'high confidence' dataset from von Mering et al. [28].
This dataset comprises interactions determined by multiple
experimental datasets and techniques. Using two independ-
ent microarray datasets [29,30], we observed much higher
Genome Biology 2007, 8:R95
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than random gene co-expression (Figure 1a), which demon-
strates the abundance of stable complexes. A comparable net-
work that is enriched in transient protein interactions is the
yeast 'kinome', which is based on kinase-substrate interac-
tions [31]. In contrast, the transient interactions (Figure 1b)
are indistinguishable by gene co-expression from the random
protein pairs. The large number of complexes in the yeast
'high confidence' dataset is also characterized by the over-
abundance of highly clustered proteins (Figure 1c, blue curve;
Additional data file 3), while the transient PPI dataset shows
almost no clustering (Figure 1c, green curve). The human PPI
network was examined to assess whether it more closely
resembles the high confidence or kinome datasets (Figure

1d). There are a small number of highly clustered proteins,
with the majority showing little or no clustering, akin to the
transient yeast kinome. Similarly, the gene co-expression is
only slightly higher than random as it was for the yeast
kinome, which suggests a dominant presence of transient
interactions within this network.

Interactome datasets
We have integrated known, experimental and predicted PPIs
for five model organisms and human in the OPHID database
[10]. The properties of these networks are listed in Table 1. In
particular, there are 33,713 known unique PPIs in the human
network, with a mean degree of 6.85 and a mean Cw (<Cw>) of

Properties of PPI networksFigure 1
Properties of PPI networks. (a) Co-expression of yeast 'high confidence' protein interactions (solid lines) and random protein pairs (dotted lines) using 
two microarray datasets. This network is enriched in stable complexes, represented by a high mean correlation. (b) Co-expression of the yeast 'kinome' 
[31], which is enriched for transient interactions. This type of interaction shows co-expression that is highly similar to the random distribution (dotted 
lines). (c) Distribution of clustering coefficients in stable and transient PPI networks. Complexes are represented by a high Cw (blue line), while the 
sparsely connected transient network is typified by a low Cw (green line). (d) The properties of the human interaction network. The clustering coefficients 
indicate that this network is more sparsely connected, with few protein complexes. The co-expression profile is only slightly higher than the randomly 
generated distribution, suggesting the presence of many transient PPIs.
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0.1453. The yeast protein interaction network, which has
been built primarily through extensive HTP studies,
comprises 95,104 unique PPIs, with both a mean degree
(<k>) and <Cw> that is much higher than the human net-
work, at 33.61 and 0.2622, respectively. The high clustering
in this network is reflective of an abundance of protein com-
plexes obtained by large-scale mass spectrometry experi-
ments [32-34]. Worm, fly, mouse and rat PPI networks have
also been compiled, and can be integrated with predicted
interactions, or used to predict interologous interactions in
other organisms. The properties of these networks are also
summarized in Table 1.

Construction of interologous networks
PPI networks were transferred between organisms using
interologs. Briefly, interactions from organism X are inferred
in organism Y if the two interacting proteins from X have
orthologs in Y. Applying the same approach as we used for
OPHID [10], we generated a database of orthologs between
each of the six organisms of interest. Orthologs are then used
to map the interactome of one organism into another.

Yu et al. [4] examined the conservation of interologs using
several metrics. One such metric is the joint sequence iden-
tity, which is defined as the geometric mean of the percent
identities of the two orthologs involved in the predicted inter-
action. In general, Yu et al. found the conservation of inter-
ologs increased markedly above a joint identity of 40%, up to
100% conservation at a threshold of 80% identity. We com-
puted the joint sequence identity for all interologs transferred
from the human network, and the cumulative distributions
are shown in Additional data file 4. It is interesting to note
that the cumulative distributions are shifted according to the
evolutionary distance, with the predicted yeast interactions
having the lowest joint identity distribution, and the rat and
mouse having the highest. More importantly, nearly 50% of
the yeast interologs have a joint sequence identity greater
than 40%. Even higher conservation was observed for the
worm and fly interologs (52% and 70% of interologs, respec-
tively), while 99.9% of the mouse and rat interologs were
above 40% identity. While a high joint sequence identity does

not guarantee conservation of the mapped interolog, it does
suggest an increased probability of the interaction being con-
served between species.

Table 2 summarizes the characteristics of the human interac-
tome as it is transferred into each of the five lower eukaryotes.
These data show that the number of interactions predicted
decreases as the evolutionary distance increases. This can be
attributed to both fewer orthologs being found between more
distant organisms as well as the fact that the more distant
organisms in this study have smaller proteomes. Interest-
ingly, <Cw> is increasing in the interologous networks (Figure
2a), while <k> is decreasing. The rise in Cw indicates that the
interologous networks are more highly interconnected than
the original human network. In general, this increasing den-
sity results from low degree nodes (k < 4) being lost through
the interolog mapping, while nodes with degrees ranging
from 5 to 40 are preferentially conserved (P < 0.05, Fisher's
exact test). For clarity, this does not imply any structural
changes in the predicted networks, but rather that some of the
sparsely connected interactions are being 'filtered out'
through the interolog prediction method. Similar trends are
observed when the rat and mouse interactomes are trans-
ferred to lower eukaryotes (Additional data file 2).

Increased conservation by degree
Previous analysis of the yeast interactome revealed that pro-
teins with higher degree display greater evolutionary conser-
vation [19], although there has been some debate about this
finding [20,35]. Therefore, to confirm that this relationship
could be obtained using our sets of PPIs and orthologs, the
fraction of yeast proteins conserved in higher eukaryotes was
analyzed as a function of node degree. The relationship is
indeed confirmed in Figure 3a, which shows a positive corre-
lation between degree and conservation in higher eukaryotes
(Spearman's rank r = 0.52, P = 2.8 × 10-11). Similar correla-
tions are observed between yeast and worm (r = 0.55), fly (r
= 0.62), mouse (r = 0.58), and rat (r = 0.58). This relation-
ship is observed over great evolutionary distances, from 990
million years (worm/fly) to 1.5 billion years (mouse/rat/
human).

Table 1

Characteristics of known PPI networks for each source organism

Organism* PPIs Proteins <k> Cw

Human 33,713 9,799 6.85 0.1453

Rat 653 538 2.43 0.1357

Mouse 1,810 1,674 2.16 0.1581

Fly 24,688 7,549 6.52 0.0245

Worm 5,611 3,230 3.46 0.1333

Yeast 95,104 5,652 33.61 0.2622

*See Additional data file 1 for a list of data sources.
Genome Biology 2007, 8:R95
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Next, we examined whether human proteins display similar
conservation across evolutionary distance as the yeast
proteins. The most closely related species to humans in this
study are mice and rats, which are only 91 million years dis-
tant, thereby providing an intermediate distance missing in
the yeast comparisons. Figure 3b indicates that human pro-
teins, in general, show increased evolutionary retention as a
function of degree when mapped to yeast (Spearman's rank r
= 0.50, P = 3.9 × 10-4), confirming that human proteins
exhibit the same relationship between evolutionary distance
and degree as yeast proteins. A similarly strong relationship
is found between human and worm (r = 0.51, P = 2.0 × 10-4),
and human and rat (r = 0.46, P = 4.4 × 10-4). A weaker (non-
significant) correlation is observed between human proteins
and fly (r = 0.17, P = 0.23), although it is unclear why this cor-
relation is lower than that of the worm. No correlation is
observed between human and mouse proteins as a function of
degree (r = -0.02, P = 0.88), although the relationship may be
affected by the uniformly high conservation seen between
human and mouse proteins (the lowest conservation of
human proteins in mice is 62%, observed for proteins with
degree = 1).

It is also interesting to note that the data in Figure 3b stratify
according to the evolutionary distance between organisms,
where the mouse and rat show the greatest conservation of
human proteins overall, followed by fly, worm, and finally
yeast. This helps to explain the decreased number of con-
served PPIs with the increased evolutionary distance in our
interolog networks. Looking across the entire range of protein
degrees, an average of 81% of the human proteins are con-
served in mice - a number that increases with increasing
degree. Similarly, on average, 59% of the human proteins are
conserved in rats. As the evolutionary distance increases ten-
fold (to 990 million years), the conservation rate drops to a
mean of 28% in the worm and fly. Finally, on average, only
16% of the human proteins are conserved in yeast.

Conservation of complexes
The higher degree proteins are more conserved, and the aver-
age clustering of the network increases with the increased
evolutionary distance between organisms. These results sug-
gest that complexes are more highly conserved in the inter-

olog networks relative to other network components. We
therefore considered other properties of the PPI networks
that may help support this assertion, such as co-localization,
and gene co-expression.

Protein complexes have been shown to display increased co-
localization when compared to transient protein interactions,

Table 2

Characteristics of interologous interactomes predicted from human

Target organism Predicted PPIs Overlap* Cw <k>

Human - - - -

Rat 10,597 231 0.1434 5.52

Mouse 23,251 634 0.151 6.82

Fly 2,883 93 0.1914 3.53

Worm 2,092 176 0.205 3.46

Yeast 750 345 0.2738 2.51

*Overlapping with known PPIs in each organism. See Additional data file 2 for characteristics of all predicted networks.

Effect of interolog transfer across evolutionary distanceFigure 2
Effect of interolog transfer across evolutionary distance. Interologous 
protein interactions were predicted from the known human PPI network. 
(a) The mean Cw for the predicted network in each model organism 
(mean ± standard deviation), averaged over all nodes with k > 1. P values 
indicate the significance of the difference from the human interactome. (b) 
The mean co-localization for each model organism network is shown, 
normalized against the number of PPIs with localization data for both 
proteins. (c) The Pearson correlation of genes encoding interacting 
proteins in each organism (mean ± standard deviation). In all cases, the 
average correlation is significantly higher than a randomized network (P 
<< 0.001). In each plot, the dotted line indicates the average level for the 
human network.

0

0.2

0.4

0.6

P = 0.698 P = 0.194
P = 4.0*10 −6 P = 3.8*10−6

P = 8.9*10−10

<
C

w
>

Rat
0

0.2

0.4

0.6

0.8

C
o-

lo
ca

liz
ed

 P
P

I (
%

)

Mouse Worm Yeast
0

0.2

0.4

0.6

0.8

C
o-

ex
pr

es
se

d 
(%

)

Mouse Fly Worm Yeast

Rat Mouse Fly Worm Yeast

(a)

(b)

(c)
Genome Biology 2007, 8:R95



R95.6 Genome Biology 2007,     Volume 8, Issue 5, Article R95       Brown and Jurisica http://genomebiology.com/2007/8/5/R95
as judged by Gene Ontology (GO) annotations [17]. Logically,
proteins must be co-localized in order to physically interact.
In practice, the annotation of protein sub-cellular localization
is less than complete, and stringent computational tech-
niques must be used to avoid detecting co-localization based
on generic annotations. In our analysis, 48.1% of all experi-
mentally derived yeast PPIs are co-localized, which is similar
in the worm (60.4%), fly (41.6%), mouse (65.6%), rat (43.1%)
and human (54.1%). For comparison, datasets enriched in
protein complexes show a much higher level of co-localiza-
tion; 85.7% of the 'high confidence' PPIs (n = 1,601) from von
Mering et al. [28] are co-localized, as are 88.3% (n = 6,705) of
a yeast TAP tagging dataset [36]. In contrast, transient inter-
actions exhibit much lower co-localization, with 36.4% of the

transient kinase-substrate interactions in the yeast 'kinome'
[31] co-localized.

When the human PPI network is transferred to rat or mouse,
there is little change in the level of co-localization, primarily
due to high conservation between the three species. However,
when the human PPIs are transferred to the more distantly
related fly, worm, or yeast, the level of co-localization
increases (Figure 2b). In the fly, 58.3% are co-localized, while
74.7 and 70.4% of the worm and yeast interactions are co-
localized, respectively. In all cases, the percentage of co-local-
ized proteins was normalized against the number of interac-
tions where both proteins have localization data in order to
control for differences in protein annotation in each organ-
ism. Permutation testing was performed to ensure that the
degree of co-localization observed in the known and pre-
dicted networks could not be obtained by random chance,
and was not due to biases in sampling or annotation differ-
ences (see Additional data file 5). The increased co-localiza-
tion of predicted networks in the distantly related organisms,
which is higher than the source human network, experimen-
tally derived networks, and randomly chosen protein pairs,
suggests that the predicted networks are enriched for com-
plexes relative to the original human network.

Similarly, interacting proteins within complexes should dis-
play higher gene co-expression, and thus enrichment for
complexes should be apparent by comparing the mean gene
co-expression of the mapped networks. Figure 2c shows that
both worm and yeast display increased gene co-expression
compared to humans. However, this trend is not seen in
mouse, and the overall increase was not as high as we had
expected. Comparisons between measurements of co-expres-
sion in different organisms may be complicated by the types
of tissues used for the microarray measurements, heteroge-
neity in tissues or cell cycle stages, and other experimental
factors from the gene expression data. Despite these chal-
lenges, our results suggest that stable protein interactions
moderately increase with the evolutionary distance.

Enrichment in detecting stable complexes
In expanding the known human PPI network with interolo-
gous predictions, we noted an increased level of gene co-
expression in PPIs that were mapped from model organisms
using the GeneAtlas gene expression data [37] (Figure 2c).
Table 3 shows that the human interactome has a mean co-
expression value of 0.241, while known human PPIs that have
interologous interactions in model organisms show a mean
co-expression nearly two-fold higher. This increased even
further when we compared PPIs with interologous interac-
tions in more than one model organism. When we examined
PPIs conserved across three organisms, we found a mean co-
expression of 0.717. Manual inspection of these interactions
revealed enrichment for stable complexes such as the 26S
proteasome, 40S and 60S ribosomal proteins, eIF-2
complexes, the origin recognition complex (ORC) and mini-

Conservation of interacting proteins by degreeFigure 3
Conservation of interacting proteins by degree. (a) Each protein in the 
yeast interaction network was examined for orthologous proteins in the 
five higher eukaryotes, and binned according to degree. The proportion of 
each bin with orthologous proteins is shown. The linear trend shows the 
strong positive correlation (Spearman's rank r = 0.52, P = 2.8 × 10-11) 
between yeast and human proteins. (b) The proteins in the human 
interactome were compared against all five lower eukaryotes, and binned 
according to degree. This trendline also shows a strong correlation against 
yeast (Spearman's rank r = 0.50, P = 3.9 × 10-4), which is similar for worm 
and rat, and there is a weak (non-significant) correlation to fly. There was 
a weak negative correlation in mouse (Spearman's rank r = -0.02); 
however, the overall conservation was high, likely biasing this 
measurement.
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chromosome maintenance (MCM) complexes, among others.
This suggests that interactions detected in multiple interac-
tion screens, observed in multiple organisms, and conserved
across organisms, primarily form stable complexes. von Mer-
ing et al. found the yeast interactome to be enriched for
ancient, evolutionarily conserved proteins [28], and it is
likely that this is also true in other interaction detection
screens, which would contribute to an abundance of stable,
conserved complexes.

Novel yeast interactions
One of the possible explanations for the low fraction of inter-
ologous predictions that were validated in Matthews et al. [1]
is the quality of the earlier Y2H protein interactions upon
which the predictions were based. In the current study, the
human interactome has largely been compiled from LTP
studies in the literature, which is often cited as a 'gold stand-
ard'. Interestingly, when we transfer the human interactome
to yeast, 46% (345) of the predictions overlap with known
yeast interactions. This is already much higher than the
number validated in Matthews et al., and is similar to the
true-positive rate found by Yu et al. This likely reflects both
the higher quality of the human interactions, and also the use
of the RBH method for ortholog detection. Surprisingly,
despite significant combined efforts to elucidate the yeast
interactome, we can still predict 405 novel protein interac-
tions in yeast. For reasons discussed above, these interologs
are largely involved in protein complexes, and help intercon-
nect various yeast proteins and their subnetworks. This is
illustrated in Additional data file 6, where the entire set of
yeast predictions is shown. Black edges in this network repre-
sent interactions predicted from human that have already
been shown in yeast, while the red edges represent interac-
tions that are not contained within the current yeast interac-
tome. To help illustrate the utility of our prediction method,
we will explore in detail two complexes: the yeast replisome,
and the yeast coatomer complex.

Replisome
The replisome is a complex that has been extensively studied
from bacteria to humans, thereby establishing the direct PPIs
between many complex subunits. It has an essential role in

DNA replication, as well as in DNA repair, and includes many
subcomplexes, including the ORC, MCM complex, single-
strand binding protein (RP-A), DNA sliding clamp (PCNA),
the clamp loader (RF-C), DNA polymerases α, δ and ε, and
many accessory proteins (reviewed in [38]). Figure 4a shows
the replisome generated by interactions mapped from the
human interactome to yeast. Some of these interactions are in
the yeast interaction dataset, for example, the interactions
between RFA1 and RFA2, RAD51, and MCM2. However,
additional interactions, such as those involving CDC47,
DMC1, HGH1, MSH4, ORC2, and PCNA, can be uniquely
mapped from human. There are many other interactions
among members of the ORC/MCM complexes, DNA replica-
tion components, and DNA repair components that are
mapped from the human PPI network. Thus, the known
human interactome, which has been generated primarily
through small-scale experiments (79.4% were from LTP
experiments), can be used to enrich even the yeast interac-
tome, which has been studied extensively and systematically
through multiple and technologically diverse HTP
experiments.

Coatomer complex
The coatomer protein complex is involved in the formation of
vesicles that traffic between the endoplasmic reticulum (ER)
and the Golgi apparatus, as well as to the plasma membrane
(reviewed in [39]). Transport between these organelles is
required for exporting proteins to the Golgi (anterograde
transport), and recovering ER proteins from the Golgi (retro-
grade transport). Figure 4b illustrates some of the interac-
tions involved in retrograde transport from the Golgi to the
ER. In particular, GCS1 is a GTPase activating protein, which
could conceivably activate the GTPases ARF1 and ARF2
(ARF1 not shown). ERD2 has been implicated in binding
HDEL proteins, which are destined for retention in the ER.
Human ERD2 has been shown to bind to ArfGAP1, the human
ortholog of yeast GCS1 [40]. Both ERD2 and GCS1 interact
with the COPI subunits (COPA, COPB, COPB2, and COPG),
as well as the activating proteins ARF1 and ARF2. Together,
these proteins control sorting and retrograde transport of
HDEL-containing proteins from the Golgi to the ER. While
this process has been studied extensively in yeast and

Table 3

Gene co-expression in known and predicted human PPI networks

Dataset Mean correlation n

Known human 0.241 5,201

Predicted, overlapping 0.408 242

Predicted, non-overlapping 0.412 4,571

Predicted, >1 org 0.717 115

Random 0.09 10,000

Gene expression analysis was performed on the human GeneAtlas [37]. 'Predicted, overlapping' are interactions predicted from model organisms, 
and also found in the known human dataset. 'Predicted, non-overlapping' are novel predictions not found in the known human interaction databases. 
'Predicted, >1 org' are PPIs inferred from more than one model organism, regardless of overlap with the known human PPI network.
Genome Biology 2007, 8:R95
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humans, GCS1 has thus far only been linked to protein
trafficking through genetic interactions with ARF1 and ARF2
[41]. Therefore, mapping the human PPIs to yeast suggests
that GCS1 acts more specifically in the retrograde transport
pathway, as opposed to anterograde transport, through its
physical interaction with ERD2.

Interolog interaction database (I2D)
To facilitate experimentation and integrated computational
analysis with model organism PPI networks, we have pro-
vided all of the data discussed here in a web-accessible data-
base [25]. This is an extension of our earlier work on OPHID
[10], and covers additional target organisms. For instance,
through this database the high-quality human interactome
can be transferred to mouse, extending the mouse interac-
tome by tens of thousands of protein interactions. The data
are provided for download in tab-delimited text or PSI-XML
format [42], and can be viewed with an OpenGL-accelerated

network visualization system NAViGaTOR (Network
Analysis, Visualization and Graphing, Toronto) [43] available
for Windows, Linux, Solaris and OSX platforms.

Discussion
In some respects, the human PPI dataset that we have com-
piled makes an ideal test set to assess the effects of interolo-
gous protein interaction prediction. For instance, due to
systematic efforts at complex identification [34,44], the yeast
PPI datasets are highly enriched in protein complexes. Most
of the sparsely connected areas of the network are from Y2H
studies, which in general have large error rates [45,46]. Thus,
assessing whether the conservation of complexes across spe-
cies is an artifact of experimental noise in the Y2H data or the
overabundance of complexes becomes problematic. On the
other hand, the sparseness of complexes in the human dataset
makes it difficult to determine which types of complexes are
more highly conserved: transient or stable. The analysis by
Fraser [23] suggests that party hubs, or members of stable
complexes, are more highly conserved. This remains to be
established for human proteins, although we suspect this
assertion will hold as human protein complex data become
available. Additionally, the low number of complexes found in
the human PPI data (Figure 1d; Additional data file 7) may
have resulted in a conservative estimate for the enrichment of
stable complexes in the networks created using interologs.

Clearly, care must be taken in the interpretation of PPI data
analyses. Recent publications have called into question find-
ings that were based on early versions of the yeast interac-
tome. The correlation between high degree proteins and
evolutionary rate [19,20] has been challenged by Jordan et al.
[35], who suggest that the evolutionary conservation is
instead related to highly expressed proteins in the interaction
datasets. Maslov and Sneppen's [47] finding that hub-hub
interactions are somehow suppressed in the interactome has
been called into question by Batada et al. [48], a study that
also concludes that 'date' and 'party' hubs [18] are artifacts of
artificially small network subsets. Even the scale-free degree
distribution reported for many PPI networks has been chal-
lenged [49]. These 'artifacts' have largely been attributed to
inadequate sample sizes or sample bias in the early yeast PPI
data. Our human PPI dataset avoids some of the sample bias
that has plagued the earlier yeast data, and is analogous to the
'HC' dataset compiled by Batada [48]. Rather than being
dominated by a single purification method, or HTP data
alone, our human interactome is instead composed of a mix
of LTP, literature-based interactions, and HTP data. This
includes a variety of purification techniques, such as small-
scale co-immunoprecipitations to large-scale Y2H methods.

However, the human dataset is not completely bias-free.
Many of the human PPIs have been generated through LTP
experiments, targeting higher abundance or disease-related
proteins. This has led to a network that is more biased and

Yeast interactions transferred from the human interactomeFigure 4
Yeast interactions transferred from the human interactome. The human 
interactome was used as a source to predict 750 yeast interactions, 405 of 
which are novel (red lines), while 345 overlap with previously known yeast 
PPIs. (a) The replisome, responsible for DNA replication, is enriched by 
the human interactome. (b) The yeast protein GCS1 is linked to 
retrograde transport between the Golgi and the endoplasmic reticulum 
through physical interactions with ERD2, ARF2, and the coatomer 
complex (COPA, COPB, COPB2, COPG) using human interactions. The 
node colors indicate the broad functional category of each protein as 
derived from GO annotations.
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sparsely connected than, for instance, the yeast interactome,
which includes interactions from targeted protein complex
purifications. This is exemplified in the mean degree of the
human network (<k> = 6.85), compared to yeast (<k> =
33.61). The human network also has a mean clustering coeffi-
cient that is approximately half the value in yeast (<Cw> is
0.1453 in human versus 0.2622 in yeast). While this repre-
sents a challenge in our analysis, it also highlights the need to
integrate complementary interaction data to obtain more
complete interactomes.

Besides showing the evolutionary conservation of the human
proteins and their interactions, we were able to examine the
effect on the predicted networks of interologs across species.
We have shown that highly connected components of the
human PPI network are more conserved than the lower
degree proteins, and the proportion of proteins conserved
decreases with evolutionary distance. If one is to use inter-
ologs to augment a PPI dataset, it is important to understand
whether all interactions have equal probability of being trans-
ferred between organisms. In particular, signaling pathways
and transient interactions (for example, kinase-substrate
interactions) are of very high importance in disease processes
such as cancer. It is critical, therefore, to examine the
dynamic PPI networks to understand these processes. The
human PPI network is a rich source of such interactions,
which should survive mapping to higher eukaryotes such as
mouse and rat, as nearly 70% of the human interactions are
conserved in mice. For instance, using our ortholog set and
examining 518 human kinases [50], 78% have an ortholog in
mice, 15% and 17% have orthologs in worm and fly, respec-
tively, while only 6% have orthologs in yeast. In contrast, 70%
of the human 26S proteasome subunits have conserved
orthologs in yeast, and 44% of the human RNA polymerase
components are conserved in yeast. Thus, it is readily appar-
ent that the dynamic components of the interactomes will be
poorly represented in mapped networks from distantly
related organisms. However, being able to transfer the wealth
of protein complexes from yeast would greatly enrich the
human network, which lacks information on many of the sta-
ble protein complexes that have been purified in yeast. New
experimental technologies, such as the protein chip used to
create the yeast kinome [31], will be required to complete the
interactome within the scaffold of stable interactions that cur-
rent technologies, including interolog mapping, provide.

Materials and methods
Datasets
The known human interactome contained in OPHID cur-
rently comprises 33,713 non-redundant PPIs, up from 16,107
when the database was first published in 2005. The network
has been compiled by integrating multiple databases and
experimental datasets (see Additional data file 1), and
includes 9,799 proteins. The mean degree <k> in this network
is 6.85, and the mean clustering coefficient <Cw> is 0.1458.

Additional PPI datasets have been compiled for each of the
model organisms. The basic characteristics of these networks
are summarized in Table 1.

Ortholog mapping
Orthologs were mapped between each of six eukaryotic
organisms (S. cerevisiae, C. elegans, D. melanogaster, M.
musculus, R. norvegicus, and H. sapiens) using the RBH
approach as previously described [10]. Blasting was carried
out on an IBM p690 mainframe using NCBI stand-alone
BLAST (v.2.2.14); results were parsed using DB2 Information
Integrator (v.8.1.1), and compiled in an IBM DB2 database
(v.8.1.6).

BLAST sources
BLAST sources were generated from UniProt release 7.1.
Redundant Trembl sequences, which represent duplicate
protein database entries, were identified and removed by
blasting against organism-specific SwissProt sequences.
Trembl sequences that had a SwissProt hit with e-value <1 ×
10-50 were flagged as redundant. Sequences shorter than 50
amino acids were ignored. The final FASTA file was con-
structed with all SwissProt sequences merged with the unique
Trembl entries. The results of this filtering can be seen in
Additional data file 8.

Co-localization
To determine if two proteins are co-localized, a method was
developed using GO terms annotating proteins in UniProt.
First, primary GO terms from the cellular component (CC)
aspect were retrieved for each protein from a local UniProt
database (release 7.1). Terms were only included if they
occurred on level 4 or greater. If any terms contained the sub-
string 'cytosol' (for example, GO:0005842, 'cytosolic large
ribosomal subunit (sensu Eukaryota)'), GO:0005737 ('cyto-
plasm') was added to the list. This is required because 'cyto-
plasm' is located at level 3 in the GO tree, along with many
other very general terms. Next, all parent terms were added to
the annotation lists provided that the parents were from level
5 or below. Finally, if any terms were found in the intersection
of the two GO term lists, the proteins were marked as co-
localized. While this method is very stringent and comes at
the expense of a higher false negative rate on co-localizations,
it avoids considering two proteins as co-localized with only
very general annotations, and is fully automated.

Clustering coefficient (Cw)
The clustering coefficient was introduced to measure if the
network has small-world properties [51]. Cw measures the
proportion of edges between the nodes within its neighbour-
hood divided by the number of edges that could possibly exist
between them:

C
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k kw
ij

w w
=

⋅
−

2

1( )
(1)
Genome Biology 2007, 8:R95



R95.10 Genome Biology 2007,     Volume 8, Issue 5, Article R95       Brown and Jurisica http://genomebiology.com/2007/8/5/R95
where eij is the number of edges between all neighbors i and j
of node w, kw is the degree of node w, and kw(kw - 1) is the
number of possible edges in the neighborhood of node w. The
mean Cw (<Cw>) was computed over all nodes with kw > 1.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 contains a list of all
the PPI datasets that were compiled and used in this study,
along with their sources. Additional data file 2 lists the prop-
erties of the source and predicted protein interaction net-
works, including overlapping PPI, clustering coefficient (Cw),
and average protein degree (<k>). Additional data file 3
shows the high confidence subset of yeast PPI [28] data, inte-
grated with gene expression data from Gasch et al. [29]. Addi-
tional data file 4 shows the cumulative distributions of joint
sequence identity [4] for PPI mapped from humans to the
model organisms. Additional data file 5 contains results of
permutation testing on co-localization of protein pairs. Addi-
tional data file 6 shows the overlap between the yeast PPI net-
work, and the predictions made from the human interactome.
Additional data file 7 shows the yeast PPI network con-
structed using predictions from human PPIs, illustrating the
conservation of protein complexes. Additional data file 8 lists
the results of filtering the BLAST data sources for redundant
protein sequences.
Additional data file 1PPI datasets that were compiled and used in this study, along with their sourcesPPI datasets that were compiled and used in this study, along with their sources.Click here for fileAdditional data file 2Properties of the source and predicted protein interaction net-works, including overlapping PPI, clustering coefficient (Cw), and average protein degree (<k>)Properties of the source and predicted protein interaction net-works, including overlapping PPI, clustering coefficient (Cw), and average protein degree (<k>).Click here for fileAdditional data file 3High confidence subset of yeast PPI [28] data, integrated with gene expression data from Gasch et al. [29]High confidence subset of yeast PPI [28] data, integrated with gene expression data from Gasch et al. [29].Click here for fileAdditional data file 4Cumulative distributions of joint sequence identity [4] for PPI mapped from humans to the model organismsCumulative distributions of joint sequence identity [4] for PPI mapped from humans to the model organisms.Click here for fileAdditional data file 5Results of permutation testing on co-localization of protein pairsResults of permutation testing on co-localization of protein pairs.Click here for fileAdditional data file 6Overlap between the yeast PPI network, and the predictions made from the human interactomeOverlap between the yeast PPI network, and the predictions made from the human interactome.Click here for fileAdditional data file 7Yeast PPI network constructed using predictions from human PPIs, illustrating the conservation of protein complexesYeast PPI network constructed using predictions from human PPIs, illustrating the conservation of protein complexes.Click here for fileAdditional data file 8Results of filtering the BLAST data sources for redundant protein sequencesResults of filtering the BLAST data sources for redundant protein sequences.Click here for file
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