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Abstract

We describe an analysis, applicable to any spotted microarray dataset produced using genomic
DNA as a reference, that quantifies prokaryotic levels of MRNA on a genome-wide scale. Applying
this to Mycobacterium tuberculosis, we validate the technique, show a correlation between level of
expression and biological importance, define the complement of invariant genes and analyze
absolute levels of expression by functional class to develop ways of understanding an organism's
biology without comparison to another growth condition.

Background

The biological landscape has been transformed by the
sequencing of genomes, and more recently by global gene
expression analyses using microarrays [1,2]. Microarrays
contain DNA probes representing all coding sequences in a
genome, which are either synthesized in situ or are spotted
onto a modified glass surface [3]. Comparison of mRNA from
two conditions by competitive hybridization to these probes is
used to identify differentially expressed genes [1]. In the case
of spotted microarrays, these are performed either with
labeled ¢cDNA prepared from separate mRNA preparations
co-hybridized to the same array, or as is increasingly the case,
by employing genomic DNA (gDNA) as a standard reference

[4]. In the latter case, each cDNA preparation is hybridized
separately alongside a gDNA reference and differential
expression is determined using a ratio of ratios. The use of
gDNA corrects for most spatial and spot-dependent biases
inherent with microarrays, and also allows direct comparison
between multiple datasets [4]. These are sometimes called
type 2 experiments, with RNA:RNA hybridizations being type
1 [5]. Traditionally, microarray experiments focus almost
exclusively on changes in gene expression, and in the case of
a type 1 experiment this is the only possible interpretation.

Focusing on changes in expression has helped to direct us
toward genes that warrant further investigation; however, it
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has been shown in recent meta-analyses that up-regulated
genes may bear little correlation to other measures of biolog-
ical importance [6-8]. One reason for this lack of correlation
is that, in a traditional microarray experiment, absolute levels
of mRNA are not considered; thus, no difference is reported
between a gene where expression increases from 20 to 100
copies and one where it increases from 20,000 to 100,000
copies, yet the biological inference may be very different. Fur-
thermore, all genes whose level of expression does not alter
significantly between conditions are completely ignored and
we do not know if they are constitutively off or on (and if so,
at what level). Differential expression analysis thus provides
us with an incomplete view of the transcriptome, whereas the
determination of global mRNA levels could, in part, address
this.

Global mRNA abundance analysis is particularly applicable in
prokaryotes, where, in contrast to the situation in eukaryotes,
transcription and translation are tightly coupled [9,10]. In
prokaryotes, therefore, absolute mRNA levels might be
expected to accurately predict levels of protein. In support of
this, it has been shown in both Escherichia coli and Mycobac-
terium smegmatis that the most readily detectable (and
hence most abundant) proteins correspond to genes with
high transcript levels [11,12]. Also, in experiments where
transcriptomic and proteomic data were compared, for the
majority of genes, changes at the transcriptional level were
mirrored at the protein level [13,14]. Furthermore, a compre-
hensive study of mRNA and protein levels in a sulfur-reduc-
ing bacterium identified a modest global correlation between
the two but found that the majority of the variation could be
attributed to errors in the protein analytical techniques, indi-
cating the actual correlation could be much stronger [15].

Surprisingly, the study of absolute levels of mRNA on a global
scale has largely been ignored, despite attempts that have
been made to extract meaningful quantitative information
from microarrays. These include spiking various control sam-
ples of known concentration into the hybridization mixture
[16,17], and using synthesized oligos complementary to every
spot on an array at a known concentration as a normaliser
[18]. Another recent report described the use of the Affyme-
trix gene chip platform to provide a quantitative view of gene
expression levels in prokaryotes [19]. These approaches are
often impractical or, especially with commercial systems,
prohibitively expensive. Type 2 experiments performed on
spotted arrays on the other hand, which use gDNA as a refer-
ence, are already routinely being performed, require a mini-
mal cost increase and could allow us to study the relative
abundance of each mRNA species [17] in parallel with tradi-
tional fold expression analyses.

Here we have focused on the determination of genome-wide
mRNA levels of M. tuberculosis using type 2 microarrays for
which we had a large number of datasets available. We have
developed and validated the approach, characterized the
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genes whose level of expression is the highest in the transcrip-
tome in vitro and those whose level of expression remains
consistently high across a variety of environmental condi-
tions. In addition, we have coupled genome-wide levels of
mRNA abundance with a functional classification system in
order to develop ways of understanding an organism's biology
without comparison to another growth condition.

Results and discussion

Calculating relative mRNA abundance

Genome-wide transcriptional analyses have until now
focused almost exclusively on differential expression. Meth-
ods that have been developed to quantify absolute mRNA
abundances have largely been ignored or proved impractical.
However, the use of gDNA as a reference channel in tradi-
tional microarray experiments is increasingly common [4],
and as this is equivalent to an equimolar concentration of all
transcripts we have investigated using this as a normaliser
that would allow us to generate a measure of genome wide
mRNA abundances.

Initially we calculated relative mRNA abundances for M.
tuberculosis growing aerobically in chemostat cultures as we
had access to the RNA used for hybridization to the arrays,
allowing us to experimentally validate our analysis. RNA and
microarray procedures were carried out as described in the
Materials and methods and [20]. To obtain a measure of
mRNA abundance, we first removed the local background flu-
orescence from each probe spot on the microarray. The fluo-
rescence intensity from the RNA channel was then
normalized to that of the gDNA channel, after which the tech-
nical and biological replicates were averaged.

We then found it necessary to correct for a probe length effect
present in the data. In a traditional microarray (type 1) exper-
iment, comparisons are made between two cDNA populations
hybridized to one spot. Although in most cases it is necessary
to control for factors such as the spatial dependent effects of
hybridization, and normalizations such as loess are routinely
implemented for this purpose [21], it is not necessary to con-
trol for individual spot variations as these would be negated
when calculating fold expression ratios. In our case, where we
are attempting to draw comparison between signals gener-
ated from different spots on the array, we are faced with addi-
tional factors that could introduce bias to our results - those
that differ between spots on the array, for example, the probe
GC content and length. Using the signal reported from a
gDNA hybridization, we investigated these factors. We found
that the length of the probes, which ranged in length from 60
to 1,000 bp, affected the hybridization whereby longer probes
report higher signal intensities (Figure 1a). We suspect this
may be because larger probes are able to bind more DNA and
bind it more strongly than shorter probes. We corrected for
this effect using a model of linear regression (Figure 1b; and
see Materials and methods).
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Figure |

Probe length normalization and quantified gene expression levels in M. tuberculosis. (a) We found that longer probes correlated with increased fluorescent
intensities, which then biased the ppm values we obtained. (b) We are able to remove this bias using a model of linear regression. The three distinct

groupings visible in the figure are an artifact of the probe lengths targeted during their synthesis by PCR. (c) The level of expression for each gene in the
genome, as determined by our analysis from chemostat grown wild-type M. tuberculosis H37Rv, is shown ordered as they appear in the chromosome. (d)
The log frequency distribution of MRNA abundances from (c). A clear skew to the right, containing a subset of very highly expressed genes, is typical of the

distributions we have found.

Finally, as the sum of all fluorescence intensities is equal to
the sum of all labeled mRNA, the measures of mRNA abun-
dance were converted from unintuitive ratios to a propor-
tional value; parts per million (ppm). Table 1 shows the
mRNA abundance values for the 50 most highly expressed
genes of M. tuberculosis. Figure 1c shows the mRNA levels, in
ppm, for each gene in the M. tuberculosis chromosome and
their log distribution is shown in Figure 1d. It is clear that the

mRNA abundances, even once log transformed, are not nor-
mally distributed, which reflects the observations of others
[22].

Validation of mMRNA abundance data

In order to validate our estimates of abundance, we per-
formed quantitative reverse transcriptase PCR (RTq-PCR) on
a large selection of genes that we had predicted to span the

Genome Biology 2007, 8:R265

R265.3



http://genomebiology.com/2007/8/12/R265

Table |
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The 50 most highly expressed genes in vitro

Rv Name ppm Function [40]

| Rv0009 ppiA 13,634 Protein translation and modification
2 Rv2527 Rv2527 10,020 Conserved hypotheticals

3 Rv3418c grokES 8,651 Chaperones-heat shock*

4 Rv3615¢c Rv3615¢c 8,531 Conserved hypotheticals*

5 Rv0440 groEL2 8,300 Chaperones-heat shock*

6 Rv3258c Rv3258c 5,430 Unknown*

7 Rv3616c Rv3616c 5,370 Conserved hypotheticals*

8 Rv3477 PE3I 5,138 PE subfamily

9 Rv2244 acpM 4,935 Synthesis of fatty and mycolic acids*
10 Rv0060 Rv0060 4,616 Unknown*

I Rv3874 Rv3874 4,490 Conserved hypotheticals

12 Rv3875 esatb 4115 SP, L, Pand At

13 Rv3648c cspA 4,101 Adaptations and atypical conditions*®
14 Rv3053c nrdH 3,934 2'-Deoxyribonucleotide metabolism
15 Rv3614c Rv3614c 3,748 Conserved hypotheticals*

16 Rv1078 pra 3,582 Conserved hypotheticals

17 Rv2780 ald 3,577 Amino acids and amines

18 Rv388 mlIHF 3,499 Nucleoproteins*

19 Rv0003 recF 3,371 DNA R, R R and R¥
20 Rv3786¢ Rv3786c 3,164 Unknown
21 Rv164I| infC 2,993 Protein translation and modification™
22 Rv3269 Rv3269 2,778 Chaperones-heat shock
23 Rv1398c Rv1398c 2,777 Conserved hypotheticals
24 Rv3407 Rv3407 2,732 Conserved hypotheticals
25 Rv2245 kasA 2,693 Synthesis of fatty and mycolic acids™
26 Rv0685 tuf 2,688 Protein translation and modification™
27  Rv2l45c wag3| 2,652 SP, L, P and A*t
28 Rv1306 atpF 2,620 ATP-proton motive force*
29  Rv0005 gyrB 2,466 DNAR, R R and R*#

30 Rv1305 atpE 2,455 ATP-proton motive force*

31 Rv0016c pbpA 2,423 Murein sacculus and peptidoglycan
32 Rvl622c cydB 2,418 Electron transport*

33 Rv3219 whiB| 2,373 Repressors-activators

34 Rv3583c Rv3583c 2,345 Repressors-activators

35 Rv1980c mpt64 2,254 SP, L, P and At

36 Rv1072 Rv1072 2,205 Other membrane proteins

37 Rv2457¢ clpX 2,200 Proteins, peptides and glycopeptides™
38 Rv1958c Rv1958c 2,195 Unknown

39 Rv3763 IpqH 2,180 Lipoproteins (IppA-Ipr0)
40 Rv1872c IldD2 2,149 Aerobic respiration
41 Rv3461c rpm) 2,133 Ribosomal protein synthesis*
42 Rvl3é6lc PPEI9 2,127 PPE family
43 Rv0097 Rv0097 2,123 Conserved hypotheticals
44 Rv1971 Rv1971 2,034 Virulence
45 Rv3051c nrdE 1,984 2'-Deoxyribonucleotide metabolism*
46 Rv2346c Rv2346c 1,937 Conserved hypotheticals
47 Rv3679 Rv3679 1,931 Anions*
48 Rv1298 rpmE 1,883 Ribosomal protein synthesis*
49 Rv0108c Rv0108c 1,837 Unknown

50 Rv2193 ctaE 1,793 Aerobic respiration*®

*Essential genes (TraSH) [26,27]. TSurface polysaccharides, lipopolysaccharides, proteins and antigens. ¥DNA replication, repair, recombination and

restriction-modification.
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Microarray analysis validation. There is a strong correlation (0.86,
Spearman's rank, p < 0.0001) between mRNA levels as predicted by our
microarray analysis and mRNA copy number as determined by RTq-PCR.

mRNA abundance spectrum (n = 24). The RTq-PCR was car-
ried out on a sample of the same RNA used for the microarray
hybridizations. The measures of mRNA abundance as pre-
dicted from the microarray analysis show a good correlation
(Spearman's rank = 0.86, p < 0.0001) with the absolute copy
number as determined by RTq-PCR data (Figure 2).

Further validation of the method was provided by its high
reproducibility when applied to data sets from independent
laboratories using the same microarray designs. Correlations
were determined for a variety of mRNA abundance data from
both M. tuberculosis and the highly similar Mycobacterium
bovis [23]. Chemostat-grown M. tuberculosis showed a corre-
lation of 0.8 (p < 0.0001) with the homologous genes in che-
mostat-grown M. bovis. The same was true of batch-cultured
M. tuberculosis and M. bovis grown in different institutions.
However, there was a lower correlation of 0.5 (p < 0.0001)
between chemostat and batch cultured M. tuberculosis from
different laboratories, suggesting that the method of culture
significantly affects the transcriptome.

mRNA abundance, protein abundance and gene
importance

To explore the possibility that global measures of mRNA
abundance are an important indicator of prokaryotic biology,
we compared our mRNA abundance data with proteome and
gene essentiality data. Demonstrating a correlation between
mRNA and protein levels is difficult without the availability of
genome-wide measures of protein abundance. We looked
instead at the list of M. tuberculosis proteins identified to

Genome Biology 2007,  Volume 8, Issue 12, Article R265 Sidders et al.

date from two-dimensional PAGE analysis and stored in an
online database [24]. As the mRNA abundances are not nor-
mally distributed, we determined the frequency of identified
proteins in each quartile of the abundance distribution. Of the
283 unique proteins identified in M. tuberculosis cell lysates
and supernatants, the majority (187 proteins, 66%) are
expressed in the most abundant quartile (Figure 3a). Others
have suggested that proteomic experiments have an intrinsic
bias toward abundant proteins [12,25] and this would sup-
port our hypothesis that the most abundant transcripts pro-
duce high levels of protein in bacteria. In addition, our
analysis makes no allowance for differential rates of transla-
tion initiation or mRNA/protein degradation, so this finding
reflects how tightly coupled the systems of transcription and
translation are in prokaryotes [9,10].

As there is little correlation between reports of biological
importance and gene induction [6-8] we instead looked at the
correlation with mRNA abundance. We compared the
genome-wide values of mRNA abundance with the genes
identified as being essential in M. tuberculosis by genome-
wide transposon mutant library (TraSH) screens [7,26,27].
For our RTq-PCR validated data from M. tuberculosis grow-
ing under aerobic chemostat conditions we found that there is
a significant relationship between expression level and essen-
tiality on a global scale (Chi-squared test for trend in propor-
tions = 161.2, df = 1, p value < 0.0001; Figure 3b). This is in
contrast to the lack of correlation with fold-induction upon
infection [6,7] and illustrates the potential importance of
determining mRNA abundances on a global scale. The corre-
lation may reflect our previous finding that the more highly
expressed a gene, the more protein is produced. Although
there are obvious examples where proteins with essential
functions, such as the cell division apparatus or many
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Figure 3

Correlations between mRNA and biological importance. (a) Proteins
identified by two-dimensional PAGE/MS [24] correlates with the most
highly expressed genes (Chi-squared test for trend in proportions = 251.9,
df = 1, p value < 0.0001). (b) Similarly, there is a significant relationship
between expression level and essentiality as determined by TraSH
[7,26,27] (Chi-squared test for trend in proportions = 161.2,df = |, p
value < 0.0001).
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enzymes, need not be (or indeed cannot be) highly expressed
[28], prokaryotic cells would waste considerable energy syn-
thesizing large amounts of proteins that do not have essential
functions.

The most highly expressed genes of M. tuberculosis

The genome-wide distribution of mRNA levels from M.
tuberculosis cultured aerobically in the chemostat is typical of
the distributions we have found (Figure 1d). Despite being log
transformed, the distribution shows a skew to the right, sug-
gesting the presence of a highly expressed subpopulation. As
we and others have shown, the coupling of transcription and
translation in prokaryotes means that there is an enormous
material investment in transcribing a gene at a high level. We
therefore analyzed the most abundant mRNAs in some detail,
focusing on the 95th percentile of genes, that is, the 5% most
abundant transcripts, n = 198 (Additional data file 1). Of these
198 genes, 89 (45%) were reported as essential in the TraSH
experiments, which is significantly higher than the 23% of all
genes that are essential (X2 p < 0.001). Of the 89 essential
genes, 76 (38%) were essential in vitro, 11 (5%) in vivo and 2
(1%) are essential for survival in macrophages [7,26,27].

The most highly expressed gene in vitro was ppiA (Rvo009),
a probable peptidyl-prolyl cis-trans isomerase involved in
protein folding, which makes up 13,634 ppm (which is equiv-
alent to 1.3%) of the total mRNA population. As would be
expected, many of the very abundant transcripts belong to the
protein synthesis machinery, including thirty ribosomal pro-
teins, six translation initiation factors and various compo-
nents of RNA polymerase.

Several of the very abundant genes have previously been
characterized as highly expressed and extensively docu-
mented as important virulence determinants of M. tuberculo-
sis. In particular, some members of the esx gene family have
been shown to be critical in infection, although dispensable in
vitro. The paradigms for this family are esat6 (Rv3875) and
c¢fpio (Rv3874), whose products form a secreted complex
that interacts with host cells [29]. Furthermore, they are
potent immunogens with potential roles as both subunit vac-
cines and diagnostic agents [30,31]. The esx family in M.
tuberculosis contains 23 esat6-like genes, with 11 esat/cfp
gene pairs [32]. Including esat6 and c¢fp10, we identified 12
members (52%) of this family as being amongst the most
highly transcribed of all genes. One such pair of genes, esxV’
(Rv3619c) and esxW (Rv3620c¢), are adjacent to, but not tran-
scribed with, the SNM (secretion in mycobacteria) operon
containing Rv3616¢ (espA), Rv3615¢c (snmg) and Ru3614c
(snmi10), which we also find are very highly expressed. Two
groups have recently shown that the SNM system functions to
export both ESAT-6 and CFP-10 [33,34].

We have also observed five highly expressed transcripts
belonging to the PE/PPE family; a set of approximately 100
genes encoding proteins with proline and glutamate rich
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motifs that are found exclusively within the mycobacteria
[35]. Some members of this family are located adjacent to esx
genes, suggesting a functional association, and it is now
known that a PE/PPE pair form a stable dimer, reminiscent of
ESAT-6/CFP-10 themselves [36]. Of the five PE/PPE genes in
our very abundant transcript list, two are located adjacent to
highly expressed esx family gene pairs: PPE18 (Rv1196) with
esxKL (Rv1197/Rv1198), and PE19 (Rviy91) with esxMN
(Rv1792/Rv1793). The significance of linked high expression
levels between esx and PE/PPE genes suggests a co-function-
ality critical to M. tuberculosis biology.

Genes of unknown function

Thirty-three percent of the coding sequences in M. tuberculo-
sis were classified as having no known function in a re-anno-
tation of the genome [37]. A similar proportion (60 of 198,
30%) of the transcripts we have classified as very abundant in
M. tuberculosis are annotated as unknown, hypothetical or
conserved hypothetical proteins. The organism consumes
considerable energy in their expression so it is likely they have
important functions, and indeed 12 of these unknown genes
are essential. Using both BLASTP and functional predictions
generated with the hidden Markov model profile tool
SHARKhunt [38], we were unable to ascribe any further func-
tions to these genes with the exception of Rvo097, which has
close homology to a taurine dioxygenase of the Streptomyces,
Ralstonia and Chromobacterium species. It has been
reported [39] that the Rvoo97 homologue in M. bovis is
located in an operon essential for the synthesis of the viru-
lence associated lipids phthiocerol dimycocerosate esters
(PDIMs) and could function as an a-ketoglutarate-dependent
dioxygenase, the super family to which taurine dioxygenases
belong.

The invariome

Much effort goes into looking for genes whose expression is
modulated in different environments. Although it is likely
that most, if not all, genes are regulated to some extent, using
the analysis described here it is possible to search for genes
whose expression does not change significantly, which we
term 'invariant'. These may represent genes whose functions
are so important that they cannot be switched off. To identify
these invariant genes, we compared the mRNA abundance in
a total of six data sets including various growth conditions,
such as chemostat, batch culture, low oxygen and growth in
macrophages. We focused on genes that were within the 85th
percentile and found that 133 genes were consistently highly
expressed across all of the conditions tested (Table 2).

Notable members of this abundant invariome include several
esx-related genes (esat6, cfpio and the SNM secretion sys-
tem), the paired PE31 and PPE60, groEL2 (the 65 kDa anti-
gen) and the ATP synthase operon (atpA-atpH). Compared to
a global 23% of genes that are essential, 53% (70 of 133, X2p
< 0.001) of the genes in the abundant invariome are essential
for either in vitro growth or survival in mice or macrophages

Genome Biology 2007, 8:R265
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Table 2
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The 133 genes of the 'abundant invariome'

Rv Name Avg ppm Stdev Essential
| Rv3874 Ihp 5414 3,950 -
2 Rv3418c groES 5,189 2,593 In vitro
3 Rv0440 groEL2 4,438 2,385 In vitro
4 Rv3615c Rv3615¢c 3,887 2,539 In vivo
5 Rv0009 ppiA 3,460 4,587 -
6 Rv3616c Rv3616c 2,619 1,457 In vivo
7 Rv3477 PE31 2,537 1,553 -
8 Rv2244 acpM 2,475 1,304 In vitro
9 Rv3875 esaté 2,472 1,229 -
10 Rv1398c Rv1398c 2,449 1,311 -
|1 Rv3648c cspA 2,372 1,149 In vitro
12 Rv2245 kasA 2,236 48| In vitro
13 Rv3614c Rv3614c 2,232 847 In vivo
14 RvI307 atpH 2,151 1,195 In vitro
15 Rv0667 rpoB 2,105 563 In vitro
16 Rv1388 mihF 2,103 1,013 In vitro
17 Rv0685 tuf 2,100 792 In vitro
18 Rv3583c Rv3583c 2,096 2,027 -
19 Rv3053c nrdH 1,930 1,339 -
20 Rvl133c metE 1,915 323 In vitro
21 Rv1072 Rv1072 1,897 560 -
22 Rv1872c I1dD2 1,817 574 -
23 Rv3461c rpm) 1,814 795 In vitro
24 Rv2457¢ clpX 1,790 343 In vitro
25 Rv0700 rps) 1,693 1,148 In vitro
26 Rv1078 pra 1,643 971 -
27 Rv1298 rpmE 1,529 543 In vitro
28 Rv2840c Rv2840c 1,495 566 -
29 Rv1630 rpsA 1,491 439 In vitro
30 Rv0046c inol 1,488 620 -
31 Rv1886c fopB 1,464 1,168 -
32 Rv2196 qcrB 1,455 472 In vitro
33 Rv3443c rpIM 1,447 300 In vitro
34 Rv0701 rplC 1,421 880 In vitro
35 Rv0682 rpsL 1,419 576 In vitro
36 Rv3219 whiBI 1,384 795 -
37 Rv0702 rplD 1,364 619 In vitro
38 Rv0289 Rv0289 1,351 845 In vitro
39 Rv2200c ctaC 1,332 1,406 In vitro
40 Rv1980c mpt64 1,316 629 -
41 Rv1306 atpF 1,246 695 In vitro
42 Rv2193 ctakE 1,217 334 In vitro
43 RvI310 atpD 1,184 412 In vitro
44 Rv1174c Rvl174c 1,165 424 -
45 RvI1308 atpA 1,148 349 In vitro
46 Rv305Ic nrdE 1,123 578 In vitro
47 Rv1305 atpE 1,086 696 In vitro
48 Rv0683 rpsG 1,080 541 In vitro
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Table 2 (Continued)
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The 133 genes of the 'abundant invariome'

49
50
51
52
53
54
55
56
57
58
59
60
6l
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
8l
82
83
84
85
86
87
88
89
90
9l
92
93
94
95
96
97
98

Rv1297
Rv2461c
Rv0655
Rv3052¢
Rv3801c
Rv0005
Rv0704
Rv3412
Rv0250c
Rv2460c
Rv2204c
Rv3478
Rv0703
Rv2094c
Rv1303
Rv3456¢
Rv0719
Rv0684
Rv2347c
Rv0715
Rv1197
Rv1479
Rv0718
Rv3460c
Rv2194
Rv2195
Rv0860
Rv1309
Rv0243
Rv3248c
Rv0020c
Rv3584
Rv1793
Rv3620c
Rv1410c
Rv3459c
Rv0483
Rv3043c
Rv3029c
Rv2868c
Rv1304
Rv1642
Rv1794
Rv0288
Rv3810
Rv1543
Rv3680
Rv3457c
Rv3045
Rv1792

rho
clpPl
mkl

nrdl
fadD32
gyrB
rplB
Rv3412
Rv0250c
clpP2
Rv2204c
PPE60
rplW
tatA
Rv1303
rplQ
rplF
fusAl
Rv2347c
rplX

RvI 197
moxR |
rpsH
rpsM
qecrC
qcrA
fadB
atpG
fadA2
sahH
TB39.8
IpqE
Rv1793
Rv3620c
Rv1410c
rpsK
IprQ
ctaD
fixA
gepE
atpB
rpml
Rv1794
cfp7
pirG
Rv1543
Rv3680
rpoA
adhC
Rv1792

1,074
1,028
1,024
1,018
1,015
1,011
1,011
1,002
995
991
963
957
956
949
939
937
925
923
920
906
906
898
886
882
870
868
863
861
859
850
850
845
836
827
815
809
805
803
801
799
796
784
781
781
778
770
765
760
756
753

28I
346
385
551
209
684
528
141
439
393
277
360
556
241
637
297
406
367
447
342
440
162
243
373
194
189
420
401
231
243
224
246
309
375
188
206
341
221
232
384
203
388
254
286
131
222
294
293
272
326

In vitro

In vivo
In vitro
In vitro

In vitro

In vitro

In vitro

In vitro
In vitro
In vitro

In vitro
In vitro
In vitro
In vitro
In vitro

In vitro

In vitro
In vivo
In vitro
In vitro
In vitro
In vivo
In vivo
In vitro
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Table 2 (Continued)

The 133 genes of the 'abundant invariome'

99 Rv2969c Rv2969c 738 141 In vitro
100 RvI177 fdxC 736 303 In vitro
101 Rv3867 Rv3867 735 200 -
102 Rv1038c Rv1038c 724 391 -
103 Rv2890c rpsB 715 120 In vitro
104 Rv3224 Rv3224 709 303 -
105 Rv3458c rpsD 707 208 In vitro
106 Rv2785c rpsO 690 316 -
107 Rv2986¢ hupB 687 255 In vitro
108 Rv0174 mcelF 683 211 -
109 Rv3211 rhlE 676 251 -
110 Rv1436 gap 673 234 In vitro
11 Rv0351 grpE 672 282 In vitro
112 Rv2764c thyA 667 239 -
113 RvI3I1I atpC 660 160 In vitro
114 Rv0432 sodC 657 177 -
115 RvI791 PEI9 655 232 -
116 Rv0932c pstS2 652 249 -
117 Rv2971 Rv2971 645 188 In vitro
118 RvI300 hemK 644 220 In vitro
119 Rv2703 sigA 643 114 In vitro
120 Rv2203 Rv2203 633 196 -
121 Rv0423c thiC 614 149 In vitro
122 Rv2587¢ secD 602 267 -
123 Rv 1887 Rv 1887 601 148 -
124 Rv0313 Rv0313 588 136 -
125 Rv0502 Rv0502 559 147 -
126 Rv384I bfrB 542 107 -
127 Rv2I15¢c Rv2I15c 529 106 -
128 Rv3587c Rv3587c 526 68 -
129 Rv2110c prcB 516 151 In vitro
130 Rv1987 Rv 1987 495 136 -
131 Rv2454c Rv2454c 489 55 -
132 RvO125 pepA 483 80 -
133 Rv1324 Rv1324 474 152 -

Using our measure of absolute mRNA levels, we have been able to identify the genes whose level of expression remains consistently high across a
variety of growth conditions. These genes remain amongst the top 15% most highly expressed genes across all of the conditions tested. We have
termed the genes whose level of expression does not vary greatly as invariant, and, therefore, the subset of genes included in this table is dubbed the

'abundant invariome'.

[7,26,27]. Twenty-two of our abundant invariome genes have
no known function, two of which (Rvo289 and Rvi303) are
essential. These and other members of the abundant invari-
ome are primary candidates for future functional studies that
may elucidate key mycobacterial biology.

As well as an obvious hypothesis generation role, such invar-
iant gene analyses might have uses, for example, in identify-
ing strong antigens, constitutive promoters and stable
housekeeping genes expressed in all environments. Further-
more, as significant proportions of the abundant invariome
are essential, this analysis also has the potential to identify

drug targets or candidate virulence factors in prokaryotes
even if no other biological information is known.

Highly transcribed functional categories

The advent of systems biology is encouraging the develop-
ment of techniques that reveal more holistic information
about biological systems. We have therefore combined our
measures of M. tuberculosis mRNA abundance with a non-
overlapping classification system based on known or
predicted functions [40,41]. Not only does this accord with
the aims of systems biology, it would also remove the need to
routinely compare expression profiles to that of artificial lab-
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oratory conditions and could, therefore, be more biologically
meaningful.

Using this analysis to study the transcriptome of M. tubercu-
losis in a disease relevant [42] low oxygen state (chemostat
grown at a dissolved oxygen tension (DOT) of 0.2% [20])
reveals that, at the broadest scope of the classification system,
29% of the mRNA in the transcriptome codes for proteins
involved in small molecule metabolism, 19% for macromole-
cule metabolism, 7% for 'other' functions (virulence, and so
on) and 7% for cellular processes. In addition, 38% of the in
vitro low oxygen transcriptome codes for proteins of
unknown function, illustrating how little of mycobacterial
biology has been characterized to date.

To determine which functional classes, at all levels of the clas-
sification system, were significantly over- or under-repre-
sented in the transcriptome, we chose, for comparison, three
different robust and nonparametric approaches: robust lin-
ear modeling, bootstrap-t using the Q statistic of Davison and
Hinkley [43], and a bootstrap-t using trimmed means and
winsorized variances [44]. We removed all classes with fewer
than four data points to be able to obtain variance estimates
after trimming. As an example of how this might be used, we
again focused on the low oxygen transcriptome. In this exam-
ple, many of the functional classes that we have shown to be
significantly over-represented within the transcriptome by all
three tests reflect the growth rate in the chemostat (main-
tained at a 24 hour doubling time [20]), including the protein
translation machinery, the chaperones, the RNA and DNA
synthesis mechanisms, and the ribosomal proteins (Addi-
tional data file 2). Also abundant are classes involved with
energy metabolism, including ATP synthesis and the TCA
cycle, as well as macromolecule synthesis, including the fatty
and mycolic acid anabolic pathways.

Using either of the bootstrap-t methods appears to be too
stringent to reveal classes that we would immediately recog-
nize as reflecting the adaptation to low oxygen. However, the
classes deemed significant by the robust linear modeling
method include the glyoxylate shunt enzymes, which are
essential in vivo for the anaplerosis of acetyl-CoA when grow-

Table 3

Genome Biology 2007,  Volume 8, Issue 12, Article R265 Sidders et al.

ing on fatty acids [45,46], and the oxidative electron transport
system known to operate under reduced oxygen tensions in
mycobacteria [47].

Our functional analyses are only preliminary; we are limited
by the lack of a comprehensive bacterial gene ontology. How-
ever, we suggest that this is a biologically relevant approach
that could be expanded and used to identify the key cellular
and metabolic processes required by an organism in a
particular growth condition. It will link well with other sys-
tems biology analyses to produce useful insights into bacterial
physiological states and, for example, could be used to deter-
mine the processes, rather than the components, required for
infection and latency in M. tuberculosis.

Conclusion

We have developed a method of microarray analysis that
quantifies levels of mRNA on a genome-wide scale. Our
method of analysis can be applied to any spotted microarray
data set produced using gDNA as a reference channel. Apply-
ing this analysis to the prokaryote M. tuberculosis, we have
identified the most highly expressed genes and note correla-
tions with gene essentiality as well as with a basic measure of
protein abundance. We have also been able to define the sub-
set of genes that are invariantly highly expressed and find that
more than half are essential for growth in vitro or survival in
vivo. In addition, we are also able to produce a functionally
organized holistic view of the transcriptome. Alongside tradi-
tional changes in expression, mRNA abundance analysis can,
therefore, greatly enhance the utility of microarray data and
has numerous additional uses that will aid genetic research
into prokaryotic organisms.

Materials and methods

Microarrays

Six microarray datasets have been used in this study (Table
3). The microarrays used for hybridization were the BuG@S
TB version 1 arrays (Array Express accession: A-BUGS-1)
[48], for data sets 1 to 3, containing 3,924 spotted PCR prod-
ucts and TB version 2 arrays (A-BUGS-23) [48], for data sets

Microarray datasets used in this study

Description Origin Reference Data storage
I Wild-type Mtb H37Rv aerobic chemostat CAMR, UK [20] BuG@Sbase: E-BUGS-60
2 Wild-type Mtb H37Rv low oxygen chemostat - 0.2% DOT CAMR, UK [20] BuG@Sbase: E-BUGS-60
3 Wild-type Mtb H37Rv aerobic rolling batch culture RVC, UK Unpublished BuG@Sbase: E-BUGS-60
4 Wild-type Mbovis AF2122/97 aerobic chemostat VLA, UK Unpublished ~ BuG@Sbase: E-BUGS-60
5  Wild-type Mbovis AF2122/97 aerobic rolling batch culture VLA, UK Unpublished ~ BuG@Sbase: E-BUGS-60
6  Wild-type Mtb H37Rv harvested from macrophages SGUL, UK Unpublished  BuG@Sbase: E-BUGS-60
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4 to 6, containing 4,410 spotted PCR products, including
additional open reading frames from M. bovis strain AF2122/
97. Fully annotated microarray data have been deposited in
BuG@Sbase (accession number E-BUGS-60) [49] and also
ArrayExpress (accession number E-BUGS-60).

Bacterial culture

Batch cultures of M. tuberculosis and M. bovis were grown in
100 ml Middlebrook 7H9 (Becton, Dickinson and Co. Frank-
lin Lakes, NJ, USA) supplemented with 10% Middlebrook
OADC (Becton, Dickinson and Co.) in 1 liter capacity flasks
that were continuously rolled at 37°C. Chemostat cultures,
RNA extraction and microarray hybridizations were per-
formed as detailed in Bacon et al. 2004 [20]. Briefly, 500 ml
cultures were grown to steady state conditions in 1liter chem-
ostat fermentation vessels maintained at 37°C, with a pH of
6.9 and a generation time of 24 hours. Aerobic cultures were
kept at a DOT of 10% whilst low oxygen cultures were main-
tained at 0.2% DOT.

RNA and genomic DNA extraction

Aliquots of the bacterial cultures (10 ml) were sampled
directly into four volumes of a guanadinium thiocyanate
based stop solution. After centrifugation and resuspension in
either Trizol (Invitrogen, Carlsbad, California, USA) or
additional stop solution, cells were lysed using a Ribolyser
(Hybaid, Teddington, England) or Precellys 24 (Bertin Tech-
nologies, Montigny-le-Bretonneux, France) and RNA was
extracted using a chloroform precipitation followed by purifi-
cation with the RNeasy Mini Kit (Qiagen, Hilden, Germany).
RNA was then treated with deoxyribonuclease (DNase 1
amplification grade, Life Technologies Inc/Invitrogen,
Carlsbad, California, USA). Genomic DNA was isolated from
pellets of stationary phase mycobacterial cultures following
previously described procedures [50].

RNA/DNA labeling and hybridization

For the majority of the datasets RNA was extracted from four
independent biological replicates and each was labeled in
triplicate using 8 ng total RNA as a template for reverse tran-
scriptase (Superscript IT RNAse H, Life Technologies Inc.) in
the presence of random primers (Invitrogen, Carlsbad, Cali-
fornia, USA) and Cys labeled dCTP. Genomic DNA (1 ug) was
used as a template for DNA polymerase (Klenow, Invitrogen,
Carlsbad, California, USA) in the presence of random primers
and Cy3 labeled dCTP.

Purified Cy3/Cys labeled DNA were combined and added to
the array underneath a cover slip before being sealed in a
hybridization chamber and submerged in a water bath at
65°C for 16-20 hours. Scanning was performed with a dual
laser scanner (Affymetrix 428, MWG Biotech, Ebersberg,
Germany) at a gain below saturation of the most intense
spots. Both spot and local background levels were quantified
from the resulting images using ImaGene 4.0 (MWG
Biotech).

Genome Biology 2007,  Volume 8, Issue 12, Article R265

mRNA abundance calculation

The Perl computing language and the R statistical environ-
ment [51] were used to perform all data and statistical analy-
sis. The YASMA [52] microarray analysis package for R was
used to input and structure the raw data.

Initially, all control spots on the array were removed from the
dataset, including all representing ribosomal RNA. The local
background noise, as determined by the image quantification
software, was subtracted from each spot. No data values were
excluded from this study as we reasoned weak signals (after
background subtraction) were reflective of low abundance
transcripts.

For each spot i on the array the fluorescent intensity from the
c¢DNA (RNA) channel was normalized by simple division to
the fluorescent intensity of the gDNA channel:

Normalized intensity (R;) = cDNA,/gDNA;

The correlation between hybridization replicates within each
dataset was confirmed to ensure there were no extreme out-
liers. Technical and biological replicates were then averaged
to provide a single normalized intensity value for each gene
on the array.

To account for the observed probe length bias (see Results
and discussion), signal intensity was normalized to probe
length using a model of linear regression of log intensity on
probe length (Figure 1a,b):

Probe normalized intensity (logeRn;) =
loge R;- (intercept + slope x probe length;)

The corrected Rn, values were converted back to a raw scale
and for ease of understanding are depicted as a proportional
value, expressed in ppm, based on the assumption that the
sum of all intensity values represents the sum of the tran-
script (mRNA) population within the sample:

ppm = (Rn;/%; ;;, Rn) x 100

RTq-PCR

To assess if the measures of transcript abundance from the
array analysis truly reflect that of the RNA sample we carried
out RTq-PCR on 24 genes predicted to span the spectrum of
mRNA abundances as determined by the mRNA abundance
analysis. The RNA samples used were those extracted and
used for the microarray hybridizations in data set 1 [20]. Total
RNA (400 ng) was reverse transcribed using Superscript
Reverse Transcriptase III (Invitrogen) according to the man-
ufacturer's instructions. cDNA (5 ng) was subsequently used
for RTq-PCR using the DyNAmo SYBR green qPCR kit
(Finnzymes, Espoo, Finland), according to the manufac-
turer's instructions, in a DNA Engine Opticon 2 thermal
cycler (MJ Research, Waltham, MA, USA). For each reaction
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a set of gDNA standards of known copy number were used to
produce a standard curve from which a copy number could
accurately be determined. The data were analyzed using Opti-
con Monitor v2.0.

Functional category analysis

The genes of M. tuberculosis were grouped based on a Riley-
like classification system obtained from the Sanger Institute
[40]. The classification system is non-overlapping and hierar-
chical, and thus has six highest level functional categories:
small-molecule metabolism, macromolecule metabolism, cell
processes, other, conserved hypothetical and unknowns, each
of which splits into more specific subcategories. In total,
3,925 genes are classified in this system.

We were looking to compare the level of expression in each
functional class with that in other classes to discover which
classes might be over- or under-represented within the tran-
scriptome. We used ANOVA based approaches to detect func-
tional classes that show significant over- or under-
representation compared to the rest. We estimated location
parameters for the log ppm values for each class and assessed
the statistical significance of the contrast of a location param-
eter for a particular class and the average of location parame-
ters for all the other classes. As seen in Figure 1d, the mRNA
abundances are not normally distributed even after log-trans-
formation, so we could not assume that the distribution of
abundances within each class would be. Moreover, the vari-
ances changed considerably between functional classes. We
therefore chose three different robust and nonparametric
approaches to estimate the location parameters and to estab-
lish significance of contrasts: robust linear modeling; a boot-
strap-t using the Q statistic of Davison and Hinkley [43]; and
a bootstrap-t using trimmed means and winsorized variances
[44]. We removed all classes with fewer than four data points
to be able to obtain variance estimates after trimming.

For the robust linear model we used the rlm function from the
R package MASS [53], with Huber's Psi function and default
settings. In the bootstrap-t with Q values as pivot we trimmed
points with their robustly estimated residues in the top 20%
and bottom 20% quantiles before performing the bootstrap
analysis to protect the estimations against outliers. For the
second bootstrap-t we used trimmed means with 20% of the
lower and 20% of the upper quantiles removed, correspond-
ing to 20% winsorized variances for the pivot. Resampling
was done within each functional class, since we take them as
fixed effects. We collected 10,000 bootstrap samples to allow
for multiple testing correction. The method of Benjamini and
Yekutieli [54] was used to calculate a false discovery rate
allowing for dependencies between functional classes.

The results from all tests are provided as supporting informa-
tion (Additional data file 2). Classes were considered signifi-
cantly different from others if the adjusted p value was less
than 0.05.
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