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Abstract

In order to understand the role of transcription factors in particular developmental processes it
is necessary to know their target genes. A combination of bioinformatics, comparative expression
profiling and microarray-based epistasis experiments has recently identified new targets of
Eyeless, a key transcription factor in Drosophila retinal determination. 
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The Drosophila retinal determination gene network (RDGN)

consists of seven transcription factors, conserved from flies

to humans, that cooperate to regulate cell specification and

determination during eye development. At the top of this

network are the master regulators Twin of Eyeless (Toy) and

Eyeless (Ey), homologs of vertebrate Pax6, which activate

expression of the genes for the conserved downstream tran-

scription factors Eyes Absent (Eya), Sine Oculis (So), Optix

and Dachshund (Dac) (Figure 1). The transcription factor

Eyegone (Eyg) is also a retinal determination protein, but

has not yet been positioned within the pathway. At present

only a small number of direct targets of any of these tran-

scription factors have been identified (see Figure 1). An

elegant strategy integrating bioinformatics and microarray-

based expression profiling with in vivo genetics has recently

been used by Ostrin et al. [1] to isolate and validate tran-

scriptional targets of Ey. 

Bringing genetics to genomics: microarray
epistasis 
The strength of a large-scale screen lies in its design and in

the implementation of effective secondary tests to distin-

guish the desired output from the inevitable background.

Standard microarray analysis results in long lists of genes

whose expression changes under different experimental con-

ditions, but does not reveal which genes reflect direct tran-

scriptional targets. For example, a previous study by

Michaut et al. [2] compared expression profiles of wild-type

eye and leg imaginal discs (the larval tissues from which the

adult structures develop) from third-instar larvae, as well as

leg discs ectopically expressing eyeless (ey), and identified

371 genes relevant to eye specification and development;

which of these genes actually represent direct transcriptional

targets of Ey remained an open question, however [2].

Ostrin et al. [1] have taken a novel approach, utilizing

microarray-based epistasis analysis to identify genes

expressed in a spatial and temporal pattern consistent with

that of direct Ey targets. Epistasis refers to an interaction

between two genes such that mutation in one gene masks the

phenotype of mutation in the second; epistasis analysis is

commonly used to determine the relative order of gene

action within a linear signaling pathway - for example, a

transcriptional target acts downstream of, or is ‘epistatic to’,

the transcription factor that regulates its expression.

First, Ostrin et al. [1] compiled a set of 300 potential Ey

targets from comparative expression profiling of different

types of discs: wing, antennal and leg imaginal discs engi-

neered to express ey ectopically; their wild-type counter-

parts that normally lack ey expression; and wild-type eye

discs that normally express ey. Only genes whose expression

was consistently enriched upon ey induction in all three

non-eye tissues and that were also expressed in wild-type

eye discs were considered for subsequent analysis. Thus, by

sampling four different imaginal disc types, the authors



increased confidence in the data and presumably minimized

the false-positive rate relative to studies based on the analy-

sis of fewer tissue types. 

Second, thinking as geneticists accustomed to using epistasis

analysis to position genes within a pathway, Ostrin et al. [1]

cleverly exploited the genetic hierarchy governing eye devel-

opment to develop a microarray-based epistasis approach to

identify the subset of genes most likely to be direct Ey

targets. Previous work showed that Ey and other RDGN

members function to specify the eye field, upstream of the

genes involved in directing the differentiation of the retinal

photoreceptor cells [3]. The gene atonal (ato) is required for

the recruitment of R8, the first photoreceptor to be specified,

and therefore acts downstream of the RDGN [4]. Thus,

Ostrin et al. [1] reasoned that a direct Ey target gene should

operate upstream of ato, should not exhibit altered expression

in an ato mutant eye disc and should be equally well induced

upon ectopic ey expression whether the downstream effector

ato is present or not. By comparing the expression of their

potential Ey targets in wild-type and ato-mutant eye discs,

and in leg discs overexpressing ey in wild-type or ato-

mutant backgrounds, Ostrin et al. [1] refined their list to

include 188 genes whose spatial and temporal presence was

consistent with that of direct Ey transcriptional targets.

Computational prediction of direct transcriptional
targets 
In order to distinguish valid targets from background, sec-

ondary screens are vital. To narrow down the list of 188

potential direct Ey targets to a smaller set worthy of in vivo

validation, a bioinformatics approach was used that incorpo-

rated DNA binding-site data into the analysis of the potential

targets. For transcription factors with clusters of binding sites

in the cis-regulatory regions of their known target genes,

position-weight matrices (PWMs) can be generated to search

for such conserved clustered binding sites in other genes

using web-based tools such as CIS-ANALYST [5]. While such

approaches are useful, genes with few identified targets pose

a challenge. Ostrin et al. [1] used the three known Ey-binding

sites in the enhancer that directs so expression in the eye disc

[6], in combination with binding sites in mammalian Pax6

target genes, to create a PWM to identify genes with potential

Ey-binding sites, and assessed the conservation of these sites

by aligning the genome sequences of seven Drosophila

species [7]. This analysis resulted in 20 predicted targets,

including so, the only Ey target identified before this study

[6]. Ey-mediated regulation of the expression of three of

these potential targets was confirmed by in situ hybridization

and reporter analysis, while electrophoretic mobility-shift

assays confirmed direct binding of Ey to predicted sites.

Investigation of the remaining 17 shortlisted genes is likely to

yield additional targets of Ey.

Biological implications of the identified Ey
target genes 
The identification of three new Ey targets by Ostrin et al. [1]

answers some questions about Drosophila eye development,

but raises others. Out of the three newly identified Ey

targets, two - eyes absent (eya) and optix - had previously

been described as retinal determination genes. The third

target, shifted (shf), however, encodes a secreted protein

known as the Wnt-1 inhibitory factor, which is required for

the extracellular transport of the signaling protein Hedgehog

(Hh) [8,9] - we shall return to this later. 

Previous work has shown that the initiation of expression of

both eya and so requires Ey, and that the induction of ectopic

eyes by Ey also requires the expression of these two genes

[10]. Interestingly, the converse is also true; Eya and So

cannot induce ectopic eyes in the absence of Ey, suggesting
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Figure 1
The retinal determination gene network (RDGN). Members of the
RDGN are indicated on a yellow background. Toy activates expression of
ey as well as so (reviewed in [3]). Ey activates expression of so, eya*, optix*
and shf* [10] (boxed genes are direct Ey targets; asterisked genes were
isolated by Ostrin et al. [1]). Eya and So interact to directly activate
expression of their targets: lz, hh, ey and so (direct targets are underlined),
as well as indirectly activating expression of the downstream gene dac
[14,16,17]. Evidence suggests that Shf regulates the activity of Hh, and
that Hh regulates eya expression [8,9,15]. Members of the RDGN are
required for eye specification, upstream of photoreceptor specification
and differentiation, with ato functioning to regulate specification of the
first photoreceptor cell, R8 [3,4]. Protein-protein interactions are
depicted by blue arrows. Red arrows indicate direct transcriptional
regulation. Black arrows indicate an undetermined level of regulation. The
position of the retinal determination gene eyg in the network is not yet
clear, and so it is not included in this figure. 
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that Ey is required to induce the expression of additional

genes needed for eye specification [11]. Further exploration

of other putative targets identified by Ostrin et al. [1] may

lead to the identification of these missing links.

In addition to eya and so, the Six-family gene optix was

identified as a target of Ey [1]. Optix is a member of the

RDGN, but its position within the network is unclear. For

example, unlike Eya and So, Optix can induce ectopic eye

formation independent of Ey [12]. Furthermore, whereas

mammalian homologs of So operate as transcriptional acti-

vators through their association with Eya, Optix and its

homologs do not exhibit this interaction, suggesting a

novel mechanism for their function [13]. Surprisingly, it

was previously reported that ey is not required for the

expression of optix [12]. This discrepancy could reflect a

caveat to using overexpression to identify transcriptional

targets, but given the overlapping expression patterns of ey

and optix, a more likely explanation is that in addition to

being regulated by Ey, optix may be the target of another

retinal determination gene or signaling pathway during eye

development. One candidate for this regulation could be

the retinal determination transcription factor Toy; Toy and

Ey have been shown to co-regulate the expression of so [6],

suggesting that they might converge to redundantly regulate

other target genes. 

The signaling protein Hh is important for the progression of

the morphogenetic furrow, a wave of cell differentiation that

moves across the eye disc leaving specified retinal cell clus-

ters in its wake. The gene for Hh has recently been identified

as a transcriptional target of the RDGN members Eya and So

[14], and Hh acts as a regulator of eya expression posterior

to the furrow [15]; thus, it is interesting that Ostrin et al. [1]

identify shf, a positive regulator of Hh transport, as a target

of Ey [8,9]. As Shf is predicted to regulate Hh localization

and accumulation in coordination with heparin-sulfate

proteoglycans, it seems likely that Ey, through its regulation

of shf, contributes to Hh localization [8,9]. These results give

insight into the multiple levels at which a network of factors

contributes to the activation or repression of a targeted sig-

naling pathway. It seems likely that identification of addi-

tional targets of the RDGN will further complicate this story,

by introducing additional regulatory inputs that ensure

proper eye development. 

In summary, Ostrin et al. [1] have used a multifaceted tem-

poral and spatial approach combining microarray-based

expression profiling, computational analysis of binding

sites and in vivo expression analysis to identify down-

stream targets of retinal determination genes. In particu-

lar, the incorporation of epistasis analysis into a

microarray approach provides a powerful new strategy for

exploring the dynamic transcriptional circuitries that regu-

late development. Its usefulness will extend well beyond

the exploration of the RDGN.
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