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Background
Ideally, the process of annotating protein coding genes

(hereby referred to as ‘genes’) in a region of genomic DNA

involves locating the exact external and internal boundaries

of all the genes it includes and, for each, finding all the

possible transcript variants. In practice, achieving this is

very difficult in eukaryotic genomes for many reasons. First,

eukaryotic genes are generally composed of a succession of

exons and introns, which makes their structure complex and

highly variable. Second, genes cover only a small fraction of

eukaryotic genomes (30% in mammals) and exons cover an

even lower fraction (1% to 2% in mammals). Third, some

eukaryotic genomes contain many pseudogenes, which are

non-functional copies of genes sometimes nested within

genes and with similar compositions. Finally, each gene may

give rise to many different transcripts, often with minor

variations, a mechanism that modulates the function or the

spatial or temporal availability of the corresponding protein.

Despite these difficulties, precise gene annotation is crucial

for biomedical research: it is a basic requirement to link
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Abstract

Background: Accurate and automatic gene identification in eukaryotic genomic DNA is more
than ever of crucial importance to efficiently exploit the large volume of assembled genome
sequences available to the community. Automatic methods have always been considered less
reliable than human expertise. This is illustrated in the EGASP project, where reference
annotations against which all automatic methods are measured are generated by human
annotators and experimentally verified. We hypothesized that replicating the accuracy of human
annotators in an automatic method could be achieved by formalizing the rules and decisions that
they use, in a mathematical formalism.

Results: We have developed Exogean, a flexible framework based on directed acyclic colored
multigraphs (DACMs) that can represent biological objects (for example, mRNA, ESTs, protein
alignments, exons) and relationships between them. Graphs are analyzed to process the
information according to rules that replicate those used by human annotators. Simple individual
starting objects given as input to Exogean are thus combined and synthesized into complex
objects such as protein coding transcripts.

Conclusions: We show here, in the context of the EGASP project, that Exogean is currently the
method that best reproduces protein coding gene annotations from human experts, in terms of
identifying at least one exact coding sequence per gene. We discuss current limitations of the
method and several avenues for improvement.
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genotype and phenotypes in human and model species and

generally to focus the work of biologists and bio-informa-

ticians on an essential functional part of the genome. Forty

eukaryotic genome sequences have now been completed and

each is commonly tens of millions or even billions of

nucleotides long: annotating genes in this massive amount

of data undoubtedly requires mathematical models.

Mathematical models have been proposed to automatically

locate genes in genomic DNA, either by similarity to

expressed or evolutionary conserved sequences, or by

capturing our current biological understanding of genes in

statistical algorithms, or a combination of these methods.

Despite tremendous advances, automatic gene annotations

are still considered predictions that require validation by

human experts, particularly when expensive and time

consuming experimental work will be based upon them. This

paradigm is exemplified in the ENCODE Genome Anno-

tation Assessment Project (EGASP) competition [1], where

the reference against which all the automatic methods are

measured is a set of annotations experimentally verified and

manually curated by human experts. Such high quality

reference gene annotations (also including those collated in

the Vega repository [2]) are generated by humans based on a

number of resources: cross-species sequence alignments,

mRNA sequences, ab initio predictions, and so on.

Generally, with the aid of sophisticated annotation and

curation software tools, these resources are reviewed on a

gene-by-gene basis using strict rules rooted in a deep

knowledge of both the data at hand and the biology

associated with gene expression (transcription, splicing,

translation, and so on).

Based on these observations, we were interested in designing

an automatic annotation method that explicitly establishes

the same relationships between biological objects, and

applies the same rules, as human experts. In computer

science, some such rules can be assimilated to heuristics of

the type ‘if (X) then (Y) else (Z)’. The automatic annotation

of protein coding genes may, therefore, appear deceivingly

simple and be reduced to coding the rules extracted from

biological expertise into a set of heuristics and to applying

them to the experimental evidence. In the field of gene

annotation, however, encoding human expertise is rather a

problem of untangling the body of evidence that experts

build to elect a sequence to the status of protein coding gene.

This body of evidence can be viewed as a complex network of

relationships between DNA, mRNA and protein sequences.

These relationships are difficult to formalize because

biological knowledge cannot (yet) be assimilated to a

structured list of observations based on a controlled

vocabulary. It is instead a rich and heterogeneous set of

often unconnected observations. It is also in constant

evolution and may, therefore, vary from one set of experts to

another. It does not always follow strict logical rules and

instead may rely on arbitrary variables. In the context of

gene annotation, the latter is often a consequence of a lack of

knowledge on specific aspects of gene structure and biology.

For instance, a transcript with an annotated coding region of

less than 100 amino acids is often considered too short and

not classified as coding for a protein.

Our first objective was, therefore, to design a formal

framework within which rules and biological objects may be

represented and manipulated using computers to produce

gene annotations. We then identified a number of rules and

biological objects used by human annotators and integrated

them into the framework. The resulting software tool is

called Exogean for EXpert On GEne Annotation. We believe

that this strategy is currently the only possibility to approach

the level of completeness and accuracy reached by human

experts. Here we show, in the context of the EGASP

competition of the ENCODE project, that Exogean already

performs better than any other automatic method in

identifying at least one exact coding sequence per gene.

Results
The Exogean method
Human annotators manipulate and integrate information

stemming from multiple heterogeneous sources (for example,

ab initio predictions, mRNA and expressed sequence tag

(EST) alignments, protein alignments). Each source has

specific properties and is thus treated with specific rules. For

instance, mRNA sequences from the same species that is

being annotated should align to the genome with high

similarity (98% to 100%) while protein sequences from a

different species typically align less perfectly owing to base

substitutions, insertions or deletions during evolution.

Hence, mRNA alignments are dealt with using more

stringent rules and are given more importance because they

can be aligned perfectly, while protein alignments are

typically treated with more caution. The different sources of

data will, therefore, be represented differently, and will be

processed by different heuristics.

To develop a flexible yet formal framework, we decomposed

human expertise into heuristics of two independent types:

the establishment of relationships between objects on the

one hand; and the action of connecting and merging the

objects based on these relationships on the other hand.

This independence between relationships and actions

provides the flexibility required to solve a number of

difficulties: heuristics change over time - the system must be

able to easily adapt to these changes by modifying, adding or

deleting heuristics; heuristics are applied to different

sources of information (for example, different types of

sequence alignment) - the system must be able to handle

heterogeneous sources; heuristics are themselves of different

types, whether they deal for instance with structural

concepts (properties of aligned sequences) or on prioritizing
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sources - the system must be able to handle heterogeneous

heuristics.

In Exogean (Figures 1 and 2), transcripts are built from

relatively simple objects (sequence alignments) into more

complex structures. Throughout the manuscript, therefore,

the term transcript model will designate transcripts at any

level of complexity, from basic sequence alignments to the

final structure that represents the predicted functional

mRNA (Figure 2). Following this we define that heuristics

of the type ‘relationship’ will always be established between

two transcript models of the same level of complexity. The

fact that relationships may be directional (can be represen-

ted as an arrow between two objects) greatly simplifies the

actions (see below) and is based on the directionality of the

DNA molecule and, hence, of transcription itself. Relation-

ships are thus directed by default, unless otherwise

specified.

To represent transcript models and relationships, and to

apply actions on the former using the latter, we use directed

acyclic coloured multigraphs (DACMs; Figures 1 and 2). In

such graphs, nodes are transcript models and multiple edges

between nodes are the relationships. In its current version,

Exogean uses three DACMs, each with increasingly complex

and accurate transcript models (nodes) and different

relationships (edges). While DACM1 is built from the

original sources of information given to Exogean (mRNA

and/or protein alignments), its output will be the basis of

DACM2, and DACM3 will be built from the output of

DACM2. To proceed from one DACM to the next, Exogean

performs a graph reduction. The first step in reducing a

graph involves the definition of a set of relationships (edges)

that will represent a certain path. Then Exogean finds all the

paths of maximal length in the DACM, which results in

combining the different nodes located on each of these

paths. The nodes collected along a maximal path together

form a more complex object (transcript model) that will be a

new node ready for processing in the next DACM. Edges are

then built between these nodes, and this constitutes a new

DACM that, in turn, can be reduced. In summary, Exogean

automates the annotation protocol followed by human

experts by iteratively building edges (making relationships)

and subsequently reducing DACMs (taking actions based on

these relationships). Before and after the three core DACMs,

Exogean also applies heuristics to respectively prepare the

data for transcript modeling, and to identify coding

sequence (CDS) within transcripts (Figure 1).

The EGASP assessment
Exogean is one of 20 automatic methods that were

compared in the EGASP project [1] (see Materials and

methods). In brief, each method predicted protein coding

transcripts in 31 regions of the human genome totaling

about 21 Mb. Independently, a group of experts (the Havana

group at the Sanger Institute [3]) annotated the same

regions using manual curation and experimental validation

and identified 296 genes that were considered as reference

against which all the automatic methods were compared. We

refer to this set of genes as the GENCODE annotations [4].

The comparison between GENCODE annotations and

Exogean predictions is summarized in Table 1. Except for the

DNA sequence itself, the only source of information used by

Exogean to predict transcripts were human mRNA and

mouse protein sequence alignments (see Materials and

methods). Exogean predictions are evaluated both if they

overlap and if they exactly match a GENCODE annotation

(see Materials and methods).

Overlapping predictions
Two standard measures to evaluate the accuracy of

predictions against a reference are sensitivity (percentage of

annotations identified) and specificity (percentage of

predictions that identify an annotation). In the overlap

evaluation, Exogean consistently detects GENCODE coding
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Figure 1
Overview of the Exogean methodology. Exogean annotations are based
on protein and/or mRNA alignments. Protein sequences come from a
different species than that of the DNA to be annotated (for example,
mouse protein to annotate human genes), while the mRNAs originate
from tissues of the species being annotated. (a) These alignments are first
processed to remove artifacts using heuristics. (b) The core of the
method is the directed acyclic multigraph (DACM) component, which
builds transcripts of increasing complexity in three iterative steps using a
second set of heuristics. (c) The transcripts are then examined to identify
a complete or a partial coding sequence (CDS), and (d) a last filter applies
a last set of rules to remove pseudogenes.
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nucleotides, exons, transcripts and CDS with more than 80%

sensitivity and 94% specificity. Of particular interest is the

identification of transcripts and genes, where Exogean

predicts less than 3% false positives (15 transcripts out of 513

predicted) corresponding to 8 genes that do not overlap a

Havana gene. We investigated in more details the reasons

why Exogean predicted these sequences as genes, since some

may potentially represent new CDS. Two predictions corres-

pond to retro-transposable elements (one L1 and one LTR)

that are both supported by at least one mRNA aligned at

these positions. One prediction corresponds to the H19

maternally imprinted non-coding RNA on chromosome 11,

where Exogean nevertheless predicts a 356 amino acid protein

sequence across its 5 exons spanning more than 50% of the

length of the RNA. Another prediction is a GENCODE

putative gene directly downstream of H19 supported by a

single human placental mRNA that, upon manual inspec-

tion, displays no pseudogene characteristics but shows no

similarity to any known protein. GENCODE ‘putative’ genes

are not considered bona fide coding transcripts in this
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Figure 2
Example of transcript modeling from a set of protein and
mRNA alignments using DACMs. (a) The DACM input are
mRNA (r1...r6) and protein (p1, p2) sequences that have
been aligned to a genomic sequence S. The individual local
alignments are each a level 1 transcript model (L1TMs) and
constitute the nodes of a graph DACM1. (b) This graph has
three possible directed edges: same_molecule,
maximal_intron_size, and genomic_molecule_order. Each
corresponds to a different relationship that connects two
nodes if they respectively: are alignments produced by the
same mRNA or same protein; are separated by a distance
smaller than a user defined threshold (for example, 75
kilobases); and are collinear on the molecule of origin
(mRNA or protein) and the genomic DNA. There are nine
maximal paths along the three combined edges, which
reduce DACM1 into the nine nodes (r1 to r6 and p1’,p1’’,
p2) of a graph DACM2, each representing a level 2
transcript model (L2TM). Note that the reduction of
DACM1 splits nodes p1,1 to p1,5 into two DACM2 nodes
(p1’ and p1) because of the absence of a
genomic_molecule_order edge between p1,3 and p1,4. 
(c) DACM2 has three possible edges, inclusion, extension
(for mRNAs) and genomic_overlap (for proteins), which
respectively connect two nodes if: they overlap and their
overlapping introns are identical; they overlap and their
overlapping introns are identical but the second node also
extends the first in 3’; and the span of the two nodes have
overlapping genomic coordinates. The reduction follows
either the ‘extension’ rule for mRNAs edges or the
genomic_overlap protein edge and produces here the five
nodes of graph DACM3 (mRNA nodes R1 to R3 and
protein nodes P1 and P2), which represent level 3
transcript models (L3TMs). (d) DACM3 has two possible
edges, genomic_overlap and compatible_splicing_structure,
which connect (combines) protein and mRNA transcript
models if they respectively have overlapping genomic
coordinates and if the protein transcript model does not
have any exons in introns of the mRNA transcript model.
To reduce the graph, Exogean first identifies the path that
contains both edges and from these, the reduction consists
in grouping all nodes that are connected to the same RNA
node. This generates the three nodes of a graph DACM4
(RP1 to RP3), which represent level 4 transcript models
(L4TMs). These L4TMs are the final transcript models
generated by the DACM expert annotation. (e) Graphical
representation of the DACM expert annotation output: the
final transcript models RP1 to RP3 are represented on the
genomic sequence S. No information has been lost during
the three graph reductions. Note that transcript models
produced by the DACM component of Exogean are not yet
final, and will be further examined and potentially extended
when looking for splicing and start/stop signals.
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evaluation, and it is thus considered an incorrect Exogean

prediction. Finally, four predictions correspond to clear

cases of pseudogenes that Exogean did not identify as such.

In conclusion, across the 31 Encode regions tested, Exogean

predicts only six true false positive genes that do not overlap

GENCODE annotations, and two neighboring genes that are

expressed in the form of RNAs but are either putative CDS or

known non-coding functional RNA.

Conversely, Exogean misses 53 GENCODE protein-coding

genes out of 296 (18%). Examination of each case revealed

eight possible causes, listed in Table 2. The most prominent

reason for which Exogean fails to predict a gene overlapping

a GENCODE annotation is when such genes are organized in

clusters (33 genes missed). In these situations, homologous

mouse proteins invariably produce alignments to most genes

in the cluster because they all share a high sequence

similarity. If one such mouse protein bridges two or more

neighboring genes by producing alignments that are

contiguous both in the protein sequence and in the genomic

DNA, this contiguity will not be eliminated by Exogean

provided it continues to comply with the other rules.

Consequently, Exogean defined transcripts spanning the

entire cluster and the CDS found in each prediction only

covers one or perhaps two GENCODE annotations, resulting

in most genes in the cluster being missed. Most cases (26 out

of 33) concern the Encode region ENm009, which contains

an olfactory receptor gene cluster. Clearly, the rules currently

implemented in Exogean for exploiting protein alignment

need revisiting to address such cases, which theoretically

should not pose a major problem and thus provide a rich

avenue for improvement. The other causes for false negative

predictions each concern fewer cases (between 1 and 8). For

instance, Havana annotated 42 transcripts in 29 genes with

a CDS smaller than 300 nucleotides. Exogean currently does

not predict CDS that would produce a protein with less than
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Table 1

Exogean performances in identifying GENCODE coding sequences

Measure Sensitivity (%) Specificity (%) Exogean correct Exogean wrong GENCODE missed GENCODE total

Overlap

Nucleotides 84.18 94.33 371,369 22,301 69,791 441,160

Exons 90.12 94.94 2,495 133 273 2764

Transcripts 89.37 97.08 498 15 151 649

Genes 82.09 96.35 211 8 53 296

Exact

Nucleotides 84.18 94.33 371,369 22,301 69,791 441,160

Exons 79.34 83.45 2,193 435 571 2764

Transcripts 42.53 52.44 267 237 373 649

Genes 63.18 80.82 187 32 109 296

Table 2

Diagnostic for GENCODE genes missed by Exogean

Class of diagnostic Number of cases Description of the cause

1 33 Proteins matching multiple neighboring genes in clusters

2 8 GENCODE CDS size below 300 nucleotides

3 3 GENCODE CDS interrupted by the boundaries of the Encode region

4 2 Insufficient evidence to predict the gene

5 3 Protein evidence eliminated by Exogean

6 1 mRNA evidence eliminated by Exogean 

7 2 Intron donor/acceptor sites not accepted by Exogean

8 1 mRNA evidence was misaligned with genomic DNA



100 amino acids, which prevented predictions overlapping

eight of these GENCODE genes. Three GENCODE genes

were not predicted because they are interrupted by the limits

of the Encode region. Since we filtered out as potentially

unreliable any evidence that was truncated by the boun-

daries of Encode regions, Exogean was unable to predict

transcripts in these genes. The remaining eight GENCODE

genes that were not predicted by Exogean are due to rules

implemented in the program that are slightly too stringent,

resulting either in the elimination of some evidence or in the

inability to identify rare forms of intron donor/acceptor

sites. These rules can thus probably be refined further.

Exactly matching predictions
The difficulty in automatically annotating protein-coding

genes in eukaryotic DNA lies not so much in identifying

predictions that at least partially overlap the coding

sequence of each real gene but rather in identifying the

precise positions of the coding sequence of every transcript,

that is, the start codon, all the internal exon boundaries if

they exist, and the stop codon. In designing Exogean, we

have focused on maintaining a high specificity in order to

obtain a strong and reliable baseline annotation, with as few

compromises as possible on sensitivity. This is reflected in

Exogean’s specificity in exact gene CDS predictions

(Table 1), which is higher than any other method by a large

margin: no other method shows more than 70% specificity

while Exogean shows more than 80% specificity (Figure 3).

Does this come at the cost of a low sensitivity? A group of

seven methods including Exogean show a distinctly better

sensitivity (between 63% and 73%) than all the others (below

50%). Exogean’s sensitivity (63%) is not, therefore, notably

affected by the quest for a high specificity. In fact, four

GENCODE genes are uniquely identified by Exogean

(supported by both mouse proteins and human mRNAs) and

by no other method from the same category. Altogether,

based on the average between specificity and sensitivity (a

standard measure to compare different methods [5,6]) for

exact gene CDS predictions, Exogean comes in first position

when ranking all the methods that participated in the

EGASP competition (Figure 3).

Like Havana, Exogean is able to predict several alternative

transcripts per gene: Exogean and Havana identify on

average 2.34 and 2.19 isoforms per gene, respectively.

Interestingly, while its sensitivity for detecting transcripts is

the second highest across all methods, Exogean does not

predict exactly matching transcripts with the same high

specificity as for genes (Table 1). To explain this apparent

contradiction, we were interested to see if a specific category
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Figure 3
Exogean outperforms all other automatic methods confronted during EGASP. Histogram of the performances in terms of specificity (Sp, grey), sensitivity
(Sn, white), and average between specificity and sensitivity ((Sn+Sn)/2, black) for all methods designed to predict protein-coding sequences in the EGASP
competition. The values were provided by the EGASP organizers, and are based on predictions matching at least one coding sequence (CDS) exactly for
each Havana annotated gene (known or novel). The methods are ranked left to right from best to worse average between Sn and Sp.
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of GENCODE transcripts is better predicted than others.

Indeed, out of 267 exact transcripts predicted by Exogean, a

remarkable 266 correspond to GENCODE transcripts that

are complete, that is, where a start and a stop codon have

been found. The single remaining exact Exogean transcript

matches one of the 194 incomplete GENCODE transcripts.

This result has two important consequences: the first is the

conclusion that Exogean reproduces GENCODE annotations

much better when the latter are complete transcripts. The

second is the suggestion that a fraction of the complete

Exogean transcripts overlapping incomplete GENCODE

transcripts, and thus not showing exact matches, might be

correct. Indeed, there are 23 GENCODE genes that only

include incomplete transcripts, and complete Exogean

transcripts overlap 11 of these 23 genes. It is thus not

excluded that Exogean is able to completely and correctly

annotate genes that were partially annotated by Havana. If

this was the case, one would expect discrepancies between

Exogean and GENCODE transcripts to occur more often at

the end of transcripts, where arbitrary end points are more

frequent. Figure 4 shows indeed that initial and terminal

exons are less well identified exactly by Exogean than

internal ones, although Exogean does overlap these external

exons with the same sensitivity as internal ones.

An important factor that likely explains why Exogean

transcripts are exact in complete GENCODE transcripts but

not in partial ones is that Exogean only uses human mRNA

and mouse protein alignments, while Havana also includes

human ESTs among other additional sources. When a

GENCODE annotation is only supported by ESTs, then

Exogean will often predict a different transcript or no

transcript at all, depending on the conservation of the

corresponding protein in mouse. This affects mainly

incomplete GENCODE transcripts because ESTs typically

cover only parts of complete transcripts of a given gene.

Conversely, if mRNA evidence exists for a gene, then

Exogean and Havana will both use it and are thus more

likely to predict the same corresponding transcript, which is

more likely to be complete because mRNAs tend to cover the

entire length of transcripts. We are currently formulating

heuristics that will also allow Exogean to take ESTs into

account.

Finally, Exogean predictions show the highest average

number of exons per transcript (9.8) compared to Havana

(8.28) and all other methods (below 8.6). One factor

contributing to this high figure is that Exogean predicts

fewer transcripts with few exons than Havana (Figure 5). In

contrast, Havana and Exogean predict a remarkably similar

number of transcripts with many exons (more than 9 exons)

and this is accompanied by a higher sensitivity in correct

predictions (Figure 6) for these particular transcripts. Here

also, the different sources of evidence used by the two

strategies probably explain these observations: transcripts

with many exons are more likely to be predicted based on

mRNA alignments, while shorter transcripts probably reflect

more EST-based alignments, simply because ESTs are

generally shorter than mRNAs.

An improved version of Exogean (post-EGASP)
Since the EGASP experiment, we have addressed many of

the limitations described above in a new version of Exogean.

Major areas of improvement have focused on refining the

rules to untangle protein alignments in clusters of

paralogous genes, and in the definition of the CDS of tran-

scripts. These rules have a direct positive impact on sensi-

tivity, with very little consequence on specificity; sensitivity

in exact GENCODE CDS identification increases to 72.64%

and specificity remains essentially stable at 79.30%. The

average between these two measures is 75.97%, which

demonstrates a substantial improvement over the version

used in EGASP (72.00%). Using this version, we tested the

influence of the nature of the information provided to

Exogean. Indeed, human mRNAs generally provide a high

specificity and precise exon boundaries but only cover a

subset of genes, while each mouse protein tends to identify a

broad spectrum of genes in human (paralogs), albeit with

fuzzy boundaries. The complementarity of these two sources

of information is confirmed when each is used individually

and then in combination. Human mRNAs alone provide very

specific predictions for a substantial fraction of GENCODE

CDSs (sensitivity and specificity for exact CDS prediction are

64.86% and 82.11%, respectively) and mouse proteins

provide little sensitivity and little specificity on exact CDS

predictions (17.23% and 50.00%, respectively). But

combining both sources yields the performances described
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Figure 4
GENCODE and Exogean agree more often on exact boundaries of
internal rather than external exons. Histogram of Exogean sensitivity and
specificity in identifying the exact boundaries (left) and overlapping
boundaries (right) of Havana initial, internal and terminal exons. While
Exogean more or less predicts overlapping exons with similar specificities
for initial, internal and terminal exons, this is not the case for exactly
matching exons: Exogean internal exons are much more specific (89%)
than external ones (62% and 72%).
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above for the new version of Exogean, with a sharp increase

in sensitivity and a minor decrease in specificity compared

to the use of human mRNAs only. Of note, the sensitivity of

Exogean predictions increases by 8% when mouse proteins

are added to human mRNAs. The reason stems from a rule

that forbids the use of single exon transcript models based

solely on human mRNAs, whereas many such genes are

recovered by mouse proteins.

Discussion
Conclusions from previous studies aiming at comparing

automatic annotation methods in eukaryotic genomes have

often been limited by the availability of a large and reliable

reference dataset. In this respect, the EGASP assessment

project has been a unique opportunity to rigorously measure

how well current strategies replicate meticulous and detailed

protein coding gene annotations on a large and varied set of

genomic regions in a blind test [1] (see Materials and

methods). A commonly accepted standard for annotating

genes is to consider that at least one coding transcript must

be entirely and exactly identified [7]. Using this measure,

Exogean is the method that currently best replicates

reference annotations out of 20 methods tested in EGASP.

In particular, Exogean is the most specific by a large

measure (12% more than the next best), which reflects our
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Figure 5
Histogram of the number of Exogean and Havana predicted transcripts as a function of their respective number of exons. For transcripts with large
numbers of exons (more than 9), Exogean and Havana predict remarkably similar numbers of transcripts.
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Figure 6
Histogram of Exogean’s sensitivity in predicting exact GENCODE
transcripts as a function of the number of exons in the latter. Clearly,
GENCODE transcripts with larger numbers of exons are better identified
than smaller transcripts.
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initial objective when designing the method. In addition, out

of all methods with good performances, Exogean is also the

most consistent across the 31 ENCODE regions [1]. This

suggests that Exogean would be the most likely method to

reproduce its performances on a different set of human

genomic regions. Because 8 out of 10 genes annotated by

Exogean are correct, one possible use of Exogean is to

accelerate annotations by human experts, especially since

the methodology behind Exogean intuitively follows the

same logic. To assist in this task, Exogean generates (in

addition to the positions of transcripts and their sequences)

information on each predicted gene and transcript that

summarizes their structure, the evidence used, the problems

and conflicts encountered and the solutions applied. Human

experts may continue from there and use additional rules,

resources and experiments to correct or confirm the

automatic predictions.

While Exogean is specific, its sensitivity could be improved

in several ways. First, the annotations that we produced for

the EGASP assessment relied solely on two sources of

alignments: human mRNA sequences and proteins predicted

in the mouse genome. It is thus not unexpected that other

participating methods that rely on a wider range of resources

(human ESTs, mRNAs from other species, conserved genomic

DNA) identify more genes, and we are currently designing

rules to integrate some of these resources as well. We also

show that current rules designed to exploit mouse protein

alignments fail when human genes are in clusters, such as

the olfactory receptor gene cluster. The EGASP experience

was extremely useful in helping to uncover such limitations,

many of which have been addressed in a new version of

Exogean.

Automatic annotation methods have traditionally used

statistical models to capture properties of genes and

annotate them in genomic DNA, either alone [8,9] or in

combination with evidence from other sources [10-13].

Exogean departs from these approaches in that it only relies

on rules extracted from human expertise, and as such does

not need to train on a set of known genes to ‘learn’ their

statistical properties. Directed acyclic graphs (DAGs), the

component used in the Exogean strategy to store and

manipulate the information, have already been used in the

context of gene annotation, albeit differently. The program

AIR [14] uses DAGs where exons are nodes and edges are

introns. ESTGenes [15] uses similar DAGs to Exogean but

with a unique edge between nodes, whereas multiple edges

are used in Exogean’s multigraphs. One advantage of using

DAGs as in ESTGenes or Exogean is the strict independence

that can be maintained between the data and the heuristics

applied to the data.

Translating human expertise for gene annotation into a

computational framework could be generalized if an

appropriate language was developed. The formalization that

is at the core of Exogean, namely the DACM algorithm, can

be seen as a natural starting point for developing such a

language. If successful, this approach could lead to a more

general and expressive method to integrate any rule that

biologists use to synthesize information about biological

objects in order to create more complex objects. Such

approaches could potentially be of great use in the future.

Materials and methods
The Exogean software
Exogean is written in Ocaml [16]. Precompiled executables

are available for several platforms [17]. Exogean is currently

able to annotate eukaryote protein coding genes based on

alignments with proteins from a different species and/or

mRNAs from the same species. Input files with the

alignments must be provided in one of several possible

formats (psl, gff or exf, the latter being a simple format

developed for Exogean). For the EGASP assessment,

Exogean used proteins from the mouse International Protein

Index database (March 2005 version containing 42,799

protein sequences) and human mRNA from EMBL (March

2005 release, containing 213,695 mRNA sequences) aligned

by BLAT [18]. If protein alignments are used, a fasta

formatted file with the protein sequences must also be

provided. Finally, a configuration file is required where a

large number of parameters pertaining to the rules used by

Exogean are specified. Given that the alignments are

computed, Exogean is fast since the entire human genome is

annotated in approximately 100 minutes on a single 3 GHz

processor with 1 Gb memory. A formal description of the

Exogean method will be described elsewhere.

The EGASP assessment
To place in their context the results described here, we

briefly summarize the conditions of EGASP [1]. EGASP was

organized by the GENCODE [19] group of the ENCODE

project [20] and the aims were twofold: to evaluate how well

automatic methods are able to reproduce manual and

experimental gene annotation of the human genome; and to

assess how complete our current knowledge is of the gene

content of the human genome. A set of 31 regions of the

human genome from the ENCODE project totaling 21.5 Mb

of DNA were used by 14 groups to predict protein coding

genes. After submitting the predictions, a workshop [21] was

organized to confront the prediction and the annotations

from the Havana group [3] at the Sanger Institute. The

Havana group annotates genes by combining information

from a variety of sources using human expertise and

experimental validations (designated here as the GENCODE

annotations [4]). All the figures for sensitivity and specificity

used for Table 1 and Figure 3 are those provided by the

EGASP organizers based on these comparisons. When

necessary (Table 1, Figures 4 and 6, and text) additional

results for Exogean were computed using the Eval software

[22], kindly provided by the organizers. In the overlap mode,
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any GENCODE annotation with boundaries that overlap an

Exogean prediction is counted as true positive.
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