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Background
Gene finding can usefully be viewed as a two-level task. At

the lower or local level there is a classification task: one of

assigning probability estimates to potential features such as

splice sites and coding start and stop sites on the basis of

sequence information associated with each potential feature.

At the higher or global level, on the other hand, we have a

structure-building task: finding the most probable way(s) to

combine potential features into exons, transcripts and genes.

Classification and structure building are very different tasks,

and although a gene finder can be based on a single

formalism, such as hidden Markov models (HMMs) [1,2],

there is no reason to assume that the same technique will be

optimal for both tasks. Although HMMs seem to offer a good

basis for structure building, they impose independence

assumptions that are not particularly well suited to feature

classification; formalisms such as neural networks [3,4],

maximum entropy modeling [5], Bayesian networks [6-8],

support vector machines [9-11] and relevance vector machines

(RVMs) [12-14] provide alternative approaches with potential

benefits.

Gene finders have conventionally analyzed a single sequence

[2,15-17] or, more recently, alignments between sequences

for two species [18-25]. In the past year or two, gene finders

processing alignments of more than two species have begun
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to appear [26-31]. In principle at least, the additional

information provided by extra species should lead to

improved predictions, but it is far from trivial to extend

existing formalisms to make the best use of it.

In parallel with systems processing only genomic data, gene

finders have been developed to use expressed sequence tag

(EST), cDNA and protein sequences [32-36]; these can

achieve better overall accuracy than systems using multiple-

species alignments, but they are effective only where the

sequences in question have been detected.

The gene finder described in this paper, DOGFISH (for

‘detection of genomic features in sequence homologies’), is

based on the above observations. It predicts gene structures

in the sequence for a target species based on alignments with

one or more informant species. At the global, structure-

building level it employs a fairly conventional HMM. Its two

main novelties lie at the local, classification level. At this

level, it analyses multiple-species alignments (of eight

species in the work reported here), passing the results up to

the HMM for structure building. In this way, it avoids having

to deal with the complexities of multiple-species alignments

and the HMM formalism in the same tightly coupled

framework. To do the classification, it uses a cascade of

relevance vector machines to derive a single probability

estimate from many thousands of individual scores based on

particular aspects of the aligned sequences around a feature

of interest. The HMM sees only the predictions of the

classifier, not the genomic sequences or alignments,

resulting in some useful simplifications.

Results and discussion
In this section, we present results first for classification of

individual splice sites and start and stop codons, and then

for HMM-based gene finding on the ENCODE test regions

using the outputs of the classifier.

Classifier results
As explained in more detail in the Materials and methods

section, DOGFISH’s classifier consists of two main compo-

nents, which adopt respectively a ‘vertical’ and a ‘horizontal’

view of alignments of multiple species around each feature

of interest (see Figure 1 for an example alignment). The

vertical component applies a separate evolutionary model to

each column in an alignment, explicitly modeling mutations

but taking only very limited account of the context in which

the column occurs. The horizontal model is complementary:

it uses Markov models and nucleotide tuple frequencies to

assess the aligned sequence for each species as a possible

instance of the feature under consideration without refer-

ence to the other species, and then combines the results to

produce a single estimate. Thus, in contrast to the vertical

model, it analyses context as thoroughly as possible but

ignores mutations. Since both kinds of information are

important, one might expect each component to perform

well on its own, and a combination of the two to do better

still.

We trained DOGFISH to detect genes in the human genomic

sequence on the basis of the University of California, Santa

Cruz (UCSC) MultiZ alignments [37] with seven other

species. We used the multi-way alignments with mouse, rat,

dog, chicken, zebrafish and fugu, discarding chimp from the

original set because it did not improve results, and adding in

the separately available human-frog pairwise alignments. All

sequences were soft repeat masked using RepeatMasker

[38]. The classifier was trained and evaluated using all the

Vega annotations for human (nine chromosomes, down-

loaded August 2005), excluding those for all 44 ENCODE

regions and for positions 100M to 110M of chromosome 9, a

region with typical gene density that we used for various

tuning purposes. We did not use the 18-species ENCODE

comparative sequences [39], which were only available for

the ENCODE regions, covering 1% of the human genome, for

two reasons. Firstly, this quantity of sequence would not be

enough to train fully the thousands of parameters in the

classifier. Secondly, we wanted to run the system on the

whole human genome, for which the UCSC alignments were

the most comprehensive available.

At the local level, DOGFISH assigns a probability estimate to

every potential splice site, start codon and stop codon in a

genomic region to be analyzed and, for splice sites only, a

probability distribution over the possible coding phases. A

potential splice site is defined here as any AG or GT

dinucleotide; GC splice donors and U12 splice sites are too

rare to be accurately detected. In what follows, by a ‘true’

acceptor site we mean any AG splice site, while a ‘decoy’ is

an AG that is not a splice site. True and decoy donor splice

sites and start and stop codons are defined similarly.

We evaluated a number of variants of the classifier on a

specially constructed ‘challenging’ set of candidate sites. The

probability of including a site in this set, irrespective of

whether true or decoy, was a strongly increasing function of

the score assigned to it by a first version of the classifier that

was itself trained on randomly selected sites. Such a

challenging set is necessary to achieve clearly distinct

performance figures; if sites are randomly selected from the

genome, the classification task is too easy, at least for splice

sites, and many versions of the classifier score close to 100%.

Comparing classifier components
We evaluated performance using the horizontal component

alone, the vertical component alone, and both together. As

well as the scores derived from each of the horizontal and/or

vertical components, we used one further value in all the

experiments. This was derived from a simple ‘presence’

component that just returns a score depending on the set of

species aligned to a site, irrespective of the content of the
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alignment; thus, a site that aligns with many informants is

likely to score higher. This favors true sites because the true

splice sites in our challenging set align with locations in an

average of 5.6 out of our seven informant genomes, com-

pared to 2.0 for decoys, while for start and stop sites the

corresponding figures are 3.8 for true sites and 1.6 for

decoys.

We also evaluated the full classifier against all potential sites

in the roughly 21.5 Mb of the 31 ENCODE test regions. In

genomic regions, decoy sites were thousands of times more

numerous than true ones, rather than just a few times as in

our main evaluation set. This serves as a ‘reality check’ that

our main set, despite its challenging nature, is not artificially

easy. For comparison, we also evaluated the site estimates

output by the full gene finder; these values are based partly

on the classifier estimates but also on the availability of

nearby sites to make up legal gene structures.

F-score and receiver operating characteristic (ROC) error

values are shown in Table 1 for each condition. These results

can be summarized as follows. Firstly, start and stop codons

are much harder to detect than splice sites. Secondly, for

splice sites, presence scores alone are much better than

random: the F scores in the ‘Presence’ line of the table are

well over the small percentage of true sites in the evaluation

set, which would be the F scores expected from a random-

choice strategy. Thirdly, adding either the vertical or the

horizontal component improves performance markedly over

using the presence component alone. Fourthly, for splice

sites, the horizontal component alone is better than the

vertical component alone. Fifthly, using both the horizontal

and the vertical component is consistently, but only slightly,

better than using the horizontal alone. Sixthly, classifier

results on the ENCODE regions confirm that performance is

good on whole genomic regions, where decoys outnumber

true sites by thousands to one. (The simultaneous decrease

in both F score and ROC error rate is a consequence of these

regions having far more, but on average easier, decoys than

the main test set; see Materials and methods.) Finally, not

surprisingly, the full gene finder is much more accurate than

the classifier alone on the ENCODE regions.

Analysis of classification errors
The errors in classification on the challenging test set are

broken down by site type in Table 2. For this table, we set
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Figure 1
Alignment for a coding splice acceptor site. The figure shows the central part of a typical alignment window used by the classifier component of
DOGFISH. Codon boundaries on the exon side of the splice site are indicated with dots. This site has an alignment with all species except frog: hs; 
Homo sapiens: mm; Mus musculus: rn; Rattus norvegicus: cf; Canis familiaris: gg; Gallus gallus: dr; Danio rerio: fr; Fugu rubripes. The AG dinucleotide for the
acceptor site itself is shown in bold.

hs TGGGTGGGCACGTGTGACGCTGGTCCCCTCTCCTTTGTAGCTGTGGTGCACCTGCCATAAGAAGTCCTTGGTGGAAACAG 
mm TAGAC-------TGTGATCTCAATCAATTTTCCTCTGCAGCTGTGGTGTACCTGCCACAAGAAGTCATTGGTGAAAACAG 
rn  TAGAC-----TGTGTGGCCTGGATCACTTCTCTTCTGCAGCTGTGGTGCACGTACCACAAGCAGTCTTTGGTGAAAACGG 
cf GGGCG------------------TCCTTCCTCCCCGGCAGCTCTGGTGCACCAGCCACAAGAAGTCGCTGGTGAAGGCGG 
gg -------------GTGAGGCT--CGGCTTTTTATCTCCAGCTATGGTCCACGTTTCATGAAAGACATCTGGTGAAGGAAG 
dr ----------------------------TTTCTTTCACAGCTCTGGTGCACCTTCCATGAAAAGGCCTTGGTGAAAGGAG 
fr     TGAAT-----CATGAGACGTTGACGTCTTCTTTTTTGTAGCTGTGGTCCACTTTCCACAAAAAGTCCATGGTCAAGGAGA 

                                            .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Table 1

Prediction accuracies for vertical and horizontal components

Acceptors Donors Starts Stops

Train set size 204,021 221,421 7,571 25,071

Eval set size 52,605 57,179 1,805 6,162

%True sites 14.05 13.01 16.68 8.08

F scores (%)

Presence 52.72 48.77 39.70 34.64

Vertical 82.01 81.00 55.70 49.25

Horizontal 84.36 84.43 57.01 48.22

Both 84.86 84.60 58.22 49.60

ENCODE Cl 63.18 65.86 27.44 14.67

ENCODE GF 80.23 81.38 42.47 50.49

100-ROC (%)

Presence 12.41 12.66 20.62 23.98

Vertical 2.46 2.52 14.49 12.76

Horizontal 1.81 1.58 12.48 11.77

Both 1.74 1.54 10.41 10.90

ENCODE Cl 0.99 0.61 9.14 10.49

The table shows the F score (geometric mean of sensitivity and specificity,
which are close to each other) for various classifier components. The test
set for the presence, vertical, horizontal and ‘both’ conditions is
‘challenging’ data; we show results for a mixture of the classifiers trained
on challenging and randomly selected data. The ‘ENCODE Cl’ and
‘ENCODE GF’ lines are for the 31 ENCODE test regions, using classifier
scores and gene-finder scores, respectively. The table also shows the
100%-ROC (receiver operating characteristic) error value for each
condition. This error value is the probability that if a true instance and a
decoy are selected at random, the classifier will give the decoy a higher
score than the true instance.



acceptance thresholds so that false positives balance false

negatives. (We treat a decoy as ‘coding’ not only if it falls

within a coding region of the genome but also if it is within

50 bases of a coding region. In the latter case, it will

generally have 50 or more coding positions within the 200-

nucleotide region described in Materials and methods,

making it in that regard more similar to a true coding site,

which usually has 100, than to a true non-coding site, which

usually has none.)

Not surprisingly, the figures indicate that non-coding splice

sites are harder to detect (have a higher error rate) than

coding ones. However, we were initially surprised that

intergenic splice site decoys (which are by definition non-

coding) should have a much higher error rate than intra-

genic non-coding or even coding ones. This could be due

either to suppression of non-functional splice sites inside

transcripts or to non-annotated exons outside annotated

transcripts. We found no evidence of suppression (decoys

inside and outside transcripts were similarly distributed) but

we did find evidence for unannotated exons.

If substantial numbers of exons are present in a region, one

would expect high-scoring candidate acceptor (A) sites to

alternate with high-scoring donors (D) more often than

chance would predict. Therefore, we looked at the highest-

scoring N acceptor candidates and the highest-scoring N

donors, for various values of N. If no exons are present, we

would expect neighboring AD and DA pairs on the same

strand to occur no more often than AAs or DDs. However, if

there are exons, then as N rises, we expect ∆, the excess of

ADs and DAs over AAs and DDs, to rise as genuine splice site

pairs enter the set, then to fall again as the pattern is

destroyed by lower-scoring, mostly decoy sites.

We looked at how ∆ varied with N on human chromosome

13. This chromosome was selected because, in proportion to

its length, it had contributed the smallest number of sites to

the top-scoring 2% of intergenic decoys to the test set and,

therefore, seemed likely to contain the fewest unannotated

exons. Even on this chromosome, we found ∆ rising to a

highly significant level and then falling again, as predicted.

At maximum, we found a total of 2,062 AD and DA pairs in

the chromosome 13 intergenic regions, compared to 1,712

AA and DD pairs, giving ∆ = 350. The corresponding ∆ value

for intragenic regions was 4,773 - 1,658 = 3,115. The Vega

annotation of chromosome 13 contains about 3,000 internal

(bounded by an acceptor and a donor) exons, which would

suggest there are around 3,000 × 350/3,115 = 337 exons still

be to be annotated. We return to the implications of this later.

Splice site phase determination
We have seen that using the vertical component in addition

to the horizontal one does not improve splice site detection

by more than a small amount. However, this is not the case

for the task of determining splice site phases. For coding

splice sites, the error rate (percent incorrect) for the various

combinations is given in Table 3; we take a prediction as

correct if the true phase is the one assigned the highest

probability. These results show that for phase determina-

tion, the vertical component is superior to the horizontal.

This would appear to be because the vertical component

explicitly looks for patterns of amino acid conservation,

which are a more powerful indicator of phase than the per-

species nucleotide preferences detected by the horizontal

component. However, using both vertical and horizontal is

much better than using vertical alone, suggesting that the

horizontal component, with its wider view of context, is

picking up phase-indicating contextual effects wider than

individual codons, even though it does not compare

sequences so is blind to patterns of mutation.

The effect of additional species
Finally, we tested one of the assumptions behind this work,

that the more informant species are used, the better the

classifier works. We evaluated the configuration of the system

containing the species-presence and horizontal components

of the classifier trained on challenging data; this is almost as
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Table 2

Error rates broken down by site type

Acceptors Donors Starts Stops

True sites, false reject percentages

Overall 4.45 4.08 17.61 15.86

Coding 4.34 3.88 17.61 15.86

Non-coding 7.48 10.00 NA NA

Decoy sites, false accept percentages

Overall 4.45 4.08 17.35 15.84

Coding 2.34 1.08 23.19 2.92

Non-coding intra 2.54 2.21 12.17 16.58

Non-coding inter 8.00 8.31 18.05 16.07

The table shows the proportion (in the challenging test set) of various site
types that received an incorrect classification. The classification threshold
is adjusted to achieve roughly equal proportions of false positives and
false negatives. NA: not applicable.

Table 3

Phase prediction error rates on coding splice sites

Acceptors Donors

Vertical 3.84 3.02

Horizontal 5.17 4.79

Both 1.99 1.60

The table shows the percentage (in the challenging test set) of coding
splice sites for which the coding phase that was assigned the highest
probability was not the annotated phase.



accurate as the full system in classifying splice sites. We made

available one species (human), two (human and mouse), four

(the mammals) and all eight; Table 4 shows the results. As

expected, the greatest gain comes from the first additional

species, mouse. However, more gains are apparent as further

species are added, with non-mammal species apparently just

as useful overall as additional mammals.

Gene finder results
We combined the classification results into gene structures

using an HMM as described in Materials and methods. In

the evaluation here, we focus on exon performance as the

primary indicator.

Table 5 gives sensitivity and specificity results at the

nucleotide, exon and transcript level on the 31 ENCODE

testing regions, for DOGFISH-1, the version available at the

time of the ENCODE competitive evaluation in May 2005,

and for DOGFISH-2, the current version. Although the latter

version was developed after the detailed annotations of the

testing regions were released, no nucleotide sequences,

alignments or annotations for any of these regions were used

in any way in developing any version of DOGFISH.

DOGFISH-2, the current version of the system, is described

throughout this paper. The most important differences

between DOGFISH-1 and DOGFISH-2 are as follows. Firstly,

although DOGFISH-1 constructed coding-phase-specific

models within the horizontal and vertical components, the

RVM cascade did not maintain separate per-phase hypothe-

ses during its later data reduction. This both decreased the

accuracy of its estimates and meant it was unable to pass

phase information on to the HMM. Secondly, DOGFISH-1’s

HMM component was less sophisticated than that of

DOGFISH-2, and in particular did not use N-best lists [2]

(see Materials and methods) to mitigate the negative effects

of using exon and intron length penalties. Thirdly, the

training set used for DOGFISH-1’s classifier was not

constructed systematically to include difficult decoys and,

therefore, the classifier was less well-matched to the needs of

the gene finder.

Error analysis
The gene-finding results for both DOGFISH-1 and

DOGFISH-2 are derived from the single best-scoring HMM

path; thus only one transcript per gene is predicted, a bias

that is reflected in sensitivity scores being rather lower than

specificity. In fact, the excess of false-negative over false-

positive exon detection errors made by DOGFISH-2 on the

ENCODE test set is almost exactly equal to the number of

alternative exons in the reference annotation; these account

for half of all exon errors.

The next most important source of errors is the classifier’s

poorer performance on start and stop codons than on splice

sites. The overall exon sensitivity of 63.68% in fact breaks

down to around 73% for internal exons and only 37% for

external (initial and terminal) ones, while specificity (84.90%

overall) is 87% for internal exons and 73% for external. This

difference directly accounts for about a quarter of all the

exon errors, and has an additional knock-on effect in the

form of increased numbers of errors in internal exons

adjacent to external ones, accounting for a further 20% of

the errors. Most of the final 5% of errors can be traced to

imperfect classifier estimates on splice sites.

This analysis suggests a number of ways in which DOGFISH

could be improved. Firstly, by explictly modeling splicing

signals not currently handled, such as enhancers and

repressors; this could be done by applying independently

derived information to train weight matrices for such

signals, which can be longer than the six-nucleotide patterns
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Table 4

Prediction accuracies for different numbers of species

Acceptors Donors Starts Stops

Train set size 204,021 221,421 7,571 25,071

Eval set size 52,605 57,179 1,805 6,162

F scores (%)

Human only 66.78 67.25 35.34 22.20

Human+mouse 80.67 82.74 43.38 30.57

All 4 mammals 82.53 83.99 44.02 31.88

All 8 species 84.31 84.82 51.45 34.93

100-ROC (%)

Human only 5.22 4.31 18.30 20.03

Human+mouse 2.45 1.93 13.18 15.54

All 4 mammals 2.21 1.81 11.77 14.75

All 8 species 1.76 1.54 10.53 11.68

The table shows the F score (geometric mean of sensitivity and
specificity) and ROC error rate (area not under the ROC curve) for the
horizontal component of Classifier Two trained on different numbers of
informant species and running on the challenging evaluation (Eval) set. All
scores are percentages.

Table 5

Exon and transcript accuracies

DOGFISH-1 DOGFISH-2

Exon sensitivity 53.11 63.68

Exon specificity 77.34 84.90

Transcript sensitivity 5.08 8.94

Transcript specificity 14.61 33.12

The table shows percentage sensitivity and specificity at the exon and
transcript levels for the workshop version, DOGFISH-1, and the current
version, DOGFISH-2.



processed by the current method. Secondly, by an explicit

treatment of the specific characteristics of alternative exons

[40]; including high-scoring exons not on the HMM’s best

path as suggested in [41] did not work well. Thirdly, by

better modeling of untranslated regions [7,28]. Fourthly, by

using alignments with more informant species, both closely

related and more distant. Fifthly, by improving accuracy on

start and stop codons.

Of these, there is reason to hope for good progress from

applying variants of DOGFISH’s existing machinery to the

first four problems; but we have already devoted substantial

effort to the last issue, start and stop codons, and it is not

clear to us how much better accuracy could be obtained for

these features. The difficulty seems to be that despite the

known consensi around these sites, interspecies conserva-

tion is not as strong as for splice sites and so a multiple-

alignment based method cannot predict them as accurately.

Exon probability estimates
The gene finder HMM assigns a score to every candidate site

and exon. Using these scores, we trained separate relevance

vector machines (RVMs) for initial, internal and terminal

exons to estimate the probability of correctness of each

candidate coding exon. By setting the threshold for accep-

tance, we were able to trade off sensitivity against specificity.

We call this version of the system DOGFISH-2E, since it

predicts individual exons with no requirement that they

make up correct transcripts; this could indicate additional

exons incompatible with the most likely gene structure, and

also allows low-scoring exons (even when on the best path)

to be discarded. Figure 2a shows the behavior on the

ENCODE test regions for internal exons, external exons

(initial and terminal individually show similar behavior) and

all exons together. The points corresponding to DOGFISH-2

are shown there as crosses; note also that close to 50% of all

exons are predicted with specificity 95% or better.

Whole-genome scan
We ran DOGFISH-2E over the whole human genome (exclud-

ing chromosome Y because of its overlap with X), estimating

probabilities for over 1.3 million candidate exons, and

looked at how these estimates correlated with whether each

exon was among the 181,475 coding exons in the Ensembl

database (downloaded 9th November 2005). We found that

the probability of an exon being present in Ensembl was very

well modeled by its DOGFISH-2E estimate multiplied by

0.889 (compare Ensembl’s 0.775 sensitivity against the

ENCODE annotations; see companion paper in this supple-

ment). For DOGFISH-2E on the ENCODE test data, the

corresponding factor was 1.001, though the relationship was

less linear (Figure 2b). It seems likely from the difference

between the factors that substantial numbers of exons are

missing from Ensembl.

DOGFISH-2E assigns an estimate of 0.95 or greater to

99,369 exons over the whole genome. On the ENCODE test

data, 95.9% of exons scoring over this threshold are

annotated as correct; thus, it seems reasonable to assume

that 0.959 × 99,369 = 95,295 of the whole-genome predic-

tions are correct. Of the 99,369, only 88,385 are annotated

in Ensembl as coding exons, with 10,984 either absent

altogether or, in a minority (15%) of cases, annotated as non-

coding. Even if we assume that all of the 88,385 are correct,

we are left with an expected 95,295 - 88,385 = 6,910 correct

predictions among the 10,984 additional ones, giving a

specificity of 62.9%. Adding 6,910 new coding exons to

Ensembl’s existing total of 181,475 would increase the

number by 3.8%.

These results, together with the pattern of alternation of

high-scoring ‘decoy’ acceptor and donor splice sites in
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Figure 2
DOGFISH-2E results. (a) Sensitivity and specificity for DOGFISH-2E
output. The figure shows plots for specificity against specificity on the
ENCODE test regions as the acceptance probability threshold is varied
for internal exons, external (initial and terminal) exons, and all exons
together. ‘X’ is used to mark the DOGFISH-2 sensitivity and specificity
values, and the specificity value of 95% for almost 50% sensitivity is
highlighted. (b) Probability of annotation as a function of DOGFISH-2E
estimate. The figure shows DOGFISH-2E probability estimates on the x
axis and, on the y axis, the probability that a site a DOGFISH-2E estimate
of the given magnitude is annotated in ENCODE and Ensembl,
respectively. The Y=X line is shown for comparison.
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regions annotated as intergenic in Vega, lead us to conclude

it would be fruitful to use high-scoring DOGFISH-2E

predictions to guide experiments searching for new coding

exons. It would also be interesting to investigate how far

these ‘missing’ exons overlap with existing EST data and

with so-called transfrags [42].

Conclusions
Distinguishing two levels of the task of gene finding allows

separate strategies to be applied at each level, allowing us to

make good use of the information present in multiple

alignments without the system becoming unmanageably

complex. The current accuracy of DOGFISH is comparable

to that of the best published gene finders that use multiple-

species alignments (see other papers in this supplement),

confirming that a two-level approach can yield good results.

Perhaps surprisingly, vertical (evolutionary) models do not

appear to offer much advantage over combining the results

of horizontal ones when it is a matter of distinguishing true

sites from decoys; however, they are useful for determining

phase, a task that is important for guiding the gene finder,

since a phase mismatch can help rule out an otherwise

promising exon.

The strategy of using multiple species pays off: we have

demonstrated that the more species are used, the more

accurately splice sites can be detected. It remains to be

verified whether this effect will continue to apply if more

than eight species, or different species, are used, but Table 4

does not suggest that saturation has been reached.

Furthermore, adding more closely related informants as

their genomes become available should also improve

performance, since 3.4% of confirmed coding splice sites in

our data set have no alignments at all, and a further 3.5%

only align to one other species.

Three useful resources arise from this work. The first is the

challenging data set used to train Classifier Two, which we

offer for use for training and testing both single- and

multiple-species feature classifiers. The second is the single-

species subpart of the horizontal component, which is a

strong single-sequence classifier in itself. The third is a set of

predictions of splice sites, exons and genes obtained by

running DOGFISH over the whole human genome, which

will enable experimental effort to be concentrated on

predictions that are not part of known genes; we estimate

that if the highest-scoring 50% of these extra predictions are

selected, over 60% of them will be correct.

Materials and methods
In this section, we devote most attention to DOGFISH’s

classifier, which contains most of the novel aspects of the

system. We finish with a description of the structure-building

HMM, focusing on the way it uses classifier outputs and the

respects in which it differs from conventional HMM

technology.

Classification methods
The main mechanism that DOGFISH uses in its classifier is

the Biojava [43] implementation of the RVM [12,14], a

robust and accurate new classification technology that

dispenses with many of the independence assumptions

inherent in HMMs. An RVM is a trainable device for

mapping any number of input scores (which may or may not

themselves represent probabilities) to a single output

probability. In contrast to most other classification methods,

when the mapping is trained, a few inputs typically receive

high weights (are viewed as ‘relevant’), a few more get low

ones, and many are assigned a weight of zero, on the basis

that they do not offer any further useful information once

the other inputs, with which they may be correlated, have

been taken into account. The tendency of RVMs presented

with many inputs to select only a few of them as relevant

leads to good robustness, greater transparency than some

alternative techniques, and some efficiency gains because

the values of zero-weighted inputs do not need to be

calculated.

DOGFISH applies a cascade of RVMs to carry out a stage by

stage reduction of many thousands of scores, each derived

from one small facet of an alignment around a site of

interest, to a single estimate of the probability that the site is

a true instance of a particular feature such as an acceptor

splice site.

DOGFISH classifies a feature by looking at a 200-nucleotide

window centered on it. Each column of the window contains

a target-species nucleotide and, for each informant species,

either a gap character or a nucleotide from that species. The

window is much wider than the known consensus of a dozen

or so base-pairs around splice sites; however, this choice

makes it possible to detect not only these consensi but also

coding phases and transitions between introns and exons

and between non-coding and coding regions, both of which

are marked by distinctive patterns of conservation and

divergence in the alignments. Doing this removes most of

the need for an explicit model of coding sequence in the

HMM, which is able as a consequence to avoid looking at

nucleotides altogether and work simply on the classifier

output scores.

The inner 78 positions of a classifier window, for a typical

phase-zero acceptor site, are shown in Figure 1. Sequences

from seven species are aligned here, with species identifiers

shown to the left; the top one is the human sequence, and

the frog sequence is missing. The AG dinucleotide at the site

itself is shown in bold, and codon boundaries are indicated

by dots under the alignment. Characteristically for this type

of site, we see much better alignment on the exon (down-
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stream) side than the intron side; a polypyrimidine tract just

upstream of the site, clearly present in all species but with

poor inter-species alignment at the nucleotide level; and, on

the exon side, at least close to the splice site, more mutations

in codon-final positions. The classifier uses all this infor-

mation not only to distinguish true sites from decoys, but

also, for the case of splice sites, to determine coding phase.

‘Vertical’ and ‘horizontal’ perspectives
There are many ways in which a classifier could be trained

on such a data structure, but two are clearly worth pursuing.

As discussed briefly above, we call them vertical and

horizontal approaches according to which dimension of the

window they treat as primary.

In the vertical approach, we look primarily at the columns of

the window, each of which contains the target-species

nucleotide at a particular offset from the (candidate) site in

question and its alignment, if any, with each informant

species. We apply offset-dependent evolutionary models to

derive a score for each column having arisen at that offset

from a feature of the type under consideration (for example,

17 bases upstream of a phase-zero splice donor). We then,

secondarily, look at the horizontal dimension, combining the

per-offset scores resulting from the primary step into a

single estimate.

By contrast, in the horizontal approach, we first treat the

sequence for each species as a potential instance of the

feature in question and derive an estimate of the probability

that it is indeed one. We then, secondarily, combine these

species-specific estimates together (making suitable allow-

ance for one or more species being absent altogether) into a

single estimate.

Each approach has its strengths and weaknesses. The

vertical approach involves an explicit treatment of mutation

at a given position but, because of the complexities of

evolutionary models, it can take only limited account of

contextual influences between neighboring positions [29,44,

45]. In contrast, the strength of the horizontal approach is a

thorough treatment of just these influences, at the price of

ignoring the relationships between aligned nucleotides. The

complementary nature of these two approaches means there

is reason to hope that a combined approach will do better

than either one on its own.

We accordingly combine the two components on an equal

basis, in the following sense. For each window to be

evaluated, the horizontal component makes eight predic-

tions (one for each available species) that are then

combined into a single one. We therefore implemented the

vertical component also to make eight predictions by

dividing the 200-nucleotide window into 8 subwindows of

25 bases, and combining each set of 25 column-specific

scores to produce a single value. We then combine the 16

resulting values (one horizontal for each species, and one

vertical for each 25 base-pair subwindow) into a single

estimate.

For our vertical component, we use the PAL phylogenetic

analysis package [46], selecting the generalized time-

reversible model of mutation [47]. We train separate sets of

models on sets of true and decoy candidate sites and on sites

of different coding phases. We also distinguish intragenic

from intergenic decoy sites, giving us nine ‘site types’ for

acceptors (phases zero, one and two true sites, non-coding

true, phases zero, one and two decoys, and two types of non-

coding decoy), nine for donors, and six each for starts and

stops (since true instances can only be phase zero). Within

each 25 base-pair subwindow, we divide the training data

differently depending on whether that subwindow repre-

sents a coding or non-coding region in the target species. For

a 25 base-pair non-coding region, we train each offset with a

separate model, yielding 25 models. For a coding region, we

train separately for each codon position of each amino acid

or stop codon, yielding 3 × (20 + 1) = 63 models. Thus, in

total, over all subwindows and site types, we trained over

2,700 evolutionary models for each kind of splice site and

over 1,800 for both coding starts and stops. This was

possible because of the tens of thousands of training

examples available to us, each containing information at

every offset.

Because PAL models only mutations and not gaps, we

included in the vertical model a simple gap model that

applied an RVM to the counts of gaps, and ungapped runs of

nucleotides, of particular lengths in particular parts of the

window. For example, one such feature would be number of

gaps of length 4 to 15 starting (in any species) at an offset

between 0 and 25 to the right of the center of the window. In

subsequent processing, the estimate derived from the gap

model was treated just like each of the eight estimates for

25-base subwindows.

For the horizontal component, we again train separate sets

of models for each site type. We analyze each sequence in

two ways. Firstly, we estimate the likelihood of each

nucleotide using position-specific weight matrices [1], using

a context length of up to six nucleotides; smoothing is

achieved by only using a longer context when the distribu-

tion of its predicted target nucleotide is significantly differ-

ent on the training data from that given by a shorter context.

Secondly, we look for the words of length six or less whose

frequency of occurrence over given parts of the window

varied most between training sets. For example, the triplet

TCT is much more common in the 20 bases upstream of true

acceptor sites than of decoy AGs because of the presence of

the polypyrimidine tract in true acceptors. To detect coding

biases, we counted both overall occurrences of this type and

occurrences starting at offsets differing by a multiple of

three.
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Combining estimates using relevance vector machines
Each component thus yields several hundred different scores

on each candidate site for each hypothesized site type. We

reduce these to the final true-site and phase probability

estimates for a site as follows.

First, we considered each pair of possible types for the site,

for example, phase-zero true with phase-two decoy, taking

logs of ratios of corresponding estimates in both the

horizontal and vertical components. For each pair, we train a

RVM on the scores from the horizontal component (using

target-species sequences), and one RVM for each of the

subwindows in the vertical component. Each of these RVMs

selects anything from a handful of its inputs to nearly all of

them as ‘relevant’, and maps from those scores to a single

output. Site types are considered in pairs rather than all

together because an efficient approximation for the

optimization process involved in training the RVM is only

known for the case of two classes, not multiple ones.

By this stage, for each pair, we have eight RVM output scores

from the horizontal component (one for each species present

in the alignment, with suitable trained defaults used where

species were absent), and nine from the vertical component

(one for each subwindow and one for the gap model). Next,

we train another RVM to combine these scores (plus that of

the ‘species-presence’ component) into a single estimate for

the probability that the given instance represents one of our

current pair of site types rather than the other.

Each kind of splice site, as we have seen, has nine types,

yielding 9 × 8/2 = 36 different pairs, and coding starts and

stops have six, yielding 15 pairs. Our next step is thus to train

a further RVM to make the true versus decoy distinction on

the basis of all decoy-and-true site type pairs. For splice

sites, we also train one to predict the probability of each

phase among true sites on the basis of all true-true pairs.

The outputs of the phase RVMs are then normalized so that

they sum to one in the probability domain.
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Figure 3
Mean RVM weights for horizontal and vertical component inputs. The figure shows the means, with p = 0.05 two-tail error bars, for weights assigned to
inputs by acceptor site-type-pair RVMs in Classifier Two, averaging over all 20 pairings of decoy with true site types. The presence component has a
single score. Two-letter abbreviations are used for the species-specific scores output by the horizontal component, while the vertical-component
quantities are for eight 25 base-pair subregions (only six of which ever get non-zero scores) with one gap score. Species abbreviations are as in Figure 1.
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Finally, for reasons explained below, we run two separate

instances of the classifier trained on two different data sets,

and average their results together; we could have trained

RVMs to do this step, too, but we found that performance

was quite insensitive to the weights used.

Figure 3 illustrates one stage of the data-reduction process,

showing how one presence, eight horizontal and nine vertical

scores are weighted. The values given are means over all 20 (5

decoy types by 4 true) acceptor site RVMs for Classifier Two,

with p = 0.05 error bars on the means. Each RVM input is

separately prenormalized to have a standard deviation of one,

so that the weights are directly comparable. It can be seen that

the weights given to horizontal-component scores decrease

with evolutionary distance from human. The vertical

component gives a lot of weight to its gap model and to the

subregion from 0 to 25 bases upstream of the AG, and some

weight to those 0 to 25 and 25 to 50 downstream, but

effectively none to any others, since their weights are either

always zero or are on average indistinguishable from zero. The

presence component makes a positive but small contribution.

Rational choice of training data
Choosing appropriate training data for the local level of

DOGFISH is an important and non-trivial issue, because

there are thousands of times more decoy sites in a genome

(in the sense of specific di- and trinucleotides) than true

ones. Training a classifier with many parameters usually

gives best results with many thousands of true sites, which

implies using a significant portion of the genome, containing

many millions of decoys. Processing all those decoys in

training may not be practically feasible; and even if it is,

doing so may well, as pointed out in [48], result in a

classifier that rejects every item.

The imbalance can be reduced or even eliminated by

procedures such as random sampling of decoys [6] or only

considering regions known to be relatively rich in true

instances, such as the coding extents of genes ([49], resulting in

a decoy-to-true ratio of around 100). However, random

sampling is likely to leave the classifier somewhat undertrained

on the more difficult decoys, only a few of which will be

selected for training; and annotation-based region selection

will systematically exclude whole classes of decoys, many of

which may be difficult ones (compare the large proportion of

intergenic false positives in Table 2). Both procedures

represent a partial mismatch with the requirements of the gene

finder, which has to process whole genomic regions and is

especially likely to be misled by poor classifier estimates on the

more challenging decoys. Therefore, although we do need the

classifier to reliably recognize the easier decoys that form the

vast majority of the sites it will encounter, we also need it to be

well-trained on challenging ones.

We therefore train and run two versions of the classifier, and

give the gene finder the average of their estimates. Classifier

One is trained using a large set of true sites and randomly

sampled decoys. The training set for Classifier Two is

constructed by running the classifier one and the gene finder

over the whole Vega portion of the genome. To do this in

reasonable time, we run Classifier One in a ‘lite’ mode in

which the horizontal component only examines the target

(human) sequence, and the vertical component is replaced

by a much simpler one based on counting occurrences of

codons and amino acids in different site types.

We then create a training set for the Classifier Two by a

highly non-uniform random selection process, favoring

high-scoring sites from the output of the first-pass HMM,

irrespective of whether they are true and decoy, but without

excluding low-scoring ones altogether. Crucially, this

selection process does not rely on any form of annotation.

The result is a set consisting of nearly all the true sites that

have a reasonable chance of being detected by DOGFISH,

and several times as many decoys, most of which are

challenging ones. Around 20% of true splice sites and 65% of

true start and stop codons are omitted, along with the vast

majority of decoys, because they score low as a result of

aligning with few species and/or not reflecting the consensus

sequence well.

Training Classifier Two on this set has the effect of tuning it

to the hardest kinds of decisions that the second-pass HMM

will ask it to make. Furthermore, we believe that this

training set is of interest in its own right as a challenging

testbed for genomic feature classification, since it is enriched

for difficult (that is, realistic, from a gene-finding perspec-

tive) decoy cases rather than being made artificially easy by

being enriched for true sites on the basis of existing

annotations.

To train each classifier instance, we first divided the data

into 10 roughly equal-sized portions, P1 to P10. P1 and P2

were used to train the underlying horizontal and vertical

models (Markov, word-based and evolutionary); P3 to P6 to

train the intra-component RVMs; P7 and P8 to train the site-

type-pair RVMs; P9 to train the RVMs to produce the final

estimates; and P10 (taken from challenging, second-pass

data set for both classifier instances, not just for Classifier

Two) for evaluation. The classifier results given in this paper

are for two evaluation runs, in one of which P9 and P10 were

exchanged. The gene-finding results instead used both P9

and P10 together to train the final RVMs; there was no need

to hold either of them out, as the entire data set under

discussion here is disjoint from all the ENCODE regions.

To avoid the training and evaluation sets being too similar to

each other and thereby artificially boosting the accuracy

scores, we allocated sites to portions not at random but so as

to ensure that as far as possible, paralogs were allocated to

the same portion. First, all sites (true and decoy) from within

the same gene were put in the same portion. Second, genes
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were clustered so that as far as possible, two genes that both

(partially) aligned to the same piece of informant sequence

were also put in the same portion.

The global level: structure building using HMMs
Most of the complexity of DOGFISH is, as we have seen,

located in its local-level classifier, allowing the global-level

HMM component to be relatively simple. The system works

as follows. Every potential splice site and start and stop

codon on both strands in the target sequence is handed to

the classifier, which, as we have seen, returns an estimate of

the probability that the site is a true instance of the feature

in question, accompanied, for splice sites only, by a

probability distribution among the four possible coding

phases (zero, one, two and non-coding) conditioned on the

site being a true one. The HMM sees only these estimates,

not the DNA sequences themselves, and searches for the

best-scoring combinations of sites that are consistent with

(its model of) the structure of protein-coding genes. Before

this search is carried out, the site scores undergo linear

transformations, with different parameters for splice sites

and for start/stop sites; parameters for these transforma-

tions were optimized on the 13 ENCODE training regions for

evaluation on the 31 testing regions.

The HMM’s topology imposes several simplifications on

biological reality. Firstly, no attempt is made to model

transcription start sites and polyadenylation sites. Instead, a

gene starts either with a start codon (for the case where

coding starts in the first exon) or with a non-coding splice

donor (the end of the first exon where coding starts in some

later exon). Similarly, it ends with either a stop codon or a

non-coding splice acceptor. Secondly, non-coding trans-

cripts are excluded for the same reason. Thirdly, genes with

a single coding exon are handled, but are not treated

specially despite evidence [50] that they should be: such

genes often arise from reverse transcription of mature

mRNAs, so that their single exon tends to be as long as

several exons in the more common kinds of genes. As a

result, few are predicted. Fourthly, no provision is made for

overlapping or embedded genes, on either the same or

opposite strands, although alternative paths through the

lattice can be pulled out once the HMM has run. Fifthly, no

provision is made for start and stop codons interrupted by

introns, largely because of the difficulties of training the

classifier on sufficient numbers of these relatively rare cases.

Sixthly, as stated earlier, only AG acceptor sites and GT

donors are considered, for similar reasons.

The first of these simplifications is applied because trans-

cription start sites and polyadenylation sites are notoriously

hard to model accurately and in most cases are not even

known precisely. Each of the other simplifications makes the

overall model simpler, excluding various rare and, therefore,

hard-to-train cases; we believe that these decisions make an

overall positive contribution to accuracy by ruling out many

false positives, at the admitted cost of also excluding a

relatively small number of correct structures.

The only respect in which DOGFISH’s HMM departs from

the basic technology is that it explicitly models the observed

distributions of exon and intron lengths, penalizing very

short introns and exons. These penalties can be applied only

to complete hypothesized exons and introns, not to partial

ones, with the consequence that the algorithm is no longer

quite sound: the overall least-cost path is no longer

guaranteed to be found. To mitigate this effect, we maintain

at each position a N-best list [2] of the best few path

continuations in each direction, rather than just the best one.

We have found N = 5 maintains reasonable efficiency while

excluding few if any correct and (theoretically) highest-

probability paths. Accuracy is much improved overall by

modeling lengths; for example, if they are not modeled, many

more very short exons and introns (lengths less than 20 and

50 nucleotides, respectively) are accepted than really occur.

The DOGFISH-2E exon probability estimates were derived by

training three separate RVMs, for initial, internal and terminal

exon candidates, respectively. The inputs to each RVM were

the scores assigned by the gene finder to the sites and each

end of the exon; the log of the length of the exon; and the

‘competition score’, the difference between the HMM score for

the exon itself and that of the best-scoring overlapping exon.

The competition score is positive for exons on the best-scoring

path and negative for all others; the RVMs for internal and

terminal exons used it almost to the exclusion of all the other

inputs, while the initial-exon RVM mainly favored the

minimum of the two end-site scores. For evaluating

DOGFISH-2E on ENCODE test data (Figure 2a), we trained

only on the ENCODE training regions, while for the whole-

genome scan we used RVMs trained on all the ENCODE data;

the resulting differences appeared to be minimal.

Software
The DOGFISH comparative gene finder software and its

predictions on the human genome are available under the

GNU public license at [51].
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