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Abstract

New regulatory RNAs with complex structures have recently been discovered, among them the
first catalytic riboswitch, a gene-regulatory RNA sequence with catalytic activity. Here we discuss
some of the experimental approaches and theoretical difficulties attached to the identification of
new ribozymes in genomes.
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Catalysis by RNA was discovered a quarter of a century ago.

The discoveries that certain introns were capable of self-

splicing [1] and that the RNA moiety of bacterial ribo-

nuclease P (RNase P) on its own could process precursor

tRNAs [2] were the first indications that catalytic remnants

of a postulated RNA world had persisted until the present

day. By the late 1980s, the catalytic scope of RNA had been

extended by the discovery of the so-called small nucleolytic

ribozymes (or RNA-based enzymes). This family consists of

four members: the hammerhead [3], the hairpin [4,5], the

hepatitis delta virus (HDV) [6,7] and the Neurospora crassa

Varkud satellite (VS) [8,9] ribozymes. All the small nucleo-

lytic ribozymes are involved in the processing of RNA repli-

cation intermediates and catalyze a simple RNA cleavage or

ligation reaction.

Most present-day ribozymes have as their substrates the

conventional 3′,5′-phosphodiester bonds in RNA [10]. In

arguably the simplest such reaction, the RNA moiety of

RNase P catalyzes the hydrolysis of precursor tRNAs

(Figure 1a). More frequently, however, ribozymes catalyze a

transesterification reaction, as do the small nucleolytic

ribozymes, (Figure 1b) and the self-splicing introns

(Figure 1c,d). The small nucleolytic ribozymes catalyze the

one-step cleavage of a 3′,5′-phosphodiester bond, with the

formation of a 2′,3′-cyclic phosphate and a 5′-hydroxyl in the

cleavage products (Figure 1b). Despite having the same

reaction mechanism, the small nucleolytic ribozymes differ

dramatically from each other in their architecture and

exhibit significant variation in the pH profiles of their

catalytic activity and in the metal ions required for catalysis

[11]. It seems likely that this reaction mechanism is best

suited to a simple and single RNA cleavage, as in the proces-

sing of multimeric replication intermediates into monomers.

Other RNA-cleaving entities that use this mechanism are the

in vitro selected leadzyme [12], the protein RNase A [13],

and the recently discovered catalytic riboswitch glmS [14],

an RNA element that controls gene expression via its

ribozyme activity.

In contrast to this simple reaction, self-splicing of the group

I and group II introns involves two consecutive reaction

steps (Figure 1c,d). The first frees the 3′-OH of the 5′ exon,

which allows, in the second step, an attack of the

phosphodiester at the junction between the last residue of

the intron and the first residue of the 3′ exon. Self-splicing

group I introns make use of the 3′-hydroxyl of an exogenous

guanosine as the initial attacking nucleophile; the guanosine

is phosphorylated in the reaction and released (Figure 1c). In

the self-splicing group I introns, the formation of an

intermediate with a 2′,3′-cyclic phosphodiester bond has not

been observed, probably because that might entail a loss of

structural integrity in the spliced exons by the formation of

2′,5′-phosphodiester connectivity in the second reaction step

[15]. A similar two-step strategy is adopted by the self-

splicing group II introns [16,17], but in this case the
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Figure 1
Biochemical reactions naturally catalyzed by RNA. (a) Precursor tRNA hydrolysis by bacterial RNase P yields a phosphate-containing 5′ end of the
mature tRNA and a 3′-hydroxyl group at the 5′ cleavage product. (b-d) Transesterification reactions catalyzed by (b) the small nucleolytic ribozymes, 
(c) group I introns, and (d) group II introns, in which different chemical groups serve as the attacking nucleophile. In the small nucleolytic ribozymes (b), a
defined 2′-hydroxyl attacks the neighboring 3′,5′-phosphodiester bond, resulting in a 2′,3′-cyclic phosphate and a 5′-hydroxyl in the respective cleavage
products. In the first step of group I intron splicing (c), the 3′-hydroxyl of the exogenous guanosine (G) cofactor attacks the 5′-exon-intron junction and
sets the 5′ exon free, which leads to the covalent attachment of the cofactor to the 5′ end of the intron. In a second transesterification reaction, the 5′
exon forms a conventional 3′,5′ bond with the 3′ exon, releasing the linear intron with the additional guanosine [1]. In group II introns (d), the conserved
branch-point adenosine (A) serves as the nucleophile, leading to the formation of a lariat intron. (e) Peptide-bond formation catalyzed by the ribosome.
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attacking nucleophile is the 2′-hydroxyl of the conserved

intronic branchpoint adenosine (Figure 1d). While this

forms an RNA lariat in the intron, the structural integrity of

the connected exons is ensured. It should be noted that the

splicing of tRNA introns in the Eukarya and the Archaea

does not result from self-splicing as in the Bacteria, but

starts with the action of an endonuclease, a protein enzyme,

which leaves 2′,3′-cyclic phosphate termini [18-20].

The persistence of the RNA world has been splendidly

confirmed by the demonstration that the ribosome is a

ribozyme - that is, the ribosomal RNA components are the

catalytically active elements in polypeptide synthesis [21] -

placing ribozyme activity at the heart of modern cells and

showing that ribozymes could catalyze reactions other than

the cleavage and ligation of RNA (Figure 1e). The first

indications of catalytic RNA in the ribosome came from

biochemical data [22] that showed persistence of ribosome

catalytic activity after digestion and denaturation of the

ribosomal proteins. The final proof that rRNA is the catalyst

in protein biosynthesis came from crystallographic work that

showed that the peptidyltransferase reaction center of the

ribosome is devoid of any protein component, and is made

up exclusively of rRNA residues [21].

In the past few years, a number of new catalytic RNA

molecules have been discovered, including a catalytic

riboswitch, and known elements have been detected at new

genomic locations. Table 1 lists the currently known

naturally occurring catalytic RNAs. Do we now know the full

spectrum of the diversity and versatility of catalytic RNAs, or

are there yet more to be discovered? In this article we will

focus on the approaches used to identify novel catalytic RNA

species and on the accompanying experimental and

bioinformatic difficulties. To solve some of these problems,

new bioinformatic tools that better integrate our current

understanding of RNA architecture, molecular biology and

evolution will have to be developed.

The discovery of riboswitches and new catalytic
RNAs
Riboswitches are bimodular RNAs that are made up of a

ligand-binding region (an aptamer) and a domain that

controls gene expression. They are usually located in the 5′
untranslated regions of bacterial mRNAs, where they control

the expression of the gene by binding a low molecular weight

metabolite that triggers a conformational change in the RNA

[23-26]. In recent years, many of these genetic control

elements have been discovered, and it has become clear that

they are structurally and functionally highly diverse [27,28].

Riboswitches control gene expression at both the trans-

criptional and translational levels, and can act as ‘on’ or ‘off’

switches. The majority of riboswitches are negative control

elements, and among these, the first catalytic riboswitch

discovered - glmS [14] - employs the ultimate method of

switching off gene expression: when it binds its cognate

ligand it cleaves itself, thus destroying the function of the

mRNA of which it is a part.

The biological function of other recently discovered catalytic

RNAs is less clear. Using an ingenious in vitro selection

scheme, Szostak and co-workers [29] recently discovered an

HDV-ribozyme-like element in an intron of a human mRNA

and have demonstrated its biochemical activity. In this

scheme, a library of uniformly sized, small circular DNAs

was used as templates for rolling-circle transcription; self-

cleaving RNAs can thus be identified by the appearance of

unit-length RNA fragments. Cedergren and co-workers

identified and biochemically characterized hammerhead

ribozymes in the genomes of schistosomes [30] and cave

crickets [31], and, using database searching, our group

recently identified novel examples of hammerhead ribo-

zymes [32] and found two hammerhead sequences encoded

at distinct loci in the genome of Arabidopsis thaliana that

we have characterized as catalytically active in vitro and in

vivo [33].

Ribozyme topology versus sequence conservation
To carry out RNA-based chemical catalysis, some parts of

the ribozyme molecule must adopt very precise relative

positions and orientations. In addition to specific recog-

nition, there must be dynamic mechanisms for substrate

binding and product release. With the notable exception of

the ribosome, present-day ribozymes act on the phospho-

diester backbone linking two consecutive nucleotides.

Although the catalytic processes of such reactions are

basically similar, they can be achieved in diverse ways and,

in addition, as chemical convergence is pervasive, ribozymes

display a rich repertoire of architectures that position the

reactants appropriately. Furthermore, the number of

conserved nucleotides and their dispersion throughout the

molecule vary considerably from one ribozyme to the other:

for example, the hammerhead ribozyme and the group I

introns have about the same number of conserved residues -

around seven - although the latter can be up to four times as

large [34,35]. The positions and relative dispositions of the

conserved structural elements with respect to the beginning

and end of the ribozyme motif also vary (Figure 2). Most

families of ribozymes can be subdivided into classes distin-

guished by their highly non-homologous peripheral

elements [36-38]. However, the three-dimensional architec-

tures of the ribozyme cores belonging to the same family are

expected to be similar because they are maintained by

tertiary constraints which, despite the conservation of short

sequence segments, can form in diverse ways.

The hammerhead ribozyme well illustrates the difficulties of

identifying new ribozymes either experimentally or by in

silico approaches. Indeed, an incomplete catalytic RNA fold,

which did not include tertiary contacts between elements
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Table 1

The natural occurrence of ribozymes and riboswitches

Rfam accession 
Type Species* number†

Ribozyme Group I intron Thermus thermophila [1] RF00028
More than 20,000 sequences from all three kingdoms‡

Didymium iridis (branching enzyme, group I intron derivative) [46]

Group II intron Saccharomyces cerevisiae mitochondria [17,18] RF00029
More than 8,000 sequences from all three kingdoms‡

Hammerhead Tobacco ringspot virus satellite RNA (sTRSV) [3] RF00008
Several additional satellite RNAs of plant viruses§ RF00163
Viroids of the Avsunviroidae family [99,100]
Carnation small viroid-like RNA (CarSV RNA) [101]
Satellite DNAs of various amphibian species [102,103], Schistosoma mansoni [30] 
and Dolichopoda cave crickets [31]
Arabidopsis thaliana genome [33]

Hairpin Tobacco ringspot virus satellite RNA (sTRSV) [4] RF00173
Two additional satellite RNAs of plant viruses: sCYMV and sARMV [104]

HDV Human hepatitis delta virus RNA [6] RF00094
Homo sapiens genome (intronic) [29]

RNase P Escherichia coli [2] RF00010
More than 1,000 sequences from various Bacterial phyla¶ RF00011
Archeal phyla: Crenarchaeota, Euryarchaeota [105] RF00373

VS Neurospora crassa Varkud satellite [8] NL

Catalytic Glms riboswitch Bacillus subtilis [14] RF00234
riboswitch Bacterial phyla: Actinobacteria, Firmicutes 

Riboswitch Adenine¥ B. subtilis [106] RF00167
Bacterial phyla: Proteobacteria, Firmicutes 

Coenzyme B12 E. coli and Salmonella typhimurium btuB mRNAs [107] RF00174
Bacterial phyla: Actinobacteria, Proteobacteria, Deinococcus-thermus, 
Bacteroidetes, Spirochaetes, Chloroflexi, Firmicutes, Fusobacteria, 
Cyanobacteria, Thermogales 

Flavin mononucleotide 20 Gram-positive and Gram-negative bacteria [23,24,108] RF00050
(FMN) Bacterial phyla: Actinobacteria, Deinococcus-thermus, Thermus/deinococcus 

group, Proteobacteria, Firmicutes, Thermotogae, Fusobacteria, Thermogales 

Guanine¥ B. subtilis [25] RF00167
Bacterial phyla: Proteobacteria, Firmicutes

Glycine B. subtilis [109] RF00154
Bacterial phyla: Actinobacteria, Proteobacteria, Fusobacteria, Firmicutes

Lysine B. subtilis [25,110-112] RF00168
Bacterial phyla: Proteobacteria, Thermogales, Firmicutes

Intracellular magnesium S. enterica [113] NL

S-adenosylmethionine B. subtilis [114-116] RF00162
(SAM) Bacterial phyla: Cyanobacteria, Actinobacteria, Proteobacteria, Firmicutes 

Thiamine Rhizobium etli [117] RF00059
pyrophosphate (TPP) Bacterial phyla: Actinobacteria, Deinococcus-thermus, Bacteroidetes, 

Proteobacteria, Thermus/deinococcus group, Spirochaetes, Chloroflexi, 
Firmicutes, Fusobacteria, Cyanobacteria, Thermogales
Eukaryal phyla: Metazoa, Cercozoa, Fungi, Viridiplantae
Archeal phyla: Euryarchaeota

*For each type, the first entry represents the species in which the ribozyme or riboswitch was originally discovered. †Rfam accession numbers for
detailed sequence listings [118]; NL, not listed in Rfam. ‡Detailed sequence listings also at [119]. §Detailed sequence listings also at [120]. ¶Detailed
sequence listings also at [121]. ¥Adenine and guanine riboswitches are listed together as purine riboswitch in Rfam.



away from the catalytic site of cleavage and sequence

conservation, was accepted for a long time, until the full

hammerhead ribozyme was (re)discovered [39-41]. A recent

crystal structure [42] shows how the presence of tertiary

contacts between loops far removed from the catalytically

conserved region induces conformational changes in the

core that promote the active state of the ribozyme.

Importantly, all those contacts involve networks of non-

Watson-Crick base pairing with patterns of evolution unlike

those of Watson-Crick base pairs [40,43]. Fully biologically

active hammerhead ribozymes possess structural complexity

and strict sequence requirements (Figure 3b), but because of

the non-Watson-Crick pairings, this is not immediately

apparent from the sequence alone. In contrast, because of its

convoluted pseudoknotted topology based on Watson-Crick

pairs, the HDV ribozyme reveals most of its complexity

immediately (Figure 3a). Incomplete hammerhead ribozymes

without peripheral elements and with low sequence and

structural complexity display reduced catalytic activities.

Indeed, in vitro evolution, starting from random libraries,

produced structurally diverse ribozymes with low activity,

which contained some hammerhead variants [44]. Another

experiment selecting in vitro for self-cleaving motifs with

hammerhead-type biochemical activity [45] led to the

conclusion that the hammerhead motif makes the most

common ribozyme fold and suggested that this motif has

had multiple independent origins. The long-range inter-

actions were not considered in those two in vitro selection

schemes, as their importance had not been recognized at the

time. The sequences collected during the second selection

scheme would enable optimization of hammerhead ribo-

zyme activity.

Ribozyme topology versus sequence variability
A ribozyme with a new branching activity, GIR1, has recently

been experimentally identified in slime molds [46]. On the

basis of its secondary structure, this ribozyme belongs to the

group I intron family. It carries out the first cleavage step of

a group II intron, however, leading to the formation of a

small lariat with a 2′,5′-linkage at the 5′ end of the endo-

nuclease mRNA of which it forms a part, thereby protecting

the message from exonuclease degradation. Thus, in this

case, a similar secondary structure scaffold is the basis for

two ribozymes catalyzing different chemical reactions:

activation of an internal O2′-hydroxyl group in the case of

the new ribozyme compared with activation of an O3′-
hydroxyl group of an external cofactor for the rest of the

group I intron family (Figure 1c). This is yet another example

of the fact that similar RNA sequences can assume two

different folds and catalyze two different chemical reactions,

as shown by Schultes and Bartel [47]. Minor variations could

convert a starting sequence into either of these highly active

ribozymes, demonstrating that the evolving paths of RNA

sequence can easily cross in sequence space. Similarly, RNA

folds recognizing different ligands may be very close in

sequence space [48]: for example, a small series of ‘neutral’

mutations (that is, mutations that have no effect on

secondary structure) transformed a flavin-binding aptamer

into a GMP-binding aptamer [49]. Extensive networks of

neutral variation in sequence space interconnect RNA

regions with similar function and structure [50,51], as

confirmed by the recent elucidation of more three-

dimensional RNA structures (see [43,52] for reviews).

It is now recognized that the most common RNA-RNA

binding contact is the so-called A-minor motif [53]. This

occurs between two contiguous adenines in one partner RNA

and the shallow/minor groove side of two stacked Watson-

Crick pairs in the other. An analysis of tertiary contacts

shows that the contiguous adenines can originate from a

variety of local environments (for example, bulging, apical or

internal loops) and that the only molecular recognition

requirement in the receptor RNA is the presence of two

Watson-Crick base pairs [54,55]. In other words, coupled to

the vast shape space accessible through mutations neutral

for secondary structure, there are weak but crucial sequence

constraints imposed by the tertiary contacts. In RNA

architectures, the additional structural constraints originate
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Figure 2
The hammerhead ribozymes are based on a three-way junction and there
are two main types. (a) Type I has the ends of the single-stranded RNA
on stem I; (b) type III has the ends of the single-stranded RNA on stem
III. For unknown reasons, potential type II ribozymes (ends of the
single-stranded RNA on stem II) have never been observed. The
three-dimensional architecture is maintained by coaxial stacking of stems
II and III, which, through constraints in the conserved three-way junction
residues [92], orients stem I so that loop-loop interactions between
stems I and II form (Figure 3) [40,42]. The internal loop of stem II (IL2) is
often replaced by a capping loop (CL2); similarly, CL1 in type III can be
replaced by an internal loop (IL1) followed by another hairpin. Although
only one structure has been fully characterized, sequence alignments
show that the loop-loop interactions (mainly constituting non-Watson-
Crick pairs) are very diverse.
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from the topology of the secondary structure (junctions of

helices, number of base pairs within helices, and so on). In

short, RNA sequences (and thus their structure and

function) are characterized by neutrality at all levels from

molecular recognition between motifs to secondary structure

and three-dimensional architecture.

This complex interplay between sequence conservation and

neutral evolution on the one hand, and diversity in folds

despite conservation in interaction protocols on the other, is

central to the theoretical and experimental difficulties in

identifying key regulatory RNA sequences from genomic

sequence. For example, group I introns are characterized by

an invariant core onto which is grafted a variety of

peripheral elements [36,56]. Long-range contacts between

those non-homologous peripheral elements are necessary

for biological activity. All known group I introns contain a

tertiary contact between two specific paired-segment regions

(regions 5 and 9; Figure 4). However, the examples that have

been crystallized (for a review, see [57]) show that in each

case, the contacts are achieved through different local

topologies (Figure 4), each with different sequence

constraints. Interestingly, in a first attempt at modeling the

lariat-forming group I-like intron, GIR1, from slime molds, it

was not possible to construct the usual intramolecular

contacts between regions 5 and 9 [58].

Are there more ribozymes that catalyze 2′,5′-
phosphodiester bond formation or cleavage to be

discovered? Scattered evidence of the occurrence of 2′,5′-
bonds exists throughout the literature. A 2′,5′-
phosphodiester bond was observed in vitro [59] and in vivo

[60] during circularization of the genome of the peach

latent mosaic viroid, and the HDV ribozyme, unlike the

hammerhead ribozyme, has been shown to cleave 2′,5′-
linkages efficiently [61].
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Figure 3
Schematic diagrams of the interaction networks maintaining the three-dimensional architecture of two different ribozymes. (a) The HDV ribozyme
[7,93]; (b) the active hammerhead ribozyme [42]. The HDV ribozyme has a convoluted pseudoknotted topology: the color lines indicate the path of the
sugar-phosphate backbone. The nomenclature is as follows [75]. Each nucleotide has three edges with hydrogen bonding possibilities: the Watson-Crick
edge (denoted by a circle), the Hoogsteen edge (denoted by a square) and the sugar edge (denoted by a triangle). A pairwise base-base interaction can be
formed either with the attached sugar moieties on the same side of the line of approach (cis-configuration, the symbols are closed) or with the sugars on
either sides of the line of approach (the trans-configuration, the symbols are open). To avoid ambiguities, when annotating tertiary contacts, the
nucleotides that are involved have been boxed. When the base of a nucleotide is in the syn-conformation with respect to the sugar it is marked in bold.
The rectangles indicate the position actually occupied in space by a nucleotide. In (b), the cleavage occurs 3′ of the red C.
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Searching genomes for ribozymes and
riboswitches
Novel catalytic RNA entities can, in principle, be looked for

either by database searches using defined consensus motifs

from a given ribozyme or by experimentally testing candi-

date RNAs for biochemical activity. Both approaches have

advantages and disadvantages. Database searches require

RNA sequence alignments (as produced, for example, by

Rfam [62]) coupled with covariance analysis [63-67]. The

quality of the sequence alignment is central to this process,

however, and not many databases are as carefully hand-

curated as the RNase P database [68]. In database screening,

the definition of what we consider to be the consensus motif

of a given catalytic RNA is crucial. Even if a catalytic RNA

motif is well defined, searches are complicated by the

requirement to combine a complex assembly of structural

(hairpin) and sequence information, which prevents simple

solutions such as purely sequence-based homology searches.

Generally, the tools available adequately identify isolated

hairpins [69]. Given a pattern description for a catalytic

RNA motif, several programs, such as PatScan [70] or

RNAMOT [71], can be used to screen the public databases.

Hits from such searches require further analysis, and

initially, a calculation of the secondary structure is necessary

- although usually not sufficient. A secondary structure,

calculated using a program such as RNAfold [72], is

predictive if the required helical elements of the RNA motif

under consideration will form in the hit sequence.

Secondary-structure prediction programs have difficulty in

accurately predicting large structures, however, and can also

produce vast numbers of alternative structures when

scanning whole genomes [73,74].

For individual sequences found in a database search, a test

of their particular biochemical activity (Figure 1) might be

sufficient. However, functionally similar RNA molecules

frequently exhibit numerous and highly divergent

sequence insertions or deletions that interrupt the pattern

of secondary-structure motifs and render the computer

description of a given motif inadequate for finding

sequences with similar activity. Furthermore, the use of

pattern-description programs is incomplete if the

complexity of the RNA structure - which goes way beyond

the Watson-Crick base pairing [75] - is not taken into

consideration. These issues, and whether the additional,

essential tertiary interactions of a given RNA motif will

form, can be addressed by a combination of comparative

analysis of similar ribozymes with isostericity matrices,

which give the geometrically equivalent base pairs for each

particular type of base-base interaction [76]. All pairwise

base-base interactions present in nucleic acids have been

classified into 12 families, where each family is a 4 × 4

matrix of the bases A, G, C, and U [75]. This classification

allows the deduction of all possible geometrically

equivalent base pairs in a given family. The isostericity

matrices have been verified for several RNA motifs using
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Figure 4
Different local topologies can give rise to similar tertiary contacts in
group I introns. (a) The invariant core of a group I intron [36,94] is
illustrated in schematic form with the paired segments indicated by P and
the loop regions by L. The dashed lines indicate the contacts between the
peripheral elements, which are indicated by the numbers in circles. 
(b) Three different group I introns illustrate distinct ways of achieving a
similar tertiary contact (involving non-Watson-Crick A-minor base-base
interactions between a GAAA tetraloop and two stacked pairs)
connecting distant regions. In each case region 9 folds towards region 5
(as indicated by the shaded region) but, in the Twort ribozyme [95] this is
via a three-way junction, in the Tetrahymena ribozyme [96], it is via a large
bend (this is not the natural junction, however), and in the Azoarcus
ribozyme [97], it is via a kink-turn. Each motif has a different sequence and
set of structural constraints [77,92].
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structural alignments anchored in crystal structures [77].

Thus, for assumed structurally homologous positions in an

RNA motif, one can compare the resulting pairwise

interactions with the known isostericity matrices to assess

the validity of an RNA motif assignment in an alignment

[78]. As this type of analysis is an iterative process, it is

worth noting that it might also lead to refinement and

extension of the pattern of the consensus motif that the

search was started with. If applied to large assemblies of

sequence information, as has been done for the kink-turn

and C-loop RNA motifs [77], this approach allows a

broader description (the comprehensiveness of which is

currently unknown) and refinement of a given motif.

The analysis of co-variation of nucleotides in sequence align-

ments underlies most manual or automated secondary-

structure determination. However, high sequence conserva-

tion (which is usually considered a marker for conservation

of function) leads to serious ambiguities and difficulties in

deriving secondary structures. The catalytic riboswitch glmS

is a good example: the crystal structure [79] presents a

different secondary structure from that deduced from

sequences. The new helices involve pairings between segments,

conserved at more than 95% in sequence, and thus giving no

co-variation signal. The requirement for a well-defined RNA

motif in database searches is also an intrinsic limitation of

this approach.

While novel genomic locations of a known catalytic RNA can

be identified from sequence similarities, novel activities

cannot be so readily discovered. For this purpose, a recently

introduced in vitro selection scheme [29] can be applied.

Interestingly, from the human genome, a close variant of a

known catalytic RNA motif was selected and characterized

as a HDV-ribozyme-like sequence rather than a new catalytic

RNA. It is intriguing that these sequences were discovered

by their biochemical activity and not by in silico approaches

(as an active HDV ribozyme can be made by both the

‘genomic’ sequence and its complementary sequence despite

its intricate pseudoknotted secondary structure). Further-

more, additional, as-yet structurally uncharacterized,

sequences were reported [29], and so this new selection

scheme might actually have identified new self-cleaving

RNA entities. The selection scheme described in [29] uses

DNA minicircles that cover the genomic sequence of a given

organism as the templates for rolling-circle RNA

transcription (Figure 5). It can thus readily monitor RNA

self-cleavage, but other activities will be missed. Thus, to

assess the prevalence of a given catalytic RNA motif, the

combined approach using sequence and three-dimensional
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Figure 5
Identification of catalytic RNA from a genomic library. (a) Preparation of the genomic library. Genomic DNA is first partially digested and fragments of
approximately 150 bp (blue) are gel-purified and incubated with Taq polymerase to give them 3′ A overhangs. In the next step, ligation of covalently
closed oligonucleotides (yellow and purple) to the library prevents the unwanted combination of DNA fragments. After removal of DNA hairpins, a T7
promoter (magenta) is then added by PCR, yielding an amplified linear library. (b) The in vitro selection scheme. The library is further amplified by PCR
using a 5′-phosphorylated reverse primer and a biotinylated forward primer that allows the isolation of the phosphorylated strand using streptavidin
beads. Single strands are individually circularized by ligation with a splint oligonucleotide and the second strand is added by incubation with Taq
polymerase and deoxynucleoside triphosphates. The resulting nicked double-stranded library is suitable for rolling-circle transcription by T7 polymerase
[98], yielding multimeric RNA species potentially encoding sites of self-cleavage (red triangles). The RNA is then incubated for self-cleavage, and active
molecules (dimers) are size-selected. The scheme is completed by preparation of the next-generation DNA library using reverse transcription-PCR (RT-
PCR). Modified from [29].
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structure information described above is most suitable,

while novel in vitro selection schemes might be designed to

discover activities other than RNA cleavage in a given

organism.

As pointed out earlier, most of the reactions known to be

naturally catalyzed by RNA (Figure 1) involve the breakage

or formation of 3′,5′ (and occasionally 2′,5′) phospho-

diester bonds. RNA has the potential to catalyze other

chemical reactions, however. As well as peptide formation

in the ribosome, Diels-Alder cycloaddition [80] and

Michael addition [81] can be catalyzed by RNA, as shown

by in vitro Darwinian evolution. Thus, reactions catalyzed

by RNA in nature might be more diverse than currently

known. The discovery of such activities is likely to be

serendipitous and made by keen observers of RNA

molecular behavior.

New small or large noncoding RNAs are regularly being

discovered in both bacteria and mammals. Recent evidence

shows that most of the mammalian genome is transcribed in

complex patterns, producing tens of thousands of novel

transcripts [82,83]. Novel RNAs are regularly predicted on

the basis of their sequence conservation or secondary-

structure elements [84-87]. But these predictions do not

utilize information on the non-Watson-Crick base pairing or

tertiary structure so crucial to the activity of many ribo-

zymes, and, as discussed above, these features are often not

well conserved in the sequence. Nor do the predictive

algorithms used give any indication of what the RNA

function might be. Vertebrate genomes contain a large

number of conserved noncoding elements (CNEs) or ultra-

conserved elements [88,89], whose biological functions and

mechanisms of action remain to be established. The

evidence for transcription of most of these conserved

elements is, however, still scanty [89-91]. In any case, the

recent additions to the list of natural catalytic RNAs indicate

that there are likely to be many more to come; new

algorithms will be required that use all available information

to identify and classify them.
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