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Abstract

The integration of information on different aspects of the composition and function of
mitochondria is defining a more comprehensive mitochondrial interactome and elucidating its
role in a multitude of cellular processes and human disease.
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Mitochondria are complex, dynamic and essential organelles

in eukaryotic cells. They are remarkable structures with

well-known functions, such as the production of ATP via

oxidative phosphorylation and a role in apoptosis. In

addition, they are now being implicated in novel cellular

functions (for example, oxygen sensing, signal transduction

and anti-viral mechanisms). Mitochondrial dysfunction is

also increasingly being shown to be relevant in disease, age-

related and environmentally induced pathology and the

aging process itself [1].

Mitochondria contain a DNA genome (mtDNA), clear

evidence of their past as a free-living bacterium, related to

the present-day α-proteobacteria, that became engulfed in

an ancestral eukaryotic cell 1.5-2 billion years ago [2]. In

most eukaryotes, mtDNA now primarily encodes a small,

but essential, subset of genes required for oxidative phos-

phorylation; for example, the human mtDNA molecule

harbors 37 genes (13 mRNAs specifying oxidative

phosphorlaytion subunits, 22 tRNAs and 2 rRNAs) [3]. The

proteins encoded in mtDNA are expressed in the

mitochondrion, but the complete mitochondrial proteome is

the product of two genomes, as most mitochondrial proteins

are transcribed from genes in the nucleus, translated by

cytoplasmic ribosomes, and imported into the organelle to

their sites of action. Interestingly, this nucleus-encoded

majority includes all the proteins needed to replicate

mtDNA and orchestrate its expression [3]; several of these

proteins have been implicated recently in human disease.

Hundreds of mutations in the mtDNA itself have also been

identified as the cause of a variety of maternally inherited

diseases. Furthermore, accumulation of mtDNA mutations

and deletions occurs in many tissues over time and are

thought to contribute to aging and age-related pathology [1].

After more than a century of intensive study, we know an

enormous amount about mitochondrial structure, function

and biogenesis. In the case of oxidative phosphorylation, for

example, the mechanism is understood in great detail [4]. The

ability of budding yeast to grow both aerobically and

anaerobically (without the need for oxidative phosphory-

lation) was instrumental in this success [5], along with a

multidisciplinary attack on the problem by a large number of

investigators using the tools of genetics, biochemistry,

biophysics, physiology, and cell and structural biology, as well

as information from the pathology of human mitochondrial

diseases.

Our understanding of mitochondrial function as a whole is

still far from complete, however. Null mutations in genes

required for mitochondrial protein import, for example,

result in a lethal phenotype in yeast and thus cannot be

studied in the same way as could the genes controlling

oxidative phosphorylation. More sophisticated analyses are

needed to fully define the mitochondrial proteome in yeast

and other organisms, and to define those factors that do not

reside in mitochondria but nonetheless affect their function.

Outstanding questions include how the structural dynamics

of mitochondria impact on their function, what signaling

pathways regulate mitochondrial function and coordinate

nuclear and mitochondrial gene expression, how mitochon-

drial biogenesis and activity are regulated in a tissue-specific



fashion and, last but not least, what the full impact is of

mitochondrial dysfunction on human health. It is in these

contexts that more recent systematic approaches are having

a huge impact.

The integrative analysis of multiple datasets dealing with

different aspects of mitochondria is defining novel

functional relationships between genes and proteins in all

aspects of mitochondrial physiology, and has also identified

new mitochondrial disease loci. In a recent exemplary

example of such an analysis, Lars Steinmetz and colleagues

[6] have taken a machine-learning approach to construct the

most comprehensive version of the mitochondrial inter-

actome yet, using 24 complementary datasets covering various

aspects of mitochondrial proteomics and genomics in yeast

and other organisms. As we discuss here, their analysis will

help to advance the understanding of the mitochondrial

interactome on several fronts.

The integrative approach does, of course, rely heavily on

high-quality individual datasets, and for mitochondria there

is already a good foundation of systematic studies. Notable

among these are the global analysis of protein localization in

yeast using tagged open reading frames [7,8], the proteomic

analysis of purified mitochondria and mitochondrial

substructures using mass spectroscopy-based methods [9-

13], systematic analysis of the collections of yeast gene

knock-outs for mitochondrial related phenotypes [14,15],

and gene-expression profiling in conditions that require

mitochondrial function or when mitochondrial oxidative

phosphorylation is disrupted [16-23]. Several of these

studies provided critical datasets used by Perocchi et al. [6]

in their analysis. While each of these approaches provides

new and useful data, individually they can illuminate only a

limited part of the whole mitochondrial system - hence the

need for integrated analysis to achieve complete resolution

of the mitochondrial network.

Integrative analysis has already accelerated the cataloging of

mitochondria-related components and yielded new insights

into the mitochondrial system and its ties to human disease,

as the following few examples illustrate. Proteomic analysis

of mitochondria from different mouse tissues combined with

gene-expression profiling has shed light on the tissue

specificity of the mitochondrial proteome in mammals and

its regulation [10]. Combining gene-expression profiling and

proteomic data with genetic mapping facilitated the

identification of the gene LRPPRC as a disease locus for the

mitochondrial disorder Leigh Syndrome French-Canadian

type [24]; LRPPRC is thought to encode a protein involved

in mitochondrial gene expression [25]. Using the known

differences in the architecture of oxidative phosphorylation

among model organisms, a molecular chaperone required

for assembly of mitochondrial complex I has been identified

as the cause of progressive encephalomyopathy in humans

[26]. Through the simultaneous analysis of 8 genome-scale

datasets, 1,080 genes with a high probability of being

mitochondria-associated have been defined, including 368

not previously assigned as potentially relevant to mitochon-

drial function [27]. When combined with genetic mapping

data, this information enabled the gene MPV17 to be identi-

fied as a locus for a disease in the “mtDNA-depletion

syndrome” class [28], characterized by class of human

mitochondrial diseases characterized by a severe reduction

in the number of mtDNA molecules in specific tissues [29].

Perocchi et al. [6] have now taken integrative analysis even

further by combining information from 24 published data-

sets. They identified 895 proteins in what they call the

“mitochondrial system” of budding yeast, of which 13% have

a detectable α-proteobacterial ancestry and 60% have human

orthologs. Of particular interest, about two-thirds of the

mitochondrial proteins implicated in human disease have

orthologs in this yeast mitochondrial system; many of these

have a clear α-proteobacterial ancestry, a correlation that has

been documented previously [30]. Perocchi et al. [6] point

out that in many cases, deletion of the yeast ortholog of a

human mitochondrial disease gene results in a relatively mild

phenotypic change - rather than a lethal phenotype or the

‘petite’ phenotype seen when genes involved in oxidative

phosphorylation are knocked out [5]. In other words, genes

that are absolutely required for mitochondrial function in

yeast are poorly represented among human disease loci. This

is likely to be because loss-of-function mutations in the

orthologous human genes are probably incompatible with

development or survival in humans as well.

Using the program STRING [31], a search tool for retrieving

interacting genes, Perocchi et al. [6] generated an extensive

network of nearly 10,000 interactions. This is the most

comprehensive version of the yeast mitochondrial inter-

actome compiled so far and will advance our understanding

of mitochondrial function in various ways. First, the authors

were able to place groups of mitochondrial proteins into one

of 164 functional modules. This not only highlighted potential

novel functional interactions between known mitochondrial

proteins, but will also provide a framework for testing

hypotheses regarding members of the mitochondrial

proteome of unknown function. Second, as well as defining

interactions between mitochondrially localized proteins, the

mitochondrial interactome compiled by Perrochi et al. [6]

also implicates other cellular proteins and processes that are

not confined physically to the organelle but are still critical

for its function. This is not surprising, given the well-

documented dependence of mitochondria on signaling

pathways that connect the nucleus and mitochondria [32]

and the mitochondrial requirement for building blocks such

as nucleotides [33,34] and lipids that are synthesized

elsewhere in the cell. The new findings should, however,

provide new insights into precisely which signaling and

metabolic pathways are involved and how mitochondria are

regulated in concert with other cellular activities.
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With the current explosion in the availability of genome-wide

and systems data, the need for comprehensive integrated

analysis is clear. Such combinatorial analysis will need to mine

not only mitochondria-centric datasets, but also those that

examine other aspects of cell physiology at a global level, as

well as traditional data repositories such as disease databases,

evolutionary relationships and the vast literature. The recent

advances in our understanding of the mitochondrial proteome

and its interactions serve as an instructive paradigm for

related studies on other cellular organelles and processes.

And, as we have emphasized, clues to the pathology of human

disease are gained through the novel interactions and

potential links to function unearthed by these methods.

Perhaps most importantly, high-quality genome-scale analyses

and the subsequent comprehensive mining of all available

datasets help to accelerate experimental basic and biomedical

research by enabling the formulation of specific hypotheses

that can be tested directly using modern techniques. A

successful marriage of systematic information and hands-on

experimentation is the key to fully elucidating the complexities

of biological systems and mechanisms of disease.
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