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Mycobacterium tuberculosis metabolic model<p>GSMN-TB, a genome-scale metabolic model of <it>M. tuberculosis</it>, was constructed and validated using experimental data.</p>

Abstract

Background: An impediment to the rational development of novel drugs against tuberculosis (TB)
is a general paucity of knowledge concerning the metabolism of Mycobacterium tuberculosis,
particularly during infection. Constraint-based modeling provides a novel approach to investigating
microbial metabolism but has not yet been applied to genome-scale modeling of M. tuberculosis.

Results: GSMN-TB, a genome-scale metabolic model of M. tuberculosis, was constructed,
consisting of 849 unique reactions and 739 metabolites, and involving 726 genes. The model was
calibrated by growing Mycobacterium bovis bacille Calmette Guérin in continuous culture and
steady-state growth parameters were measured. Flux balance analysis was used to calculate
substrate consumption rates, which were shown to correspond closely to experimentally
determined values. Predictions of gene essentiality were also made by flux balance analysis
simulation and were compared with global mutagenesis data for M. tuberculosis grown in vitro. A
prediction accuracy of 78% was achieved. Known drug targets were predicted to be essential by
the model. The model demonstrated a potential role for the enzyme isocitrate lyase during the
slow growth of mycobacteria, and this hypothesis was experimentally verified. An interactive web-
based version of the model is available.

Conclusion: The GSMN-TB model successfully simulated many of the growth properties of M.
tuberculosis. The model provides a means to examine the metabolic flexibility of bacteria and predict
the phenotype of mutants, and it highlights previously unexplored features of M. tuberculosis
metabolism.
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Background
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is
one of the most important diseases in the world today, being
responsible for more than 8 million cases of disease each year
and approximately 3 million deaths [1,2]. Control of human
TB relies on vaccination, case finding, and chemotherapy.
Current anti-TB drugs are relatively ineffective against 'per-
sistent bacteria', and consequently prolonged treatment with
combinations of drugs for 6 to 12 months is required to cure
acute disease or eliminate persistent infections. The eco-
nomic and logistic burden of administering TB treatment is
enormous, particularly in industrially under-developed coun-
tries, where TB is most prevalent. A further complication in
the treatment of TB is the emergence of multidrug-resistant
strains of TB (both M. tuberculosis and Mycobacterium
bovis) in many parts of the world [3,4]. Very few new classes
of antibiotics have been approved for clinical use during the
past decade. The exceptions (for instance, the oxazolidinones
and daptomycin) are not applicable to TB infections. New
anti-TB drugs are urgently required that shorten the duration
of treatment, that have activity against drug-resistant strains,
and that specifically target persistent cells.

An impediment to the rational development of novel drugs
against TB is a general paucity of knowledge concerning the
metabolism of M. tuberculosis, particularly during infection.
One reason for this lack of knowledge is difficulty in applying
biochemical techniques to the bacterium in vivo. In spite of
this, several features of in vivo bacterial metabolism have
been established. First, the essentiality of the glyoxylate shunt
during intracellular growth indicates that M. tuberculosis
survives by scavenging host lipids [5-7]. Second, there is
growing evidence of a shift to anaerobic respiration during
persistent infection [8-10]. These findings have been useful in
directing rational drug development [11], but a more com-
plete understanding of M. tuberculosis metabolism remains a
major goal of TB drug research.

Availability of full genome sequences allows reconstruction of
genome-scale metabolic reaction networks in micro-organ-
isms. Metabolic capabilities of reconstructed networks con-
sistent with stoichiometry of enzymatic conversions, their
physiologic direction, and maximal allowable throughput can
be studied by constraint-based computer simulation meth-
ods. These simulations provide a very useful framework in
which to study metabolism in a systemic manner; they are
also a novel approach to rational design of biochemical proc-
esses and drug discovery. Whole-genome metabolic network
models of sequenced micro-organisms such as Haemophilus
influenzae [12], Escherichia coli [13], Helicobacter pylori
[14], and Saccharomyces cerevisiae [15] have proven to be
useful in hypothesis generation and correction of errors in
genome annotation, and have also been successful in predict-
ing phenotypic behavior. These models, interrogated with
various constraint-based computer simulation methods such
as flux balance analysis (FBA) [16], elementary flux modes

[17], or extreme pathways [18], provided information on the
robustness of the metabolic networks and identified vulnera-
ble pathways that may be targeted with novel drugs [19].

FBA has already been conducted in a network of reactions
involved in mycolic acid synthesis [20] to identify TB drug
targets. However, the network was limited to the fatty acid
synthesis pathways and included just 28 enzymes. In this
study we present the first reconstruction and constraint-
based simulation of a genome-scale metabolic reaction net-
work in M. tuberculosis. The model is calibrated by compari-
son with our experimental data on M. bovis bacille Calmette
Guérin (BCG) growth in continuous culture. The model cor-
rectly predicted the growth phenotype of 78% of mutant
strains in a published global mutagenesis dataset. Software
allowing constraint-based simulations of M. tuberculosis
metabolism via a web-based interface was developed in order
to make our model available to the research community. This
is the first reconstruction of a genome-scale metabolic reac-
tion network published as a web resource, providing both
data and interactive access to constraint-based simulation
methods. We also demonstrate here that this model can be
used to generate new hypotheses and thereby guide future
research in the development of novel chemotherapeutics
against TB.

Results and discussion
The genome-scale metabolic network of M. tuberculosis
The genome-scale metabolic network of M. tuberculosis
(GSMN-TB) was constructed as described in the Materials
and methods. The GSMN of Streptomyces coelicolor [21] was
used as a starting point in the iterative model building proc-
ess. S. coelicolor is an actinomycete that shares significant
portions of genome synteny with M. tuberculosis [22]. The
Kyoto Encyclopedia of Genes and Genomes (KEGG) gene
orthology clusters were used to map the genes between two
species and transfer corresponding metabolic reactions to the
TB model. Of 849 unique reactions present in the final model,
487 (57%) were directly transferred from the S. coelicolor
model following KEGG gene orthology mapping. This prelim-
inary model has been further supplemented by data from
KEGG and BioCyc databases.

A significant proportion of the model could not be con-
structed using semi-automatic methods and was therefore
generated by analysis of original research articles. Table 1 lists
these unique M. tuberculosis metabolic pathways, including
those relevant to the synthesis of the cell envelope of M.
tuberculosis, which contains a diverse array of complex lipids
and carbohydrates that are important for growth and patho-
genesis, and are important drug targets. Because fatty acid
metabolism is thought to be a crucial factor in TB pathogene-
sis [23], standard biochemical pathways for β-oxidation of
fatty acids pathways were added, including additional reac-
tions for catabolism of odd and even numbered fatty acids
Genome Biology 2007, 8:R89
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and unsaturated fatty acids. Respiratory pathways and syn-
thesis of biomolecules specific to mycobacteria were also
modeled by manual annotation. Transport reactions included
those responsible for the the import of minerals, carbon,
nitrogen and high molecular weight compounds such as
biotin. Transport reactions for long chain fatty acids such as
palmitate and oleic acid were also included because there is
evidence that M. tuberculosis consumes host-derived lipids
in vivo [23]. Iron metabolism is also an important component
of the pathogenesis of many microbes, including M. tubercu-
losis [24]. We simulated a requirement for iron by allowing
ferric ion transport (both citrate and mycobactin mediated)
and incorporating iron into the heme group of cytochromes
such that it cycles between the ferric and ferrous valence
states according to the oxidation state of the electron carrier.

M. tuberculosis is a facultative intracellular parasite that is
capable of growth within host cells, in the extracellular
milieu, and in vitro. Biomass composition data are available
only for in vitro grown M. bovis BCG, and so this was used to
model the M. tuberculosis cell for the in silico model. How-
ever, it is well established that many of the outer cell wall
components of M. tuberculosis (such as phenolic glycolipid),
although produced in vitro, are not essential for in vitro
growth but are required for pathogenesis. In order to make
the model applicable to M. tuberculosis grown both in vitro
and in vivo, we therefore defined two biomass components
based on published experimentally derived values for macro-

molecular composition of M. tuberculosis. (See Additional
data files 1 to 3: Additional data file 1 illustrates the estimated
macromolecular composition for M. tuberculosis, Additional
data file 2 shows the calculations used to estimate that com-
position, and Additional data file 3 shows the conversion
between stoichiometric formulae and mmol/l per gram of
biomass.) The first (BIOMASS1) reflects the actual macromo-
lecular composition of M. tuberculosis. The second (BIO-
MASSe) is a minimal macromolecular composition of M.
tuberculosis and includes only those components (DNA,
RNA, protein, essential co-factors, and cell wall skeleton) that
are thought to be essential for in vitro growth. It is this second
biomass that was used to make predictions regarding gene
essentiality in vitro. To simulate the requirement of co-fac-
tors for nonessential reactions, we introduce the concept of a
'replenishing flux', in which the co-factors are included in
reactions but with a low (0.001), unbalanced stoichiometric
coefficient toward consumption, forcing co-factor synthesis
only when the co-factor utilizing reaction is active.

The final model contains 849 reactions and 739 metabolites,
and involves 726 genes (Table 2). These numbers refer to
unique stoichiometric formulae, because paralogous genes,
involved in the same reaction, were accounted for by Boolean
statements describing gene-protein associations, rather than
being modeled by duplication of reactions (see Materials and
methods). The reaction formulae, FBA parameters, and gene-
protein associations are summarized in Additional data files
4 (reaction formulae, limits, Enzyme Commission (EC) num-
bers, genes, and pathway classifications), 5 (references for
those reactions), and 6 (metabolite names).

Quantitative calibration and validation of the GSMN-
TB model
Quantitative calibration of the model
The quantitative results of FBA of the GSMN-TB model
depend on the three global energetic parameters, which are
not explicitly accounted for by currency metabolite produc-
tion/consumption included in the stoichiometry of individual
enzymatic reactions. Specifically, these parameters are as fol-

Table 1

Metabolic pathways that have been modelled by direct annota-
tion of original literature data

Pathway References

Biosynthetic pathways

Arabinogalactan [60,61]

Mycolic acids [62]

Trehalose monomycolate, trehalose dimycolate [63]

Dimycocerosate esters (DIMs) [64-66]

Phenolic glycolipid (PGL) [67]

Sulfolipid SL-1 [68-70]

Phosphatidylinositol mannosides (PIMS) [71]

Lipomannan (LM)

Lipoarabinomannan (LAM)

Mannosyl β-1-phosphodolichol (MPD) [72]

Siderophore mycobactin [73]

Co-factor F420 [74]

Mycothiol [75]

Catabolic pathways

Additional beta oxidation pathways

Odd and even numbered fatty acid catabolism

Respiratory pathways

NADH dehydrogenases, cytochromes [76,77]

Nitrate as an alternative electron acceptor [78]

Table 2

Statistics of the GSMN-TB model

Reaction Class Number

Enzymatic conversions 723

Transport reactions 126

Total number of reactions 849

Orphan reactions 210

Genes 726

Internal metabolites 638

External metabolites 101

Total number of metabolites 739

GSMN-TB, genome-scale metabolic network of M. tuberculosis.
Genome Biology 2007, 8:R89
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lows: the ratio of the number of ATP molecules formed to the
number of O atoms reduced (P/O ratio); the cost of polymer-
ization of the building blocks into biologic polymers (DNA
replication, transcription, translation, and so on); and ATP
costs for growth-associated maintenance (see Materials and
methods, below). These parameters must either be measured
or calibrated by comparison of the model predictions with
experimental data. For well established model systems such
as Escherichia coli there is a plethora of metabolic flux data
available from steady-state chemostat cultivations, which
allows reliable estimation of energetic parameters. The slow
growth rate of pathogenic mycobacteria, combined with
problems associated with clumping of this group of bacteria
and safety considerations, has created obstacles for research-
ers attempting chemostat cultures of these strains. As a
result, quantitative metabolic flux data for M. tuberculosis
group organisms are limited to the findings of chemostat
experiments included in our previous report [25] and the
Additional data files presented here.

Experimental data obtained for growth of M. bovis BCG in
glycerol-limited continuous culture at three growth rates
were compared with the quantitative predictions of the
GSMN. BCG and M. tuberculosis have a high degree of hom-
ology, sharing 99.9% of DNA, and possess identical metabolic
pathways for utilization of glycerol [26]. FBA minimization of
glycerol consumption at fixed growth rates was simulated by
setting the P/O ratio to 1 and the ATP dissipation flux due to
polymerization of biomolecules to 1.0 mmol/g dry weight
(DW) per hour, and consumption of 47 mmol/g DW ATP for
maintenance was added to the biomass formation reaction.
These values were set using data obtained from related bacte-
ria [21,27], because no data were available from mycobacte-
ria. However, it is demonstrated below that gene essentiality
predictions and other important qualitative insights into TB
biology generated by this model are not affected if the ener-
getic parameters are varied within the range of values
reported for different microbial species. The resulting plot
(Figure 1) demonstrates that the predicted biomass produc-
tion yield (reciprocal of the slope of the line) was within the
95% confidence interval of the experimental value. However,
predicted glycerol consumption rates were higher than the
experimentally determined values. This discrepancy could
not be resolved by testing different values of the three ener-
getic parameters in the ranges reported for different micro-
bial species (data not shown).

A possible explanation of the discrepancy between the pre-
dicted and experimental data is that BCG cells consumed car-
bon from an additional source. Although glycerol is the main
carbon source in Roisin's minimal medium, Tween 80 is also
present in the culture medium to reduce cell clumping. Tween
80 is an oleate ester of sorbitol, with an oleate content above
75%, and minor amounts of other unsaturated and saturated
fatty acids. The tubercle bacillus is known to be able to hydro-
lyze Tween 80 and can also utilize the fatty acids released as

a sole carbon source [26]. The FBA simulation was repeated
with minimization of glycerol uptake flux and oleic acid trans-
port flux constrained in the range of 0 to 0.04 mmol/g DW
per hour. The resulting plot (Figure 1) demonstrates that the
predicted line is contained within 95% confidence (both slope
and intercept) intervals of experimentally measured values at
experimentally reasonable oleic acid consumption rates. Pre-
liminary nuclear magnetic resonance analysis (data not
shown) on spent culture media are also consistent with the
hypothesis that Tween 80 was being assimilated under the
conditions of the experiment and contributing to the biomass
yield.

Validation of the model by comparison with global mutagenesis data
To evaluate the predictive power of the model we compared in
silico predictions of gene essentiality with the findings of a
previously reported global mutagenesis study of gene essenti-
ality in M. tuberculosis by transposon site hybridization
(TraSH) [28]. The TraSH technique combines high-density
transposon mutagenesis with microarray mapping of pools of
mutants, which allows rapid determination of the full reper-
toire of genes required for growth under given environmental
conditions.

It is well established that many of the macromolecular com-
ponents of M. tuberculosis, although essential for virulence,
are not required for in vitro growth. For in vitro gene essen-
tiality predictions, we therefore used BIOMASSe as the objec-
tive function of the GSMN-TB; BIOMASSe is a minimal
biomass composition that reflects current knowledge of the
biomass components of M. tuberculosis that are essential for

Comparison of predicted and measured glycerol uptake rates as a function of controlled growth rateFigure 1
Comparison of predicted and measured glycerol uptake rates as a function 
of controlled growth rate. Triangles indicate experimentally measured 
glycerol uptake rates for three growth rates set by three different dilution 
rates in the chemostat model. The dashed line represents the linear 
function fitted to the experimental data. Diamonds and solid line represent 
predictions of the model if glycerol were the only carbon source. Circles 
and dotted line show predictions of the model when additional oleic acid 
(hydrolysis product of Tween 80) transport in the range of 0 to 0.04 
mmol/g dry weight (DW) per hour was allowed.
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growth in vitro. To model the composition of the minimal
media Middlebrook 7H10 used in the TraSH experiment of
Sassetti and coworkers [28] we simulated the transport or
secretion of the following external metabolites in the model:
glucose, glycerol, iron (citrate-mediated iron transport),
ammonia, nitric dioxide, phosphate, sulfate, oxygen, carbon
dioxide, molybdenum, and biotin.

Theoretical predictions were generated by removing single
genes from the GSMN-TB (in silico mutation) and calculating
the resulting maximum growth rate for each in silico mutant.
We emphasize, however, that this predicted maximum
growth rate should be viewed solely as a qualitative predic-
tion. Our aim was to identify genes that prevented or severely
compromised the capacity to synthesize biomass, which
would lead to zero or greatly reduced growth rates in the
GSMN-TB. Most mutations had little or no effect on growth
rate, but some in silico mutations were lethal (in the sense
that the resulting maximum growth rate was zero) or
depressed growth rate to values between zero and the maxi-
mum predicted growth rate for the 'wild type'. To identify
essential genes we set an arbitrary growth rate threshold (see
Materials and methods, below) such that mutants with a max-
imum predicted growth rate below that threshold were con-
sidered to be essential for growth. (Below, we examine the
effect of varying the growth rate threshold on prediction
accuracy.)

The lists of essential and nonessential genes predicted by the
model were compared with essentiality assignment according
to the previously reported TraSH analysis [28]. Note that in
the TraSH study gene essentiality predictions were based on
the ratio of the microarray hybridization signal obtained from
labeled insertion sites in a saturated transposon mutant
library compared with a control of labeled genomic DNA. This
ratio reflects the relative abundance of each transposon
mutant in the TraSH library. Genes with microarray signal
ratios of less than 0.2 were predicted to be essential. We des-
ignate this cut-off value as the TraSH threshold. GSMN-TB

and TraSH-based gene essentiality assignments were com-
pared and the numbers of true-positive (essential both in the
model and experiment), false-positive (essential in the model,
nonessential in experiment), true-negative (nonessential in
the model and experiment), and false-negative (nonessential
in the model, essential in experiment) predictions were com-
puted (Table 3).

In order to visualize the influence of the two thresholds
(growth rate threshold and TraSH threshold) on the sensitiv-
ity and specificity of the GSMN-TB predictions, receiver oper-
ating characteristic (ROC) curves were plotted (Figure 2a).
The ROC curves (Figure 2a) demonstrated that varying the
growth rate threshold had little effect on either sensitivity or
selectivity. This is a consequence of the fact that most in silico
mutants had either a predicted growth rate that was the same
as the wild type or a predicted growth rate of zero. In contrast,
varying the TraSH threshold had a marked effect on the pre-
diction parameters (Figure 2a). The ROC curve correspond-
ing to the TraSH threshold of 0.1 was closest to the best
possible prediction result (sensitivity and selectivity of 1). The
curve obtained for the TraSH threshold of 0.2 (the value used
in the reported study [28]) exhibited lower sensitivity and a
slightly lower number of correct predictions. The results of
the comparison of essentiality predictions for individual
genes with the previously published in vitro TraSH data [28],
using a growth rate threshold of 0.001 and TraSH ratio
thresholds of either 0.1 or 0.2, are shown in Table 3.

The GSMN-TB model predicts that approximately 34% of M.
tuberculosis genes in the model are essential for growth in
minimal Middlebrook 7H10 media, which is very close to the
estimated value of 35% essential genes in M. tuberculosis
[29]. The number of true predictions was significantly higher
than expected by chance (Fisher exact test; P < 2.2 10-16). The
overall fraction of correct predictions is 78%, with sensitivity
and specificity of 71% and 80%, respectively, if a TraSH ratio
threshold of 0.1 is applied. Predictions are robust with respect
to the quantitative parameters of the FBA model. When ener-

Table 3

Comparison of theoretical gene essentiality predictions with results of TraSH experiment in vitro

TraSH threshold of 0.2 TraSH threshold of 0.1 TraSH threshold of 0.1, altered 
energetic parameters

True positive 154 115 114

False positive 71 110 110

True negative 385 432 432

False negative 95 48 49

Sensitivity 62% 71% 70%

Specificity 84% 80% 80%

Correct predictions 76% 78% 77%

Pa < 2.2 × 10-16 < 2.2 × 10-16 < 2.2 × 10-16

aFisher exact test. TraSH, transposon site hybridization.
Genome Biology 2007, 8:R89
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getic parameters were set to 1 (P/O ratio), 5.0 mmol/g DW
per hour (ATP dissipation), and 60 mmol/g DW per hour ATP
molecules (growth-associated maintenance), the result
changed for only one gene (a true positive becomes a false
negative). Therefore, the prediction accuracy was not affected
by substantial change in energetic parameters.

To validate further the predictive power of the model, the dis-
tributions of TraSH hybridization signal (TraSH probe/
genomic probe) were plotted for both essential and nonessen-
tial genes as predicted by the model (growth rate threshold of
0.001; Figure 2b). Medians of the two distributions are signif-
icantly different (Mann-Whitney test; P < 2.2 10-16). The
genes predicted to be essential have significantly lower TraSH
hybridization ratios than genes predicted to be nonessential.
This is in accordance with the experimental data. This dem-
onstrates the predictive power of the model using an
approach that is independent of the TraSH signal ratio
threshold.

Validation of the model by comparison with literature data on 
phenotypes of single gene knockouts
Some of the discrepancies identified between the FBA predic-
tions and the global mutagenesis data can be attributed to an
undefined level of inaccuracy in TraSH assays because there
are several examples in which the in silico predictions are val-
idated by individual gene knockout studies. The inhA gene,
which is the known drug target for the key antituberculous
drug isoniazid [30] and has been shown to be essential in the
related Mycobacterium smegmatis [31], was nonessential in
the TraSH experiment (TraSH ratio 0.38) but was correctly
predicted to be essential for growth by the GSMN-TB model.
Many false-negative genes (nonessential in the model but
essential in global mutagenesis data) may be due to gene reg-
ulation of isoenzymes. Both menaquinol oxidase systems (the
aa3-type and bd-type) are predicted to be nonessential
because they are functionally redundant in the model.
However, the apparent essentiality (false-negative predic-
tion) of genes encoding the aa3-type cytochrome c oxidase

Comparison of gene essentiality predictions with TraSH data for in vitro growth on Middlebrook 7H10 mediumFigure 2
Comparison of gene essentiality predictions with TraSH data for in vitro growth on Middlebrook 7H10 medium. (a) Dependence of prediction results on 
the model and experimental thresholds for declaring gene essentiality. The plot shows receiver operating characteristic (ROC) curves for different 
transposon site hybridization (TraSH) ratio thresholds for determination of essential genes in experimental data. Each ROC curve shows 100 points 
corresponding to sensitivity and specificity of the model predictions obtained for growth rate thresholds varying in the range from 0.0 to 0.1 (increment 
0.001). The growth rate threshold has little effect on prediction parameters. For values greater than 0.052 all genes were declared essential. Any threshold 
in the range from 0.001 to 0.041 resulted in exactly the same gene essentiality predictions. The ROC curve closest to the best theoretically possible 
prediction (sensitivity and specificity equal to 1) was obtained for a TraSH ratio threshold of 0.1. (b) Distributions of the hybridization ratio of the TraSH 
library to genomic DNA signal recorded in TraSH experiment for genes present in the model. Blue line shows distribution of the TraSH ratio among the 
genes that were predicted by the model to be essential for growth. Red line shows distribution of TraSH ratio among genes predicted to be nonessential 
for growth. Medians of the two distributions are significantly different by means of the Mann-Whitney test (P < 2 × 10-16). Thus, the genes that are 
predicted to be essential have significantly lower median value of insertion probe to genomic probe ratio than genes predicted to be nonessential. This is 
in accordance with experimental data, because the low ratio indicates that inactivation of the target gene by transposon insert results in depletion of the 
mutant strain after the growth on Middlebrook 7H10 medium.

-1.5 -1.0 -0.5 0.0 0.5

0
20

40
60

80

log(TraSH ratio)
N

um
be

ro
fg

en
es

Predicted
to grow

Predicted
not to grow

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 - specificity

S
en

si
tiv

ity

0.05

0.1

0.2

0.6

1

(a) (b)
Genome Biology 2007, 8:R89



http://genomebiology.com/2007/8/5/R89 Genome Biology 2007,     Volume 8, Issue 5, Article R89       Beste et al. R89.7

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

indicates that this system is likely to be the main electron
transport system operating in the aerobic conditions in which
the global mutagenesis experiment was performed.

As a further check of the accuracy of the GSMN-TB, we com-
pared (Table 4) the phenotype of known individual gene
knockout mutants (sometimes in related organisms, such as
M. smegmatis) with gene essentiality prediction by both
TraSH result and GSMN-TB. (All genes whose inactivation
reduced growth rate were designated GSMN-TB essential;
this was recorded as a correct prediction if the gene knockout
mutant exhibited temperature sensitivity, slow growth, or
auxotrophy.) As can be seen in Table 4, out of 29 genes exam-
ined the GSMN generated a correct prediction for 20 genes,

whereas TraSH generated the correct prediction for 22 genes.
GSMN-TB and TraSH yielded discordant predictions for
eight genes: GSMN-TB gave the correct prediction for three of
those genes and TraSH generated the correct prediction for
five genes. Errors in GSMN-TB predictions were immediately
informative in suggesting model revisions. For instance,
mshB and mshC are both involved in mycothiol synthesis,
which is nonessential in the GSMN-TB because mycothiol is
currently not a biomass component and neither is it required
for the synthesis of any biomass component. The essentiality
of mshC and poor growth of mshB indicate that mycothiol
should be included as either a biomass component or an
essential co-factor for synthesis of a biomass component, or
both.

Table 4

Comparison of TraSH and GSMN-TB predictions of gene essentiality with experimentally determined phenotype

Gene Prediction Knock-out mutant Reference

GSMN-TB TraSH Species Phenotype

AftA E E C. glutamicum Slow growth [60]

AroK E E M. tuberculosis Essential [79]

Ask E E M. smegmatis Auxotroph [80]

CysH E E M. smegmatis Auxotroph [81]

GlnA1 E E M. tuberculosis Essential [82]

GlnA3 NE NE M. tuberculosis Nonessential [82]

GlnA4 NE NE M. tuberculosis Nonessential [82]

hemZ E E M. tuberculosis Essential [83]

InhA E NE M. smegmatis Ts lethal [31]

ino1 NE NE M. tuberculosis Auxotroph [84]

KasA NE E M. smegmatis Essential [85]

LeuD E E M. tuberculosis Auxotroph [86]

LysA E E M. tuberculosis Auxotroph [87]

manA E E M. smegmatis Hyperseptation and 
loss of viability

[88]

mshB NE NE M. tuberculosis Grows poorly [89]

mshC NE E M. tuberculosis Essential [90]

murD E E M. tuberculosis Nonessential [82]

murI E NE M. tuberculosis Nonessential [82]

Ndh NE NE M. smegmatis Ts lethal [91]

NrdF2 E E M. tuberculosis Essential [92]

OtsA E E M. tuberculosis Slow growth [93]

OtsB2 NE E M. tuberculosis Essential [93]

panCD E NE M. tuberculosis Auxotroph [94]

panCD E E M. tuberculosis Auxotroph [94]

PimA E NE M. smegmatis Essential [95]

PurC E E M. tuberculosis Auxotroph [96]

Purl E E M. tuberculosis Auxotroph [96]

RmlB NE E M. smegmatis Essential [97]

TreS NE NE M. tuberculosis Nonessential [93]

Shown is a comparison of transposon site hybridization (TraSH) and genome-scale metabolic network of M. tuberculosis (GSMN-TB) predictions of 
gene essentiality with experimentally determined phenotype for genes that have been investigated by specific gene knockout. E, essential; NE, 
nonessential.
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Prediction of gene essentiality for known drug targets
The GSMN-TB contains five genes that encode enzymes that
are drug targets: inhA (isoniazid and ethionamide), fasI
(pyrazinamide), embAB (ethambutol), ddlA (cycloserine),
and alr (cycloserine). All of these genes were correctly pre-
dicted as essential for growth on 7H10. This demonstrates the
utility of the GSMN-TB in identifying potential drug targets in
metabolic reactions

Use of the GSMN-TB to explore the metabolic state of 
M. tuberculosis
An important application of the GSMN-TB is to model the
metabolic state of M. tuberculosis, particularly in situations
that are difficult to approach experimentally, such as during
infection. M. tuberculosis is a versatile chemoheterotroph
that can utilize a wide range of sources of carbon and nitro-
gen. Similarly, the in silico model is able to generate feasible
solutions to optimize biomass or 'grow' on a range of carbon
and nitrogen sources. Feasible flux distributions include
expected biochemical pathways; for instance, most of the flux
from glucose is directed through glycolysis and the tricarbox-
ylic acid (TCA) cycle, whereas the glyoxylate shunt is utilized
for growth on acetate (or fatty acids). The GSMN-TB also
indicated that M. tuberculosis has much more metabolic flex-
ibility than is generally accepted. For example, TraSH data
[28] demonstrated that several enzymes of the TCA cycle,
including malate dehydrogenase, were nonessential, and this
was also predicted by the model. When malate
dehydrogenase was inactivated in silico using the GSMN-TB,
the resulting carbon flux was predicted to be shunted through
the anaplerotic reactions catalyzed by malic enzyme, pyruvate
phosphate dikinase, and phosphoenolpyruvate
carboxykinase.

In order to investigate the value of the model as a hypothesis
generating tool, we analyzed the in silico metabolic response
of M. tuberculosis to slow growth, because this is a key com-
ponent of persistence/dormancy in M. tuberculosis. We com-
pared the predicted flux ratios for two different growth rates
that could be experimentally verified in a chemostat. A dou-
bling time of 23 hours (dilution rate 0.03) was compared with
a doubling time of 69 hours (dilution rate 0.01). Flux ratios
for central metabolism (0.01/0.03) were calculated by flux
variability analysis (FVA) as the ratios of midpoints of flux
ranges obtained for slow and fast growth rates (Figure 3).
Although it should be emphasized that these predictions are
qualitative in nature, the majority of the flux values were close
to unity, indicating that the relative fluxes are unchanged.
However, some reactions have markedly different flux predic-
tions in the two growth rates, including reactions that are
involved in the glyoxylate shunt. There was a large predicted
increase in flux through the isocitrate lyase reaction. This pre-
diction suggested the hypothesis that isocitrate lyase was
involved in maintaining growth at slow growth rates. To
investigate this hypothesis we measured the activity of isoci-
trate lyase activity in BCG cells grown at both growth rates in

a chemostat. In accordance with predictions, specific isoci-
trate lyase activity was significantly higher (twofold change; t-
test, P = 0.0002) in the slow growing cells (Table 5).

The online resource for analysis of M. tuberculosis 
metabolism
We have created web-based software that allows online access
to data files and computational methods used for constraint-
based simulations of the GSMN-TB model of TB metabolism.
This is the first GSMN model published as an interactive
resource allowing the scientific community to interrogate the
model with biologic data. The web server presents the most
recent version of the model and will be continuously updated
as more metabolic genes are identified and characterized. The
current version of the system implements the following com-
putational methods. The FBA method computes the maximal
theoretical growth rate under given experimental conditions
and one of the possible metabolic flux distributions sustain-
ing maximal growth rate. To allow further exploration of the
metabolic state of the cell, we have also implemented FVA.
The FVA method determines the minimal and maximal flux
for each reaction in the system that is consistent with this
maximal theoretical growth rate (see Materials and methods,
below). In contrast to the flux distribution computed in a sin-
gle FBA simulation, the FVA flux ranges are unique. Our
server also allows gene and reaction essentiality predictions.

All calculations described above can be performed for a vari-
ety of experimental conditions. The user is able to specify
media conditions by changing the bounds of the GSMN trans-
port reactions (most of the transport reactions in the GSMN-
TB are currently constrained to zero). Both model file and
results are displayed in tabular format, with the gene annota-
tion linked to the TubercuList database [32].

We have also implemented methods to investigate the in vivo
growth of M. tuberculosis using the web-based software. The
use of FBA to model in vivo growth is more problematic
because it is not clear what to use as an objective function for
optimization. We have tackled this problem by including two
objective functions that can be optimized: one utilizes a min-
imal biomass composition, which includes only those compo-
nents that are thought to be essential for in vitro growth; and
the other uses a 'complete' biomass composition, which
includes synthesis of macromolecular components (virulence
factors), such as dimycocerosate esters and sulfolipid, that
are thought to be essential for infection. This allows the user
to model both in vitro and in vivo growth and, for instance, to
predict genes that are only essential for growth in vivo.

Constraint-based computer simulations methods available in
our software are computationally fast enough to allow inter-
active online work. Results of FBA and single gene essential-
ity predictions appear instantaneously in the user's browser,
and FVA results are computed in less than 10 min.
Genome Biology 2007, 8:R89
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Predicted response of the Mycobacerium tuberculosis to slower growth rate induced by carbon limitationFigure 3
Predicted response of the Mycobacerium tuberculosis to slower growth rate induced by carbon limitation. Only selected central metabolic pathways are 
illustrated. The slower growth rate was simulated by adjusting glycerol uptake rates to obtain a predicted growth rate of 0.03 (fast growth rate 
corresponding to doubling time of 23 hours) and 0.01 (slow growth rate corresponding to doubling time of 69 hours). Arrows indicate biochemical 
reactions or pathways, and the number on the arrow indicates the response of the genome-scale metabolic network of M. tuberculosis (GSMN-TB) to 
slower growth rate. The numbers were calculated by flux variability analysis (FVA) as the ratios of midpoints of flux ranges obtained for slow and fast 
growth rates. The values have been normalized to account for the lower absolute carbon flux values at the slower growth rate, except for the glycerol 
uptake rate, which is not normalized to emphasize the fact that the growth rate was reduced by limiting glycerol. The direction of the arrows indicates the 
direct of flux, not reaction reversibility. CoA, coenzyme A; E4P, D-erythrose-4-phosphate; MK, menaquinone; MKH, menaquinol; S7P, D-sedoheptulose-7-
phosphate.
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The web interface to our interactive resource is now available
[33]. Figures 4 and 5 show the workflow of the software and
screenshots from the interface. More detailed presentation of
the interface can be found in the manual (Additional data file
7).

Conclusion
We have built the first genome-scale metabolic network
(GSMN) model of the tubercle bacillus, which is the agent
responsible for approximately 5% of all deaths worldwide and
9.6% of all adult deaths. The model incorporates nearly all
known biochemical reactions of the micro-organism and
describes the biosynthetic pathways that lead to the synthesis
of all of the major macromolecular components, including
known virulence factors. The model provides new insights
into the biology of the pathogen and provides a framework for
integrating metabolic, proteomic, and transcriptomic data.
Thereby, it can serve as a platform on which to build extended
models of the M. tuberculosis cell, including all levels of bio-
chemical network organization.

To be representative, systems level models must be con-
strained with experimental data. The model was therefore
calibrated using our data from chemostat cultivations of M.
bovis BCG. FBA simulations predicted a consistently higher
rate of glycerol consumption than was observed. The most
likely explanation for this is that the cells are simultaneously
utilizing both glycerol and oleic acid (derived from hydrolysis
of Tween 80) as a carbon source. This pattern of mixed sub-
strate utilization is in contrast to the more extensively studied
diauxic growth that is typical of batch-grown micro-organ-
isms, in which the substrate supporting the greatest growth
rate is utilized first and the second substrate is only consumed
after exhaustion of the preferred substrate. However, mixed
substrate utilization has been shown to operate in carbon-
limited chemostat cultures of organisms such as E. coli that
demonstrate diauxic growth in batch culture [34]. It is likely
that the pattern of low availability of mixed substrates is
closer to situations that pertain in most natural environments
than the high single substrate conditions that are most often
studied in batch culture [35].

The accuracy of the GSMN-TB model of M. tuberculosis was
tested by comparison of model predictions of gene essential-
ity with global mutagenesis (TraSH) experimental data. The
model was shown to have a high degree of accuracy, correctly
predicting the phenotype for more than 75% of single gene
mutants. Discrepancies between the model and TraSH muta-
genesis data were also informative. In some cases the model
prediction matched the phenotype of individual gene knock-
out studies more closely than the TraSH mutagenesis data.
This was true for the inhA gene, whose product is a target for
the key antituberculous isoniazid. This result verifies the use
of the model as a tool for drug discovery. In addition to known
drug targets, the model predicts 220 essential genes in M.
tuberculosis, any one of which is a potential target for new
antituberculous drugs. The remaining 24% discordant pre-
dictions (174 genes) clearly must be investigated further in a
reiterative cycle of hypothesis generation, experiment, model
improvement, and further experimentation. Identification of
discrepancies between model predictions and experimental
data are informative in that they indicate errors in the model,
errors in gene annotation, or incomplete knowledge of M.
tuberculosis metabolism, such as the presence of an unknown
isoenzyme.

The model is also an excellent tool for mining existing data-
sets, for instance those resulting from TraSH mutagenesis
studies examining gene essentiality in different environ-
ments. Interrogation and integration of datasets such as glo-
bal mutagenesis data can thereby be used to refine further the
model in an iterative process. The genome-scale model has
considerable advantages over traditional genome annotation
and pathway databases, including its internal stoichiometric
consistency, systems level integration, and its ability to pre-
dict gene essentiality for different media conditions automat-
ically. The model inputs data such as growth characteristics of
particular genotypes to auto-generate hypotheses in the form
of predicted flux maps of internal metabolism. In addition,
the model provides a platform that could be used to integrate
and manage 'omics data in a manner that is consistent with
the underlying biochemistry and genetics of the organism
[14,15,36,37]. Moreover, the lists of genes and reactions pre-
dicted by the model to be essential for growth, under given
media conditions, may easily be combined with other drug
target prioritization protocols, which account for the availa-
bility of structural information about the enzyme, availability
of its inhibitors, and sequence similarity to host and other
bacterial proteins [38].

The constraint-based simulation methodology, used in this
work and implemented in the GSMN-TB server, is currently
the most practical solution for studying metabolic flux distri-
bution in the genome-scale metabolic reaction networks. This
method involves optimization of the objective function repre-
sented by one of the fluxes in the network, usually the flux to
biomass that determines growth rate. Although it could be
argued that optimization of growth rate is not appropriate to

Table 5

In vitro isocitrate lyase activities in crude extracts of chemostat 
cultivated BCG cells

Dilution rate (per hour) Specific activity

0.01 42.67 ± 2.68

0.03 21.20 ± 0.69

Results represent the average values ± standard deviations from three 
independent measurements. The unit of enzyme activity is nmol/min 
per mg protein.
Genome Biology 2007, 8:R89
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Overview of interactive resource workflow of GSMN-TBFigure 4
Overview of interactive resource workflow of GSMN-TB. The user chooses one of four analysis protocols (computation of maximal growth rate, flux 
variability analysis [FVA], reaction essentiality scan, or single gene essentiality prediction). Depending on the choice, an appropriate input form is 
presented. The server runs linear programming using the genome scale metabolic reaction network of Mycobacterium tuberculosis. Constraints defined by 
the user overwrite the default set of constraints specified in the model file. Numerical results are formatted as HTML and sent to the user's browser. 
GSMN-TB, genome-scale metabolic network of M. tuberculosis.
Genome Biology 2007, 8:R89
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Screenshots illustrating FVA of M. tuberculosis using GSMN-TBFigure 5
Screenshots illustrating FVA of M. tuberculosis using GSMN-TB. (a) Simulation set up. User specifies media conditions by setting minimal and maximal 
capacities of transport reactions in the 'Media conditions' field. The field contains specification of minimal glucose media and lists transport reactions that 
can be included by removing comment character. The page contains the link to the full model file, and the user may identify other reactions to be 
constrained. This adds additional flexibility to the simulation set up. The user may also choose one of the two objective functions used in our model to 
simulate in vitro or in vivo growth requirements. (b) Result of flux variability analysis (FVA) simulation. Maximal theoretical growth rate is displayed at the 
top of the page. Each row in the table contains reaction name maximal and minimal flux consistent with the maximal theoretical growth rate, reaction 
formula, and gene annotation. Gene names are linked to genome annotation pages of the TubercuList database. The rows of the table are loaded as 
computation progresses. The time of the simulation is about 10 min. GSMN-TB, genome-scale metabolic network of M. tuberculosis.

(a)

(b)
Genome Biology 2007, 8:R89
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the very slow growing M. tuberculosis, our results indicate
that - under the carbon-limited conditions we tested - the
organism uses carbon source efficiently with yields close to
the maximal theoretical values predicted by the model. How-
ever, the conclusions presented in our work are qualitative
and do not depend on whether the objective function flux
actually reaches its maximal/minimal possible value. We
demonstrated that gene essentiality predictions were not sen-
sitive to large changes in the growth rate thresholds used for
viability predictions in mutants. Similarly, the findings of the
FVA of M. tuberculosis growing at two different growth rates
should be considered qualitative rather than quantitative
predictions.

In addition to validating the model, we also demonstrated its
potential to generate experimentally testable hypothesis by
predicting the metabolic response of M. tuberculosis to car-
bon-limited slow growth. Persistence is a central feature of
the biology of M. tuberculosis, being responsible both for
latency and the necessity for long treatment regimens [39].
Little is known about the physiologic state of M. tuberculosis
during persistence, but slow or zero growth is generally
thought to be a key property. In vitro models of persistence
invariably involve slowing the growth rate through, for
instance, oxygen limitation [40] or nutrient starvation [41].
We therefore investigated the in silico response of the tuber-
cle bacillus to slow growth in our model by FVA. The most sig-
nificant alteration was a predicted increased flux through the
glyoxylate shunt, particularly the isocitrate lyase reaction, at
slow growth rate. This hypothesis was supported experimen-
tally by the demonstration that isocitrate lyase activity was
higher in slow (doubling time 69 hours) growing BCG cells
than in faster (doubling time 23 hours) growing cells. This
finding is consistent with the model flux prediction and
thereby supports the hypothesis that isocitrate lyase plays a
specific role in slow growing mycobacteria. Several patho-
gens, including M. tuberculosis, require isocitrate lyase for
long-term persistence in the host [42-45]. Increased isoci-
trate lyase activity has previously been reported in the Wayne
(oxygen-limited) in vitro model of M. tuberculosis persist-
ence [46]. In addition, Muñoz-Elías and McKinney [6] dem-
onstrated that inactivation of the isocitrate lyase genes of M.
tuberculosis led to attenuation for survival and multiplication
in mice and macrophages, but this finding has generally been
interpreted as indicating a role for fat catabolism in survival
of this pathogen in the host. Our results indicate that isoci-
trate lyase may play a more general role in the slow growth of
M. tuberculosis, irrespective of the means of growth limita-
tion. This finding could have implications for drug develop-
ment, because isocitrate lyase has been intensively
investigated as a potential antitububerculous drug target
[7,11,47].

The application of constraint-based modeling to the in vivo
situation is of course more challenging than simulation of in
vitro growth. Because the pathogen probably does not

maximize growth rate during infection, an objective function
based exclusively of maximization of growth rate is unlikely to
be entirely successful at simulating the pathogen's in vivo
metabolic state. In order to investigate metabolic require-
ments for in vivo growth, the web-based version of the M.
tuberculosis GSMN is able to optimize for two different objec-
tive functions: the first specifying a minimal biomass with
components essential for in vitro growth, and the second
specifying a complete biomass composition that includes syn-
thesis of virulence factors such as sulfolipid and dimycocero-
sate esters. Even if the growth rate of the pathogen does not
reach its maximal value, simulation using the complete bio-
mass composition in the GSMN-TB will still produce valuable
qualitative predictions concerning essentiality of genes and
reactions required for in vivo growth. These qualitative
results will be useful in predicting drug targets, even in the
situation in which the actual growth rate of the pathogen is
lower than that predicted by the model.

Our web-based software makes, for the first time, genome-
scale metabolic simulations available to the nonspecialist. It
is therefore a valuable resource for biologists investigating
the physiology and pathogenicity of M. tuberculosis. This
resource will be developed by continuous curation of the met-
abolic model, leading to improved gene annotation,
incorporation of high throughput datasets, and direct experi-
mental testing of hypotheses generated by the model.

Materials and methods
Bacterial strains and growth conditions
M. bovis BCG strain (ATCC 35748) was cultured in a 2-l bio-
reactor (Adaptive Biosystem Voyager, Adaptive Biosystems
Ltd, Luton, UK) under aerobic conditions and at pH 6.6, as
previously described [25]. Chemostat cultures were grown in
Roisin's minimal medium at a constant dilution rate of 0.02
per hour (equivalent to a doubling time of 34.7 hours).
Steady-state conditions were assumed when the carbon diox-
ide evolution, optical density at 600 nm, and DW remained
constant for three consecutive volume changes. Once the
steady state was reached, cells were harvested for analysis.
Biomass was determined according to the method described
by Lynch and Bushell [48]. The amounts of glycerol in the
supernatant and in fresh medium were assayed by use of a
commercial assay kit that employs a glycerokinase-coupled
enzyme assay system (Boehringer Mannheim, Mannheim,
Germany).

Assay of isocitrate lyase activity
Crude enzyme extracts were prepared as described by Honer
zu Bentrup and coworkers [49] with minor modifications.
Cells were harvested, washed three times with ice cold phos-
phate-buffered saline and resuspended in MOPS buffer (50
mmol/l MOPS (morphilinepropane sulfonate) [pH 6.8], 5
mmol/l MgCl2, 5 mmol/l L-cysteine, 1 mmol/l EDTA)
supplemented with protease inhibitors (Complete™; Roche,
Genome Biology 2007, 8:R89
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Welwyn Garden City, UK). The cells were disrupted using a
Ribolyser (Hybaid, Hybaid Ltd., Ashford, Kent, UK); speed
setting 6.5 for 30 s) with careful cooling between each cycle.
A lactose dehydrogenase coupled continuous method was
used to assay isocitrate lyase activity [50].

Construction of the GSMN-TB
The genome-scale model of the related actinomycete Strepto-
myces coelicolor [21] was used as the starting point for the
construction of the genome-scale metabolic network (GSMN)
of Mycobacterium tuberculosis. The gene orthology clusters
computed by the KEGG database [51] were used to assign the
respective M. tuberculosis H37Rv gene numbers to the genes
present in the S. coelicolor model. The KEGG and MtbRvCyc
(part of BioCyc) databases were used to incorporate addi-
tional M. tuberculosis specific reactions that do not have S.
coelicolor counterparts. In situations in which a reaction was
essential to produce a viable in silico model but the gene was
not annotated in the genome, the reaction formulae was
included in the model without genomic evidence. A
significant proportion of the model was manually generated
from journal publications describing dedicated experimental
work (Table 1). For instance, the route for glycerol utilization
is generally assumed to proceed via glycerol kinase followed
by dehydrogenation [26]. However, many bacteria utilize an
alternative pathway whereby glycerol is first oxidized by glyc-
erol dehydrogenase before being phosphorylated [52]. Glyc-
erol dehydrogenase activity has been detected in M.
tuberculosis [53,54], but no gene encoding this activity has
been annotated in the genome. Several genes encoding puta-
tive alcohol dehydrogenases are present, which could oxidize
glycerol to glyceraldehyde (EC 1.1.1.72) to be further oxidized
and then phosphorylated before entering glycolysis. This
pathway is also included in the model.

Flux balance analysis
Computer simulation protocols that are used in this work and
made available in our interactive web resource are based on
FBA. The principles of FBA are described in detail elsewhere
[16,55]; here we briefly present the basic assumptions for the
sake of introducing notation. The stoichiometric model of
GSMN-TB was represented by the following equation:

b = S × v (1)

Where b = (dc1/dt, ..., dcm/dt) is the vector of concentration
changes of m metabolites (ci being the concentration of the ith

metabolite); v is the vector of metabolic fluxes carried out by
n reactions in the network; and S is the m × n matrix of the
stoichiometric coefficients. Fluxes are further subjected to the
capacity constraints: αj ≤ vj ≤ βj (where αj and βj are the lower
and upper bounds of the flux carried by the jth reaction). The
bounds of irreversible reactions were set to αj = 0 and βj = +∞;
the bounds of reversible reactions were set to αj = -∞ and βj =
+∞, allowing these reactions to carry either positive or nega-
tive flux. Following FBA methodology, we have studied

metabolism under steady-state conditions in which there is
no accumulation of intracellular (internal) metabolites, and
concentrations of these metabolites do not change:

Where I denotes the set of internal metabolites. Extracellular
(external) metabolites transported from or secreted to the
environment were not required to obey the balance equation
(Equation 2) and were considered to have unlimited sources
and sinks. Transport reactions for nutrient sources, which
were rate limiting in chemostat experiments, were con-
strained to the experimentally determined flux values. In
addition, a pseudo-reaction has been added to the system to
model growth (biomass synthesis). The growth reaction has
only one product, representing biomass, where the substrates
correspond to biomass components and real-valued stoichio-
metric coefficients represent biomass composition. The flux
through this reaction is equal to the growth rate of the bulk
cell culture.

Linear programming was used to determine maximal theo-
retical flux toward a selected (internal or external) metabolite
Z in the network, consistent with constraints imposed by
stoichiometric matrix, balance conditions, and capacity
bounds. The following linear programming problem was
solved.

Maximize Z such that:

If the coefficients of optimization function Z have been set to
the row of the stoichiometric matrix corresponding to bio-
mass metabolite, the result of linear programming optimiza-
tion represented the maximal theoretical growth rate.

The optimal value of the objective function calculated by FBA
is unique, but associated metabolic flux distribution is not.
There may be many flux distributions resulting in the same,
optimal value of objective function. Therefore, flux distribu-
tions computed by single FBA simulation cannot be used to
study internal metabolic state of the cell. The FVA method
finds the full numerical range of each flux in all alternate flux
distributions resulting in the same optimal value of objective
function. During FVA simulation the objective function is
constrained to its optimal value. Subsequently, the flux
through each reaction in the model is subjected to minimiza-
tion and maximization, resulting in minimal and maximal
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value defining the flux range. These values are unique and can
be used to investigate metabolic state of the cell.

Definition of growth requirements in vitro and in vivo
Biomass composition was estimated from reported data from
a variety of sources (Additional data file 1). To account for the
different growth requirements of M. tuberculosis growth in
vitro and in vivo, we defined two biomass synthesis formulae
with different sets of components required for growth.
BIOMASS1 reflects the actual macromolecular composition
of M. tuberculosis. BIOMASSe is a minimal macromolecular
composition of M. tuberculosis and includes only those com-
ponents thought to be essential for growth in vitro.

Modeling of co-factor requirement of enzymatic 
reactions
Numerous enzymes require nonpeptide co-factors that are
regenerated either within the reaction or in a coupled reac-
tion. Co-factor utilization can provide useful clues to meta-
bolic activity, and co-factor synthesis pathways may provide
potential drug targets. Stoichiometric models of metabolism
published thus far either do not include co-factors in reaction
formulae or balance co-factor consumption reactions with
reactions that regenerate the cofactor (as for NAD/NADH in
our model). However, in FBA analysis this strategy has the
effect of eliminating the need for co-factor synthesis.
Although enzyme co-factors are not consumed by reactions,
they have finite chemical stability and must be replenished by
de novo synthesis. To force a flux toward synthesis, FBA mod-
els often include the co-factor in biomass composition but
this has the effect of making synthesis of the co-factor consti-
tutive in all conditions, which may be appropriate for essen-
tial co-factors such as NAD but is less so for co-factors such as
molybdenum, which may be required only under certain con-
ditions. To simulate the nonconstitutive requirement for
these co-factors, we introduce the concept of a replenishing
flux in which the nonconstitutive cofactors are included in
reactions but with an arbitrary very low (0.001) stoichiomet-
ric coefficient toward consumption. Reversible reactions are
written twice with co-factor consumption in both directions.
This has the effect of forcing co-factor synthesis only in con-
ditions where the co-factor utilizing reaction is active. The
small replenishing flux toward co-factor synthesis has little
influence on the magnitude of flux carried by the reaction and
on the energy and mass balance of the metabolism, but it
makes co-factor synthesis essential for the reaction to
proceed.

Model calibration by comparison with chemostat data
Calibration of the model involved determination of three
energetic parameters. The first of these is the ratio of the
number of ATP molecules formed to the number of O atoms
reduced by electron transport (P/O ratio). The P/O ratio is set
by the stoichiometric coefficients of the reactions involved in
electron transport and ATP synthesis. The second is the
growth-dissociated cost of polymerization of the building

blocks into biologic polymers (DNA replication, transcrip-
tion, translation, and so on; mATP). To account for growth-dis-
sociated cost, ATP dissipating reaction was included in the
system and its flux was constrained to YxATP. The final param-
eter is the cost of growth-associated maintenance (YxATP),
modeled by including ATP hydrolysis as a part of the biomass
synthesis formula.

To compare quantitative model predictions with our chemo-
stat data, we constrained the growth rate to a chemostat dilu-
tion rate and computed the minimal glycerol uptake rate. The
stoichiometry of the electron transport chain was considered
to be similar to that of Corynebacterium glutamicum [56].
The ATP yield coefficient YxATP and the maintenance flux
mATP were systematically changed to achieve good agreement
with chemostat data, following previously reported
approaches [21].

Gene essentiality prediction and comparison with 
TRASH data
For each gene we pre-computed the list of all reactions in the
model that require the product of this gene, according to
Boolean rules describing gene-protein relationships. Subse-
quently, the effect of gene inactivation on growth was pre-
dicted by constraining the fluxes through all reactions
requiring this gene to 0 and running linear programming to
determine the resulting maximal theoretical growth rate. If
the resulting growth rate was less than 0.001, then the gene
was considered to be essential for growth.

Computational predictions were compared with the findings
of TraSH mutagenesis experiments [28,57]. Transport reac-
tions were constrained to reproduce the experimental condi-
tions utlilized in the TraSH mutagenesis experiment (7H10
agar composition) and essential genes were computed. The
list of genes that were predicted to be essential in vitro was
compared with the list of in vitro essential genes identified by
TraSH mutagenesis [28]. To test whether model predictions
are closer to the TraSH mutagenesis data than expected by
chance, we applied a Fisher exact test. The null hypothesis of
this test, as applied to our data, states that gene essentiality
assignments performed by the GSMN-TB model and TRASH
experiments are independent.

Implementation of calculations presented in this work 
and web-based software
Linear programming calculations and evaluation of Boolean
expressions representing gene-protein associations were
implemented in C programming language using GNU Linear
Programming Kit library [58]. The web interface was imple-
mented as a collection of Perl-CGI scripts running computa-
tional module under Linux operating system. Data handling
during model building was performed in MS Excel, Perl,
Python, and MySQL. Comparison of gene essentiality predic-
tions with TRASH data was implemented in R [59].
Genome Biology 2007, 8:R89
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Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 illustrates the esti-
mated macromolecular composition for M. tuberculosis.
Additional data file 2 shows the calculations used to estimate
that composition. Additional data file 3 shows the conversion
between stoichiometric formulae and mmol/l per gram of
biomass. Additional data file 4 shows reaction formulae, lim-
its, Enzyme Commission (EC) numbers, genes, and pathway
classifications. Additional data file 5 provides references for
those reactions. Additional data file 6 provides metabolite
names. Additional data file 7 contains instructions on how to
use the GSMN-TB server, illustrated by screenshots.
Additional data file 1Estimated macromolecular composition for M. tuberculosisIllustrated is the estimated macromolecular composition for M. tuberculosis.Click here for fileAdditional data file 2calculations used to estimate composition shown in Additional data file 1Shown are the calculations used to estimate the composition shown in Additional data file 1.Click here for fileAdditional data file 3Conversion between stoichiometric formulae and mmol/l per gram of biomassShown is the conversion between stoichiometric formulae and mmol/l per gram of biomass.Click here for fileAdditional data file 4Reaction formulae, limits, EC numbers, genes, and pathway classificationsShown are the reaction formulae, limits, EC numbers, genes, and pathway classifications.Click here for fileAdditional data file 5References for the reactions shown in Additional data file 4Provided are references for the reactions shown in Additional data file 4.Click here for fileAdditional data file 6Metabolite namesProvided are metabolite names.Click here for fileAdditional data file 7InstructionsProvided are instructions on how to use the GSMN-TB server, illus-trated by screenshots.Click here for file
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