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Abstract

Background: The molecular mechanisms underlying innate tumor drug resistance, a major
obstacle to successful cancer therapy, remain poorly understood. In colorectal cancer (CRC),
molecular studies have focused on drug-selected tumor cell lines or individual candidate genes using
samples derived from patients already treated with drugs, so that very little data are available prior
to drug treatment.

Results: Transcriptional profiles of clinical samples collected from CRC patients prior to their
exposure to a combined chemotherapy of folinic acid, 5-fluorouracil and irinotecan were
established using microarrays. Vigilant experimental design, power simulations and robust statistics
were used to restrain the rates of false negative and false positive hybridizations, allowing successful
discrimination between drug resistance and sensitivity states with restricted sampling. A list of 679
genes was established that intrinsically differentiates, for the first time prior to drug exposure,
subsequently diagnosed chemo-sensitive and resistant patients. Independent biological validation
performed through quantitative PCR confirmed the expression pattern on two additional patients.
Careful annotation of interconnected functional networks provided a unique representation of the
cellular states underlying drug responses.
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Conclusion: Molecular interaction networks are described that provide a solid foundation on
which to anchor working hypotheses about mechanisms underlying in vivo innate tumor drug
responses. These broad-spectrum cellular signatures represent a starting point from which by-pass
chemotherapy schemes, targeting simultaneously several of the molecular mechanisms involved,
may be developed for critical therapeutic intervention in CRC patients. The demonstrated power
of this research strategy makes it generally applicable to other physiological and pathological
situations.
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Background

Colorectal cancer (CRC) remains a leading cause of cancer
death in the Western world, although cancer therapy has ben-
efited from promising new compounds directed to various
targets [1-3]. For instance, 5-fluorouracil (5-FU)-based chem-
otherapy, usually biomodulated with low-dose leucovorin
(folinic acid (FA)) has been used widely for over 40 years,
resulting in a reduction of cancer recurrence and associated
death rate [4,5]. In the mid 1990s, CPT-11 (Campto®, irinote-
can, 8-ethyl-10-[4(1-piperidino)-1-piper-idino] carbonyloxy
camptothecin) was described as one of the most active drugs
and a promising anti-cancer agent [6,7].

A major obstacle to successful treatment arises from the
emergence of states of resistance to anti-cancer drugs, pre-
venting elimination of metastatic cells. Some clinical studies
proposed combined chemotherapy to leverage the efficiencies
of different drugs by attacking simultaneously distinct bio-
chemical targets for the purpose of overcoming drug resist-
ance in heterogeneous tumors. Thus far, some key regimens
such as FOLFIRI (folinic acid, 5-FU, irinotecan) have demon-
strated tolerable side effects and a broad spectrum of efficacy
against solid tumors. The use of FOLFIRI has resulted in pro-
longed survival and improved response rates. Nevertheless,
emergence of clinical drug resistance remains the primary
cause of failure during chemotherapeutic treatment of most
human tumors [8,9]. Human cancers are mostly found to be
resistant to therapy at the time of drug presentation (primary
responses), tumors being intrinsically drug resistant (innate
or de novo drug resistance). Only a few become resistant after
an initial response (acquired responses), the tumors develop-
ing resistance to chemotherapy during treatment (acquired
drug resistance), reviewed in [10,11]. In the latter group, a
tumor cell may express drug resistance by combining several
distinct mechanisms induced by its exposure to various
drugs. In the former group, however, this is unlikely to be the
case.

Biochemical and histo-pathological technologies have been
applied in order to identify relevant mechanisms that may
have important implications for drug efficacy and actively
contribute to innate resistance. Thus, high levels of thymi-
dylate synthase, the 5-FU target, were found associated with
tumor insensitivity to FU-based therapy [12,13]. Similarly,
higher levels of topoisomerase-I (TOP1) correlated with
greater sensitivity of colon tumors to camptothecin deriva-
tives compared to normal colonic mucosa [14]. Glucuronida-
tion, involved in xenobiotic detoxification, was also shown to
be associated with innate resistance to TOP1 inhibitors in
colon cell lines and tumors [15,16]. Finally, an increase of the
ABCB1/P-gp transporter, a member of the family of ABC-
transporters that detect and eject anti-cancer drugs from
cells, was observed in intrinsically drug-resistant colon
tumors [17].
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Studies of cancer cell lines have emphasized an array of
potentially general mechanisms of drug resistance. Expres-
sion of BCL2 obtained by transfection in a human lymphoma
cell line rendered it resistant to FU-mediated apoptosis [18],
while p53 was found over-expressed in human embryo
fibroblasts resistant to FU-mediated growth inhibition [19],
and protein kinase C in colon adenocarcinoma cell lines
resistant to doxorubicin [20,21]. In addition, over-expression
of specific drug transporters (ABCB1/P-gp, LRP (lung resist-
ance-related protein) or MRP (multidrug resistance-related
protein)) was shown by flow cytometry and fluorescence
microscopy to occur in human colon adenocarcinoma cell
lines resistant to TOP1 inhibitors [20,22].

Our current understanding of mechanisms associated with
drug resistance has been furthered by investigating drug-
resistant cellular models created by exposing a parental pop-
ulation (yeast, bacteria, mammalian cell lines) to increasing
concentrations of a cytotoxic agent [23-26]. It has been diffi-
cult, however, to translate these insights into clinically mean-
ingful improvements in cancer treatment, suggesting that in
vitro unicellular models may not be applicable to the in vivo
situation or represent the disease in its entirety. For instance,
in CRC, TOP1 mutations that decrease the formation of DNA
cleavage complexes were identified [27], but their implication
in clinical resistance was not confirmed.

Since the introduction of molecular genetics methods in clin-
ical oncology, examination of individual mRNA/protein
expression levels of drug target molecules provided comple-
mentary indications on the mechanisms involved. Thus far,
however, only a limited number of clinical studies of drug
resistance have focused on individual candidate genes and
these used clinical samples exclusively derived from patients
that were already treated with drugs. In CRC, such gene-by-
gene molecular biology studies have highlighted only a partial
list of candidate genes [28-33]; some of these genes were
shown to be involved in mechanisms altering drug metabolite
potency, others are known to participate in increase of drug
efflux or decrease of drug toxicity, or to participate in inhibi-
tion of apoptosis (for an overview, see [32-37]). It is unclear
at present whether these mechanisms play a causative role in
clinical drug resistance, and no comprehensive analysis of
entire drug resistance pathways has been conducted.

Pharmacogenetics and pharmacogenomics approaches have
been initiated to study the relationship between individual
variations and drug response rates [38,39]. Genetic polymor-
phisms of specific genes were found to be associated with
clinical outcomes in patients treated through chemotherapy,
and amplification of genes encoding drug targets or trans-
porters was shown to alter the sensitivity of cancer cells to a
particular chemotherapy [40,41]. Finally, loss of heterozygos-
ity at specific regions of chromosomes was identified in spe-
cific carcinoma, although its consequence in treatment
outcome remains controversial [40,41].
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High-throughput gene expression profiling with microarrays
has been introduced recently in some cancer clinical studies,
with the potential to provide a genome-wide coverage of the
molecular pathways involved in cancer development and
treatment. These studies, however, have not directly
addressed the issue of drug resistance but rather have com-
pared tissue sample phenotypes (normal versus tumor) or
developmental stages of the disease for the purpose of tumor
classification [42-48].

Common to all of these studies is the fact that the models
investigated do not address mechanisms that contribute to
innate drug resistance, but rather test hypotheses on how
drug exposure induce resistance states. In addition, it is not
known whether drug resistance mechanisms identified after
drug exposure (acquired drug resistance) are relevant to
tumor cell survival occurring after initial drug treatment
(innate drug resistance). Previous reports proposed that a
specific tumor microenvironment may provide a sanctuary
for subpopulations of tumor cells that gain a survival advan-
tage following initial drug exposure, and that this may facili-
tate emergence of acquired drug resistance [49]. In sum,
while there are many possible assumptions, much work
remains to be done to provide a solid foundation on which to
anchor working hypotheses about underlying mechanisms of
clinical (in vivo) tumor drug resistance.

Here, we report the results of the proof-of-concept initial
phase of a biological systems approach [50] toward under-
standing innate CRC tumor responses to a FOLFIRI com-
bined chemotherapy of irinotecan (CPT-11) plus 5-FU/FA.
Gene expression patterns obtained with microarrays were
compared between clinical samples from colon tumors and
liver metastases collected from CRC patients prior to drug
exposure. We illustrate how the use of a vigilant experimental
design, power simulations and a robust statistical analysis
allowed us to restrain the false negative and positive differen-
tial hybridization rates to a minimum [51]. We integrated the
data collected from a biological systems perspective into glo-
bal and interconnected molecular networks that highlighted
the molecular mechanisms that may anticipate resistance in
CRC patients prior to their exposure to drugs, and discuss
how this knowledge could be used in clinical practice as a
complement to clinical, biochemical and genetic markers for
global prevention, early diagnosis and better patient
treatment.

Results and discussion

Biological variability and similarity in gene expression
profiles

Gene expression profiles were collected on colon tumor (T),
adjacent non-tumoral colon (N) and liver metastasis (M)
samples surgically resected from CRC patients prior to their
exposure to a combined chemotherapy. A total of 26 RNA
samples from 13 patients were included in the workflow (see
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Additional data file 1), following a vigilant quality-control
procedure performed at 3 levels of qualification: RNA quality,
linear amplification and target synthesis specifications (for
detailed procedures, see Additional data file 2). RNA samples
were dye-labeled and hybridized in quadruplicate to a human
microarray, ensuring genome-wide coverage of functional
pathways and networks, as described in Material and meth-
ods and Additional data file 2. The resulting 3.2 x 106 hybrid-
ization data points collected from 70 arrays were stored in a
database and preprocessed for normalization and filtering.

The hybridization signals registered on individual arrays fol-
lowed a normal distribution and were thus suitable for statis-
tical analysis for assessment of the range of biological
variability and similarity in expression profiles (data not
shown). An average linkage hierarchical clustering of tissue
samples was performed using the expression profiles of all
genes, revealing much structure in the data. In Figure 1, rela-
tively high expression levels are indicated in red and relatively
low expression levels in green, with each column representing
data from a single tissue sample, and each row the series of
measurements for a single gene. Tissue samples or genes with
similar expression patterns are thus clustered adjacent to one
another.

Examination of the expression matrix indicates that samples
of the same origin cluster in discrete groups, with adjacent
non-tumoral colon samples forming one group (N, yellow
square in Figure 1), and tumor samples (T or M, gray square
in Figure 1) another. Clustering of the non-tumoral samples
appeared to be triggered by groups of up- or down-regulated
gene expressions that are lost in the tumor samples. The Pear-
son correlation distance (r) was used as a metric of similarity,
indicating higher similarity within each group of samples (N,
r=0.88; T, r=0.69; M, r = 0.55) than between the different
groups (N&T&M, r < 0.45). In addition, serial (tumor and
metastasis) tumor samples obtained from individual patients
appeared to cluster together, indicating that changes in
expression profiles occurring during the metastatic process
are less prominent than individual biological variation when
measured on a genome-wide scale.

The lack of a clear distinction in expression profiles between
colon tumors (T) and liver metastases (M) is striking. Both
types of tumor samples occupy adjacent branches in Figure 1,
and are almost as similar when grouped together (T&M, r =
0.56) as each subgroup considered separately (T, r = 0.69; M,
r = 0.55), indicating that their relatively uniform gene expres-
sion matrix reflects complementary measurements for simi-
lar biological conditions. Furthermore, the samples from
patients subsequently diagnosed as chemo-sensitive (labeled
blue in Figure 1) and resistant (labeled red) exhibit an overall
tendency to form clustered subgroups, despite a small
number of interspersed tumor samples; their gene expression
matrix was found to branch into two fairly predictive sub-
groups of 9 and 11 tumor samples (blue and red squares in
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Figure |

Range of biological variability of the gene expression dataset. Similarity
dendrograms (Pearson correlation) resulting from hierarchical clustering
of tumor samples from CRC patients based on the global gene expression
matrix. Letters refer to the origin of the biopsies, colon tumors (T), liver
metastases (M) or adjacent non-tumoral colons (N). Numbers refer to
individual patients. For each sample, the color patch represents the
primary drug response rate, either resistant (in red) or sensitive (in blue),
subsequently diagnosed in patients at the presentation of the drugs. Color
squares around the gene expression matrix display specific subgroups of
clusters. The yellow square shows the cluster of N samples, while the gray
one refers to the clusters of cancerous samples (T&M); red and blue
squares specify predictive (resistant and sensitive) subgroups of cancerous
samples.
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Figure 1), in which only 2 (M2 and M12) and 3 (T3, T6 and
M6) samples cluster in the alternative group. These data sug-
gest that specific differences in the global gene expression
patterns recorded might be associated with functional states
and molecular mechanisms that are intrinsically causal of the
two types of innate drug responses. The likelihood of detect-
ing these specific changes is dependent on the precision of the
data recorded, ensured here by an experimental design
including an appropriate level of replication, and on the sta-
tistical power of the dataset to distinguish the biological con-
ditions investigated.

Statistical precision and power of the gene expression
dataset

The statistical power of a gene expression dataset is the prob-
ability of obtaining statistical significance when true biologi-
cal differences exist between the groups compared (1 - B; true
positive rate). It allows verifying which subgroups of samples
are likely to provide the most comprehensive relevant infor-
mation and that enough samples are compared to meet the
objectives of the study. A conventional statistical power anal-
ysis requires specification of parameters such as anticipated
variability of individual measurements for genes within each
biological group (o), sample size (n), magnitude of the effect
to be detected (®) and acceptable false positive rate (signifi-
cance level o).

In previous experiments addressing the question of in vitro
innate drug resistances with cellular models [24], sample
coefficients of variation (CVs (standard deviation/mean) x
100), which estimate variance due to biological replicates,
were reported to be under 0.4 (CVs < 40%) and the number
of truly differentiated genes over 400. The distribution of the
standard deviations among biological replicates was evalu-
ated for each gene and each group of samples (N, T, M, T&M)
in the recorded dataset. For 75% of the genes and the entire
set of samples, CVs were below 27% (N, 19%; T, 22%; M, 27%;
T&M, 27%).

Statistical power simulations were performed for two-class
comparison statistics (see formulae in Additional data file 2).
The expected statistical power (1-p) for detecting a true 2-fold
mean difference between two groups (® = 1, with base 2 loga-
rithm) at a significance level (o) of 0.003, which accounts for
less than 33 false positives in the 11K microarray, and ¢ = 0.4
as reported in previous experiments was estimated to be
0.09, 0.27 and 0.70 for the T, M and T&M groups of compar-
ison, respectively, and over 0.40, 0.67 and 0.98, respectively,
when using ¢ = 0.27 as measured in the recorded dataset.

These power simulations suggest that the T&M group, which
displays a relatively uniform gene expression matrix, appears
likely to provide the most comprehensive information rele-
vant to the chemo-sensitive and resistant states. Thus, even
with the limited number of individual samples available, the
theoretical statistical power of our recorded dataset appears
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Differential gene expression in cancerous samples. (a) Box plot of fold changes in expression levels from genes in list L863. A red line represents the
average; a black line, the median. The |st quartiles, 3rd quartiles, minimum and maximum values are indicated; the ratios are shown in absolute values. (b)
Venn diagram representation of the co-occurring genes with differential expressions computed through statistical comparisons of subgroups of colon
tumors (T), liver metastases (M) or both cancerous tissues together (T&M) (o0 = 0.01). The number of clones representing genes that were found
significantly differentially expressed between chemo-sensitive and resistant states is indicated. (c) Clustering analysis on cancerous samples of the
expression profiles of the genes in list L863. Genes (row) and samples (columns) are clustered independently using Pearson correlation. The top color
patch represents primary drug responses, either chemo-sensitive (in blue) or resistant (in red). The top-ranked relevant gene clusters selected using t
statistics with permutation-based adjustment (n = 10,000; o = 0.05) are indicated by color bars.

to be satisfactory as it is consistent with a small number of
spurious discoveries (o = 0.003), while limiting the propor-
tion of false negatives (p = 0.02 to 0.3). Complete descriptive
statistical power simulations are summarized in Additional
data file 3.

Identification of genes involved in innate drug
responses

To identify the genes that may be linked to innate drug
responses, we estimated the number of genes that are specif-
ically up- or down- regulated in tumors. A comparison of
mean relative expression levels was performed gene-by-gene
between chemo-sensitive and resistant subgroups of T or M,
considering the initial response rates subsequently diagnosed
for the corresponding patients. The subgroups of T&M were
also compared independently. A combination of z-statistics
together with false discovery rate (FDR) corrections to com-
pensate for multiple testing effects, at a significance level (@)
of 0.01, yielded a total of 863 clones (L863), corresponding to
7.5% of the clones represented on the array (Figure 2). Differ-
ential hybridizations range from 1.3- to 41-fold changes, with
an average of a 1.7-fold change and about half > 2-fold
changes (Figure 2a).

Using Unigene Cluster IDs from build 184 (June 2005) as the
common identifiers, the clones in L863 correspond to 795
unique genes, including 679 named genes and 116 sequences
with no associated identifier (no ID). Among the 515 named
genes found differentially expressed with greater than 1.5-
fold changes, 253 showed higher and 262 lower expression in
the resistant samples, while 84 over the 116 sequences with no
ID displayed a similar range of differential expression, one-
third being up-regulated. Finally, a small fraction of the genes
(5%) showed > 3-fold changes in expression levels. The
number of co-occurring genes with differential expression
detected in the T, M and T&M groups of samples is summa-
rized in a Venn diagram displayed in Figure 2b. Descriptive
statistics and annotations of L.863 are shown in Additional
data file 4.

To further probe the ability of different subsets of the genes
represented in L863 to discriminate the chemo-sensitive and
resistant states on a co-regulation basis, hierarchical cluster-
ing of the expression profiles was performed (Figure 2c).
Clusters of gene modules that appeared most relevant to dif-
ferentiate chemo-sensitive and resistant subgroups of sam-
ples were identified using ¢ statistics with permutation-based

adjustment (n = 10,000) of the gene expression matrix, o =
0.05. The top-ranked clusters (Additional data files 5 and 6)
were NODE519X of 118 clones (86 named genes and 22 with
no ID) found up-regulated in the chemo-sensitive subgroup
of tumor samples (¢ stat = 3.53; p = 8.7e-04) and NODE547X
of 102 clones (83 named genes and 12 with no ID), which con-
versely represents a cluster of genes more intensively
expressed in the resistant subgroup of tumor samples (t stat
=-4.77; p = 6€-05).

Validation of the microarray gene expression data

The accuracy and reliability of the results obtained with
microarrays was tested by quantitative RT-PCR (Q-PCR);
using non-amplified total RNA provided a means to assess a
possible bias introduced during the T7 amplification step
used in the microarray analysis. The gene expression levels
obtained by Q-PCR were normalized to that of the glucuroni-
dase beta (GUSB) housekeeping gene and expressed as the
fold increase or decrease relative to that of a referential
median of the values observed in colon tumors or liver metas-
tases, respectively, as described in Material and methods.

Twenty-two genes were chosen from list L863, and eight
more were selected as not significantly differentially
expressed (Table 1). First, the correspondence of expression
levels in both groups of samples (T and M) was investigated
and confirmed expected similarities for over 77% of the genes,
with very small variances (accounting for less than one
threshold cycle (Ct); Table 2). Then, Q-PCR results were com-
pared to those obtained in the microarray hybridizations
using the same samples. A good agreement was observed
between microarray and Q-PCR analyses using z-statistics
with FDR adjustments, with 22 of the 30 genes fully validated
and 2 more found significantly differentially expressed in
colon tumors but not in liver metastases (a = 0.05; Table 2).
Discordant results were obtained for the remaining six genes,
representing probable false negatives or false positives of one
or the other technology (Table 2). Thus, differential expres-
sion detected by microarray analysis is highly predictive of
expression levels measured with an independent methodol-
ogy such as Q-PCR (>80% confirmation).

For a second level of validation, two new cancer samples - one
colon tumor and one liver metastasis - collected from addi-
tional patients (T-P61 and M-P52, respectively), were used for
independent biological validation by Q-PCR on the same gene
set. The results were compared to the relative expression lev-
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Table |

Selection of 30 genes considered for further Q-PCR analysis

Symbol Clone ID M T T&M All tumor samples (T&M)
Intensity Ratio Min-value Max P value

| ABCA2 3508171 0 0 | 411 -1.4 4.36E-05 4.93E-05
2 ABLI 345666 | 0 0 569 -1.5 | .44E-04 1.44E-04
3 CASPI 486506 0 | 0 714 1.9 6.30E-06 6.93E-06
4 CHEKI 3530606 [ 0 | 1,901 1.6 | .66E-05 3.89E-05
5 CHEK2 3532866 0 0 | 2,624 1.4 2.72E-05 3.77E-05
6 COL4A2 3507072 0 0 | 5,813 -1.6 7.86E-03 7.86E-03
7 COL6AI 3506644 | | | 4,268 -2.6 4.43E-12 3.63E-02
8 COL6A2 3347413 | 0 | 3,906 -4.3 1.37E-11 1.31E-02
9 FOS 3688670 | 0 | 8,312 -1.7 7.39E-05 1.28E-04
10 HRASLS3 3051149 0 | 0 1,814 -1.7 6.22E-05 6.22E-05
I LAMBI 428443 | 0 | 2,747 -1.5 5.06E-06 2.93E-04
12 MAD2LI 2964388 | 0 | 4,141 1.6 2.94E-05 1.99E-04
12 MMPI | 725180 | 0 | 2917 -2.3 |.78E-05 3.42E-02
14 PEAIS 3346270 0 0 | 1,366 -1.3 3.48E-04 3.48E-04
I5 RADSI 3139011 | 0 0 1,630 1.9 9.78E-03 9.78E-03
16 RECQL4 3634266 | 0 | 3,372 1.6 9.13E-06 1.76E-05
17 RERG 3357341 | | | 294 -3.6 I.17E-05 3.63E-02
18 RRAGD 3536088 [ 0 | 596 -2.6 6.70E-07 4.35E-02
19 SERPINFI 2961120 | 0 | 1,902 -1.5 8.33E-10 2.74E-05
20 TGFBI 2958878 | | | 13,900 -24 5.43E-10 1.31E-02
21 TOP2B 470615 | 0 | 495 1.5 6.15E-06 2.34E-04
22 TP53 3544714 | 0 | 4,178 1.8 1.06E-06 1.32E-05
23 BCL2 232714 0 0 0 787 Not significant
24 CES2 4298532 0 0 0 6,538 Not significant
25 E2F4 3504728 0 0 0 5,620 Not significant
26 ITGBé 759142 0 0 0 648 Not significant
27 JUN 3606344 0 0 0 2,037 Not significant
28 RAD52 3614681 0 0 0 322 Not significant
29 TGFBI 3356605 0 0 0 2,188 Not significant
30 TOPI 502960 0 0 0 3,484 Not significant

For each gene, symbol and Clone ID are indicated. M, T and T&M columns (I = present, 0 = absent) specify, in the respective group of samples,

which genes were statistically differentially expressed using microarrays (o = 0.01); italics refers to genes for which differential expression was 'not
significant’. The relative expression levels recorded with microarrays are indicated as the ratio between resistant and sensitive samples, specified as
negative (down-regulated) or positive (up-regulated) values, together with the intensity measured in resistant colon tumors. Adjusted p values were
computed using z statistics with false discovery rate corrections, a. = 0.01; columns 'Min p value' and 'Max p value' refer to lower and upper bound p

values, respectively.

els collected on the previous sample set, focusing on statisti-
cally significant differential expression detected by both
technologies (Table 2, indicated in bold). The gene expression
levels observed in the new samples were found to be mostly
predictive of a chemo-sensitive state (>84% confirmation), in
agreement with the fact that both patients were subsequently
diagnosed as sensitive upon exposure to the drugs (Figure 3
and Additional data file 7). Altogether, these results verified
the reliability and the rationality of our strategy to identify
genes that are commonly differentially expressed in innate
drug resistance. This suggests that the genes represented in
L863 could be used for further validation of drug response

prediction using a larger patient cohort. These genes also rep-
resent valuable targets of further biological studies aimed at
deciphering the underlying molecular pathways.

Enrichment of the selected genes in Gene Ontology
terms

Searches were made for significantly enriched gene classes in
list L863, as defined by Gene Ontology (GO) annotation asso-
ciations [52]. The p values for the classes most enriched in list
L863 appeared highly significant over what would be
expected by chance (o« = 0.05). First, with a one-sided jack-
knife Fisher's exact probability test, using the over-represen-
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Validation of microarray gene expression data

Symbol Assay ID Tumors Metastases
Ctg Ctg Ratio p value Ctg Ctg Ratio p value

Fully validated

genes
CHEKI* CHEK-Hs00176236_ml 303 30.9 22 2.11E-02 29.8 31.9 4.0 2.87E-03
CHEK2* CHEK?2-Hs00200485_m| 293 30.1 2.5 3.40E-04 29.0 30.9 2.0 8.33E-03
COL4A2 COL4A2-Hs00300500_m | 25.2 23.5 -3.7 1.60E-06 24.9 235 -4.3 5.27E-07
COLG6AI COL6A-Hs00242448_m | 248 21.9 -6.6 3.45E-08 25.9 24.6 -2.0 9.54E-03
COL6A2 COL6A2-Hs00365167_ml| 248 21.6 -8.6 8.66E-08 25.1 24.0 -2.8 5.40E-05
FOS FOS-Hs00170630_ml| 21.5 21.1 2.7 2.36E-03 22.1 21.6 -3.0 2.86E-06
HRASLS3 HRASLS3-Hs00272992_ml| 27.6 25.2 -5.6 3.42E-07 25.7 25.7 -2.4 2.14E-05
LAMBI LAMBI-Hs00158620_m| 24.6 234 2.4 5.25E-04 253 24.1 -2.8 8.46E-06
MMPI | MMP11-Hs00171829_ml 25.4 23.6 -3.1 1.85E-05 25.6 23.0 -10.2 2.46E-08
PEAIS PEA15-Hs00269428_m| 244 23.5 2.4 4.52E-04 245 237 -2.3 2.50E-05
RADSI RADS5|-Hs00153418_ml 26.6 27.7 23 9.81E-03 26.2 28.0 3.0 4.23E-03
RECQL4* RECQL4-Hs00171627_ml 27.6 283 2.1 1.26E-03 27.0 29.0 37 2.41E-03
RERG RERG-Hs00262869_ml 31.8 28.5 -1 5.07E-12 31.2 30.5 -34 2.10E-06
RRAGD RRAGD-Hs00222001_ml 29.6 27.0 -7.8 1.74E-07 285 26.9 -3.0 2.60E-05
SERPINFI SERPINFI-Hs00171467_m] 26.1 237 -35 2.52E-05 24.6 24.7 n/a n/a
TGFBI TGFBI-Hs00165908_m| 23.9 22,0 -54 2.35E-06 24.0 21.6 -6.7 7.27E-08
TP53 TP53-Hs00153340_ml| 24.0 25.2 25 7.00E-03 24.0 254 29 3.21E-03
BCL2 BCL2-Hs00608023_m| 29.7 29.5 n/a n/a 29.2 29.5 1.1 6.86E-01
E2F4 E2F4-Hs00608098_m| 23.0 22,6 -1.1 8.34E-01 228 232 -1.3 1.94E-01
ITGBé ITGB6-Hs00168458_m| 27.5 27.8 -1.0 9.16E-01 26.9 27.7 -1.0 9.32E-01
RAD52 RAD52-Hs00172536_m| 29.4 28.5 -1.9 1.12E-02 28.5 28.6 -1.1 5.42E-01
TOPI TOPI-Hs00243257_m| 25.1 24.8 -1.1 7.89E-01 24.6 26.2 1.1 8.14E-01

Validated genes
CASPI CASP1-Hs00354832_ml| 26.6 27.6 2.1 5.91E-03 28.6 283 -1.5 |.80E-01
MAD2LI MAD2L1-Hs00829154_gl 26.7 27.5 2.0 9.91E-03 27.0 27.7 1.4 2.72E-01

False discoveries
ABCA2 ABCA2-Hs00242232_ml 26.2 26.0 1.0 9.94E-01 25.9 26.0 -1.1 6.59E-01
ABLI* ABL1-Hs00245445_m| 26.2 25.7 -1.3 3.05E-01 26.2 26.1 -1.3 291E-01
TOP2B TOP2B-Hs00172259_ml 25.4 25.1 -1.2 3.19E-01 25.1 25.6 -1.1 5.46E-01
CES2 CES2-Hs00187279_ml 26.2 24.6 -2.8 5.41E-04 242 24.6 2.0 2.33E-02
JUN JUN-Hs00277190_s 22.8 22.1 -1.6 1.86E-02 22.1 223 -2.5 9.00E-06
TGFBI TGFBI-Hs00171257_m 25.8 23.8 -3.5 2.70E-06 24.8 24.5 -2.2 5.83E-05

Q-PCR validation step on a series of 30 genes. For each gene, symbol and TagMan® assay (assay ID) are indicated; asterisks refer to TagMan® single
assays. Genes displayed in bold were considered for further Q-PCR analysis of new samples from additional patients (compare Figure 3 and
Additional data file 7); italics refer to genes selected as not significantly differentially expressed with microarrays. The threshold cycle Ctg refer to
chemo-sensitive states and Ct, to resistant states; the expression changes (ratio) are specified as negative (down-regulated) or positive (up-
regulated) values between resistant versus sensitive samples. Adjusted p values were computed using z statistics with false discovery rate corrections

(a0 = 0.05). n/a, not analyzed.

tation function of EASE online [53], 147 GO terms were found
significantly enriched in modulated genes (n = 3). The 'Extra-
cellular matrix' term achieved the highest degree of signifi-
cance (p = 4.38e-07). Then, two-sided Fisher's exact
probabilities were computed with the GoMiner software [54],
identifying significant enrichment within gene classes and
accounting for up-regulations (41%), down-regulations (45%)
or equally balanced changes (14%). Figure 4 shows the differ-

ential expressions (up, down) from part of the top-ranking
biological terms (a = 0.05).

The significantly enriched gene classes found up-regulated in
resistant versus chemo-sensitive states are highly indicative
of processes of cell division and DNA metabolism. They are
associated with terms such as 'Replication forks' (6 genes),
'Cell cycle' (70 genes), 'M phase' (17 genes), 'Response to drug'
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Independent biological validation by Q-PCR. Serial representation of Q-PCR relative expression (2-2ACt |ogl0) of a series of genes (identified by symbols
and HUGO nomenclature) that were shown to be statistically differentially expressed in both microarray and Q-PCR (indicated in bold in Table 2). Results
are displayed as circles for the mean 2-244Ctand 95% confidence intervals (oo = 0.05) computed on a series of cancerous samples, which correspond to the
sample set previously used in microarray analysis (compare Additional data file 10). The color patch refers to the primary drug responses, either chemo-
sensitive (in blue) or resistant (in red) of the corresponding patients. Diamonds show the relative expression levels measured on a new tumor sample (T-
P61) from an additional patient (P61). The results obtained for a second new patient are presented in Additional data file 7.

(5 genes), 'DNA metabolism' (45 genes), 'Response to DNA
damage stimulus' (26 genes) and 'DNA repair' (19 genes).
Conversely, the significantly enriched gene classes that were
down-regulated in resistant versus chemo-sensitive states
were highly indicative of processes involving cell prolifera-
tion/adhesion and extracellular matrix (ECM) constituents
and organization. The prominent terms associated with these
classes are 'Cell death' (42 genes), 'Apoptosis' (40 genes), 'Cell
proliferation’ (97 genes), 'Cell growth' (16 genes), 'Cell motil-
ity' (27 genes), 'Cell adhesion' (38 genes), 'Cell communica-
tion' (161 genes), 'Regulation of cell cycle' (44 genes) and
'Extracellular matrix' (33 genes). Complete lists of enriched
GO terms and expression changes are available in Additional
data file 8. Interestingly, both NODE519X and NODE547X,
described in previous sections, were enriched in the above
gene classes, and associated with the 'Extracellular matrix',
'Cell adhesion' and 'Cell growth' terms (NODE519X) and the
'Cell cycle', 'Cell proliferation’, 'Response to DNA damage
stimulus' and 'DNA repair' terms (NODE547X).

To provide an overview of the enriched terms and their rela-
tionships within the framework of the GO hierarchy, an
association tree was assembled for all selected genes. Primary
and parent GO terms corresponding to the biological proc-
esses and cellular components were first retrieved. Then, the
relevant terms were assembled in a directed acyclic graph
representation, with arrows showing the parent/child rela-
tionships between terms and how all the selected terms relate
to each other (Figure 5). This graph forms the basis on which
an integrated representation of the molecular pathways
involved in innate drug responses can be built.

Systems view of molecular pathways underlying innate
drug resistance

Information obtained through transcriptome analysis and
complemented by literature and ontology-mining allowed
identification of several molecular pathways that might be
involved in the mechanisms underlying in vivo innate drug
responses. The gene expression changes significantly associ-
ated with drug response states were mapped onto functional
biological pathways using the CellDesigner v2.5 system [55],
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Figure 4

Term-ranking of GO categories. Representation of the |3 top-ranked functional categories (terms), using GO terms, that are enriched in differentially
expressed genes (o = 0.05). Numbers of genes per category are indicated. The computed two-sided Fisher's exact scores are shown for each relevant
biological theme (black) together with scores for up-regulated (red) or down-regulated (green) genes.

enabling representation of the dynamics and dependencies of
each gene and gene module with specific components of the
cellular machinery. The molecular interaction networks char-
acteristic of the resistant state are shown in Figure 6, and
stored using the Systems Biology Markup Language (SBML),
a standard for representing biochemical networks [56], so
that it will be possible in the future to use it as a starting point
to model and simulate dynamic changes occurring during
drug responses when appropriate software tools become
available. At this stage, it provides a graphical overview of the
major biological processes identified and of their relation-
ships, which can serve as a guide to discuss the precise impli-
cations of the individual components based on how their
expression is modulated in the resistant versus sensitive
states prior to drug exposure.

A cell cycle delay

Among the genes that govern cell cycle progression, CHEK1
and CHEK2 encoding the emergency response checkpoint
proteins were highly expressed in the resistant state. CHEK1
is the damage-response kinase activated at early S-phase;
CHEK2 is the replication-response kinase, which appears to
be involved in regulating replication in response to perturba-
tions at late S/G,, overlapping with CHEK1 functions. Such
an emergency machinery may act to coordinate the cell cycle,
slowing at the G,/M boundary, thus preventing the tumor

cells from entering a mitotic catastrophe phase and reducing
lethality due to premature mitosis [57]. At the onset of chem-
otherapy, those pre-activated checkpoint pathways might be
able to operate rapidly by allowing inactivation of the CDC2-
CyclinB (CDK1/CCNB1) complex, resulting in a G,/M arrest
of the cell cycle. Interestingly, recent studies in cellular mod-
els reported chemical inhibitions of checkpoint kinases that
might sensitize tumor cells to the induction of mitotic catas-
trophe, resulting in subsequent apoptosis [58,59]. Others
proposed a role for the checkpoint kinases in early S-phase
arrest, acting there by coordinating DNA synthesis with the
cell cycle machinery through G,/S and G,/M checkpoints
[60].

Additional control systems are composed of a family of pro-
tein kinases, the CDKs, which are in turn controlled by a
series of proteins, including cyclin and cyclin-dependent
kinase inhibitors (CKIs). The levels of expression of the genes
encoding these proteins appear to be regulated in relation to
the cell cycle in such a manner as to cause accumulation of
cells either in mid-G, phase as quiescent cells (G,-phase) or in
the late S and G, phases, both states characterizing innate
resistance (Figure 6). First, the genes encoding major types of
key regulators of CDKs appeared down-regulated, including
CCND:2 that encodes Cyclin D, which is active at mid-G, phase
to ensure G,-phase progression and is associated with CDK4/

Genome Biology 2006, 7:R19
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Directed acyclic graph representation of ontology terms. Association tree of the GO terms found significantly associated with in vivo innate drug

responses. Bracketed numbers refer to the framework of the GO hierarchy and arrows indicate direct parent-child links. Relevant terms enriched in
differentially expressed genes were computed using the GoMiner system [54]. Terms related to categories enriched in down-regulated genes, up-regulated
genes or both down- and up-regulated genes are colored in green, red and orange, respectively, and the corresponding adjusted p values are indicated.
Squares and triangles refer, respectively, to the terms relevant in the NODE547X and NODE5 19X gene modules.

6, and CCNEz2 that encodes Cyclin E, which appears later dur-
ing G,-phase to sustain the cell cycle at the restriction point
before entering S-phase (G,/S transition) and is abruptly
destroyed upon entry into S-phase. Conversely, the genes
encoding Cyclin A (CCNA2) and Cyclin B (CCNB1) appeared

Genome Biol

to be up-regulated (compare the Q-PCR analysis in Addi-
tional data file 9). The former associates with CDK2 (CDK2/
CCNA2 complex) then with CDK1 (CDK1/CCNA2 complex) to
drive cells through the S-phase and trigger the transition to
G,; the latter is synthesized at the end of the S-phase and dur-
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Systems view of a cellular state anticipating in vivo innate drug resistance. Molecular interaction networks characteristic of a resistant cellular state, prior to
drug exposure, showing an integrated view of networks from resistant cells arrested either in G, phase or in S-G, phases. The representation recapitulates
the dynamics and dependencies of gene modulations with specific components of the cell machinery identified through statistical comparisons, GO
annotations and literature mining. Biochemical interactions are specified; the symbols used are derived from the standard nomenclature proposed by
CellDesigner v2.5: arrow, direct activation; dotted arrow, unknown interaction; arrow with a strike through it, indirect activation; bar, inhibition; dotted
bar, unknown inhibition; dashed arrow, transcriptional activation; dashed bar, transcriptional inhibition; arrow with clear arrowhead, transport. Red and
green colors refer to up- and down-regulation, respectively, in resistant versus sensitive states; other genes analyzed with microarrays and/or Q-PCR are
indicated in gray, and those not investigated in this study are indicated in white.

ing G,, its activation being necessary for the transition from
G, to mitosis.

The genes encoding the cyclin-dependent protein kinases
CDK1 and CDK7 were up-regulated, but no modulation of
those encoding CDK2 and CDK4/6 was observed in the resist-
ant state (compare the Q-PCR analysis in Additional data file
9). Moreover, expression levels of genes encoding three key
CKIs believed to regulate CDK activities through G,-S-G,
transitions appeared to change in a cell cycle-dependent
manner. CDKN2D (encoding p19, referred to as the INK4
inhibitor of CDK4 family) is highly expressed as expected
during the S-phase, while CDKN1A (p21) and CDKN1C (p57,
which preferentially bind to the G, and G,/S class of CDKs)
are down-regulated.

Consistent with these findings, numerous DNA replication
functions appeared highly effective but with a slowed cell
cycle S-phase in the resistant state compared to the chemo-
sensitive one (Figure 6). For example, genes involved in initi-
ation of DNA replication appeared up-regulated, such as
those encoding the mini-chromosome maintenance proteins
(MCM6, MCM7) and CDC45L, which were shown to interact
and facilitate early steps of DNA replication at the level of the
origin recognition complex (ORC1L; compare Q-PCR analysis
in Additional data file 9). Down-regulated genes typically
encode the proliferating cell nuclear antigen PCNA, which
helps increase processivity of DNA polymerase. In addition,
the HUS1 gene encoding a genotoxic stress-induced
checkpoint complex component involved in chain elongation
during DNA replication and response to DNA damage was
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highly expressed. Also, CDKN1A (p21) inhibition plays a pos-
itive regulatory role in S-phase DNA replication. This implies
that previously reported specific inhibition of DNA replica-
tion occurring in anticipation of drug toxicity might not be
essential for in vivo innate drug resistance. Conversely,
slowing of the S-phase may occur through two indirect but
related mechanisms, either by active repair of DNA damage
and/or by increased mutagenesis, which may help cells to
escape apoptosis [61].

Key players involved in DNA repair pathways appeared to
undergo changes of gene expression in response to accumula-
tion of cells in the S-G, phases of the cell cycle (Figure 6).
Most of these genes were significantly up-regulated in the
resistant state, including those encoding the nucleotide exci-
sion repair (NER), the base excision repair (BER) and the
double strand break repair (DSBR) complexes. Among them,
three genes, CDK7, GTF2H1 and GTF2H2, encode compo-
nents of the RNA polymerase II transcription initiation factor
(TFIIH), which is involved in basal transcription and nucle-
otide excision repair. They were shown to play a direct role in
transcription initiation and DNA repair. Uracil-DNA
glycosylase (UNG) prevents mutagenesis by initiating the
BER machinery [62]. Finally, some sub-pathways that play a
role in DSBR appear to be modulated, such as the homolo-
gous recombination (HR) pathway that involves members of
the RAD52 epistasis group, with up-regulation of RAD51 and
RAD51AP1. Co-localization and interaction of the encoded
proteins are essential for HR related to repair of DNA double-
strand breaks (DSBs), facilitating DNA pairing and
stimulating DNA recombination and repair [63]. PRKDC,
which encodes the DNA-dependent protein kinase, a member
of the non-homologous end joining (NHEJ) pathway, was up-
regulated. DNA-PK encodes an activator of the XRCC4-ligase
IV complex, which rejoins DNA ends [64]. Previous studies
reported an active repair of drug-induced DNA damage asso-
ciated with acquired drug resistance in mammalian cell lines
or tumor samples [65,66]. The expression profile recorded in
the resistant state suggests that in vivo stimulation of DNA
repair pathways preexist drug exposure. It may be efficiently
used at the beginning of chemotherapy and easily further
amplified through programmed cell cycle arrest, resulting in
a reduction of drug toxicity.

Tumor microenvironment conditioning through
deregulation of extracellular matrix turnover and
remodeling

An integrated view of the recorded gene expression changes
point to an unexpected role of ECM organization and its com-
ponents in innate drug responses. The ECM is a dynamic net-
work of intertwined macromolecules such as collagens,
fibronectins, laminins and proteoglycans that exhibits struc-
tural and barrier functions, creating an influential environ-
ment for cellular dynamics [67]; a lack of renewal appears as
one of the possible sources of innate drug resistance. In both
tumors and metastases, a profound down-regulation of genes

Genome Biology 2006, Volume 7, Issue 3, Article RI9

encoding both matrix proteins and modulators of matrix
turnover was observed in the resistant state, compared to the
steady expression levels characteristic of the chemo-sensitive
state (Figure 6).

First, low levels of expression were recorded for the genes
encoding the fibril-associated collagens type VI (COL6A1,
COLG6A2), the fibril-forming collagens type XI (COL11A1), a
collagenous transmembrane protein type XVII (COL17A1)
and the basement-membrane collagen type IV (COL4A2).
Collagen type IV is the most important structural component
of the basement membranes. Its network assembly is essen-
tial for the structural integrity and biological function of the
basement membranes [68]. Collagen type VI is a major com-
ponent of microfibrils in the extracellular space that has been
reported to be needed for providing an appropriate extracel-
lular environment [69,70]. These proteins interact with a
broad range of molecules, including cell surface receptors
such as integrins, basement membrane components such as
collagen type IV, and proteoglycans, including biglycan
(BGN) and decorin (DCN), two macromolecules shown to
play a key role in storage deposits for growth factors and
cytokines [71]. The expression of the genes encoding BGN and
DCN, as well as those encoding a variety of glycoproteins,
including laminins (LAMA3, LAMB1), and matricellular pro-
teins such as SPARC and thrombospondins (THBS3), were
down-regulated in the resistant state. The SPARC protein has
been shown to actively contribute to the organization of the
ECM. Its expression in basement membranes is usually
restricted to tissues that undergo constant turnover and
remodeling; a SPARC-null matrix was shown to be more eas-
ily degraded [72].

Conversely, no transcriptional modification was recorded for
the genes encoding various integrins (I1TGA-1, -3, -4, -6, -7, -
8 and ITGB-1-8), a family of cell surface receptors that play a
key role in integrating the ECM with the intracellular
cytoskeleton. These results exclude the induction of integrins
as a process to counterbalance a deficiency in the matrix of
collagens. They are in contrast with previous studies in cellu-
lar models treated with the drugs that described either
increased levels of ECM proteins associated with tumor drug
resistance, such as laminin, collagen IV and collagen VI
(reviewed in [73]), or apoptosis-induced drug resistance
mediated through the binding of integrins [74].

A low expression of genes encoding matrix metalloprotein-
ases (MMPs), a family of enzymes produced in the stroma
compartment involved in the breakdown and remodeling of
ECM proteins, was also observed in the resistant state. This is
the case for collagenase-1 (MMP-1), stromelysin-1 and 3
(MMP-3, MMP-11), matrilysin (MMP-7) and membrane type
T1-MMP (MMP-14) (compare Q-PCR analysis in Additional
data file 9). However, no transcriptional modulation was
recorded between the resistant and sensitive states for gelati-
nase-A and B (MMP-2, MMP-9), stromelysin-2 (MMP-10),
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epilysin (MMP-28), MMP-19 and T2-MMP (MMP-15) (a =
0.01). The tumor cells also exhibited down-regulation of
genes encoding specific protease regulators such as TIMP-1
and TIMP-2. Both protease inhibitors were shown to act in
the regulation of the proteolytic activity of stromal MMPs, the
balance of ECM-degrading proteinases and their inhibitors
being a crucial parameter to promote degradation, and are
well known inhibitors of angiogenesis [67]. In addition,
TIMP-1 and TIMP-2, in concert with MT1-MMP, were found
to bind to and activate proMMP-2 and proMMP-g,
respectively [75]. A deficit in the concentrations of both
TIMPs and MT1-MMP may be deleterious for both activation
of MMP-2 and MMP-9, considering that the expression of the
latter remained unchanged.

Previous studies of cell adhesion molecules (CAMs), such as
CD44 and E-cadherin (CDH1), cell surface glycoproteins that
are important in cell-cell and cell-matrix interactions, cell
growth and differentiation, reported that their expression
was significantly associated with tumor grades and depth of
primary tumor invasion [76]. Consistent with those findings,
increased expression of the CD44 gene and decreased
expression of the CDH1 gene were observed in tumoral versus
normal/non-tumoral colons, confirming high tumor grade
and increased primary tumor invasion, while no transcrip-
tional modulation was observed for those genes between the
resistant versus sensitive groups of samples (o = 0.01). Thus,
decreasing concentrations of active proteases (MMPs) and
proteases inhibitors (TIMPs), and limiting concentrations of
structural collagens, proteoglycans and glycoproteins show
direct relationships with primary responses associated with
drug resistance compared to the steady expression levels
found in the chemo-sensitive state. The temporal and spatial
regulation of ECM turnover and reassembling events appear
deficient in the resistant state, while they are required for
adaptation to constantly changing environments and active
cellular responses to external stimuli. This results most likely
in a static ECM organization, a low matrix-degrading capacity
that limits ECM reloading and matrix micro-environment
remodeling, a decreased activity of ECM-producing cells and
a limitation of downstream activities of ECM components

[771.

Tumor cells appear to play a role in conditioning the neigh-
boring stroma/basement membrane to induce a protective
micro-environment. In the recorded expression profiles, the
differences observed between the chemo-sensitive versus
resistant states were not attributable to varying amounts of
stroma versus tumor epithelium among patient samples as no
transcriptional modulation of the genes encoding markers
characteristic of epithelial tumor cells (cytokeratins, KRT4, 5,
7,8,13, 14, 15, 17, 18, 19) and of stromal cells (vimentin, VIM)
could be measured (o. = 0.01). These observations are consist-
ent with results reported in other studies indicating a rela-
tively small contribution of stromal cell to tumor expression
profiles in macro-dissected samples similar to those used in
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the present study, while micro-dissection appeared to intro-
duce significant experimental biases due to important differ-
ences occurring during manipulation of very small samples
[78,79].

A static organization of the ECM components might contrib-
ute to innate drug resistance of a solid tumor by preventing
penetration of therapeutic agents, but it might also protect
cells from chemotherapy-induced deleterious effects by dis-
rupting specific signaling connections. As proteases and their
inhibitors were shown to target many other non-ECM pro-
teins, including growth factor receptors, cell-associated
receptors and cytokines [80], the observed imbalance of their
activities in the resistant state might also have a negative reg-
ulatory effect on physiological mechanisms such as angiogen-
esis and cell apoptosis that are associated with drug
sensitivity [67,80].

Paradoxical modulations of apoptotic pathways
Although apoptosis was reported as one of the most obvious
targets for cancer treatment because chemo-sensitivity
requires an intact cellular signaling machinery that partici-
pates in programmed cell death [81-83], only puzzling gene
modulations were observed prior to drug exposure. Out of 40
genes associated with one aspect of apoptosis or another, 17
were over-expressed and 23 under-expressed, encoding sev-
eral pro- and some anti-apoptotic proteins. Many of the
expression differences seemed to occur in antagonistic direc-
tions, probably reflecting disorganized or simply heterogene-
ous apoptotic machinery responses and are not discussed in
detail here (Figure 6). This suggests that apoptosis inhibition
observed in drug resistant cell lines may reflect the singularity
of the corresponding models, and is not likely to occur in solid
tumors prior to drug exposure. The nuclear factor kappa B
(NF-kB) gene NFKB1 [84] was mainly under-expressed in the
innate resistant state. This observation contrasts with a pre-
vious report in which NF-kB inhibitors were proposed to cir-
cumvent drug resistances [85]. It is, however, in agreement
with another study that reported a two-stage 'permissive
apoptosis-resistance' mechanism based on analysis of a
human prostate cancer cellular model [37]. The same mecha-
nism is apparently not involved in the innate resistant state,
as down-regulation of the NF-kB-stimulated genes or inhibi-
tion of the TGF-B pathway, which could be expected if that
was the case, were not observed.

Latent drug efflux by ABC-transporters

Finally, it appears that the high expression levels of genes
encoding ABC-transporters recorded in the resistant versus
sensitive states may play a role in innate drug responses. This
may empower the cells with the ability to pump out drugs
even before they are exposed to them, thus decreasing drug
intake at the onset of chemotherapy. Active efflux of xenobi-
otics is a key mechanism of cell adaptation to environmental
stress. Namely, three ABC-transporter genes, P-gp (ABCB1),
MRP1 (ABCC1) and MOAT-C (ABCCj5), were up-regulated in
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the resistant state (Figure 6), compared to their low expres-
sion levels measured in the chemo-sensitive state. The ABCC1
and ABCCj5 proteins, members of the MRP subfamily, func-
tion as a multi-specific organic anion transporter or contrib-
ute to the degradation of phosphodiesterase, respectively.
ABCB1, a member of MDR/TAP subfamily, encodes an ATP-
dependent drug efflux pump for xenobiotic compounds with
broad substrate specificity. Both ABCB1 and ABCC1 have
been shown to be responsible for decreased drug accumula-
tion in multidrug resistant cells [86,87]. By contrast, down-
regulation was observed in the resistant state for ABCA2,
which encodes a member of the ABC1 subfamily, or ABCG2,
which encodes a member of the MDR/TAP subfamily (com-
pare Q-PCR analysis in Additional data file 9). Interestingly,
this last result contradicts a previous study [30] but is in
agreement with another [32]. This apparent discrepancy
most likely reflects the fact that the former study reported
data obtained with cell lines and tumor samples from patients
under the influence of the drugs, while the latter focused on
tumor samples prior to drug exposure. This highlights some
predictable differences between drug-induced modulations
of transporter gene expression and primary innate drug
responses.

Conclusions

Clinical drug resistance is a major concern in the treatment of
human cancers, most of them being resistant to therapy at the
time of drug presentation. Deciphering the molecular mecha-
nisms that contribute to such innate drug resistance should
improve both the prediction of treatment failure and the
development of new strategies to overcome resistance. Our
study reports for the first time a systems approach toward
understanding the in vivo cellular states of clinical samples
collected from CRC patients prior to their exposure to a com-
bined chemotherapy.

As shown here, microarray technology has the potential to
complement classic biological and clinical parameters, with
important implications for the assessment of complexity,
redundancy and interdependence in biological pathways
involved in drug responses. The ability to automate the
assessment of changes in genome-wide gene expression,
combined with vigilant experimental design and statistical
power simulations to optimize use of relevant biological sam-
ples, facilitates their evaluation for clinical significance.
Through transcriptome analysis and functional annotation,
we were able to highlight functional molecular interaction
networks that may contribute to primary drug responses. The
results obtained suggest that the innate resistant state may be
characterized by: poorly dividing tumor cells as deduced from
observed accumulation of cells in mid-G, phase and
decreased DNA replication processivity; an increased DNA
repair associated with cell cycle delay in late S and G, phases
preventing occurrence of mitotic catastrophe and cell apopto-
sis [58,59]; an increased drug efflux potential by ABC-trans-
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porters pre-existing drug exposure; and a dysfunctional ECM
with decreased renewal ability of ECM and basement mem-
brane components, most likely resulting in decreased stimu-
lation of angiogenesis.

The multiplicity of molecular mechanisms that appear to be
involved in the innate resistant state emphasizes the difficulty
of influencing cell responses to drugs. This is illustrated by
the limited success of recent therapeutic attempts focused on
individual targets such as CHECK, MMP, SPARC or P-gp
[75,87-90]. Hence, the functional interaction molecular map
proposed herein, as it provides a more global systemic view of
cellular states, constitutes a helpful starting point to identify
by-pass chemotherapy schemes designed to stimulate or
inhibit a variety of targets simultaneously with the potential
of enhanced treatment effectiveness.

The information generated in this study might also provide
new potential markers for prediction of the chemo-sensitive
and resistant states to the combined chemotherapy in newly
diagnosed cancer patients, allowing therapeutic adjustment.
Because of the limited size of our study, the genes identified
as differentially expressed require further evaluation in a
larger patient cohort using either microarrays for additional
exploration or quantitative RT-PCR for fast, low-cost assess-
ment. Further integration with data collected at the genomic
level through mutation analysis, at the level of the entire tran-
scriptome by complementary comprehensive methods such
as massive parallel signature sequencing [91], at the pro-
teome level with emerging global technologies such as iso-
tope-coded affinity tags coupled with mass spectrometry
[92], and at the metabolome level by mass spectrometry or
NMR [93] should provide the basis for designing reliable
predictive markers and deciphering the molecular pathways
involved in drug responses.

The research strategy developed in this study represents a
required and valuable step for establishing an initial systems
view of molecular pathways underlying innate drug resist-
ance and should be also applicable to other physiological and
pathological situations.

Materials and methods

Tumor specimens and protocol

Forty tumor biopsies, including left-sided colon tumors (T, n
= 12), adjacent non-tumoral colons taken near the tumor (N,
n = 12) and liver metastases (M, n = 16), were obtained from
fifteen patients enrolled at the Centre Régional de Lutte con-
tre le Cancer (CRLC, Montpellier, France) during a two-year
period in a FOLFIRI phase II clinical trial [94]. The diagnosis
was determined by pathological examination using the fol-
lowing criteria: sporadic advanced metastatic colorectal can-
cer; histological verification of disease; patients between the
ages of 18 and 75 years; World Health Organization (WHO)
performance status of 2 or less; no history of prior
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chemotherapy or any treatment with TOP1 drug inhibitors;
and tumor markers (ACE, CA19.9, LDH) evaluation at base-
line [94]. Written informed consent was obtained from the
patients prior to enrollment for collection of the samples for
medical research under a protocol approved by the local eth-
ical committee (CCPRB COD 03). Sections of patient biopsies
(>3 mm3) were reviewed by a pathologist prior to analysis,
including localization, measurement of the tumor and assess-
ment of margins. Clinical data such as diagnosis, site, stage,
age and sex are summarized in Additional data file 10. Patient
biopsies were snap frozen with liquid nitrogen prior to RNA
extraction and stored at -196°C.

After surgery, all patients received every two weeks compara-
ble regimens of first-line chemotherapy, corresponding to a
simplified 5-FU/FA regimen combined with CPT-11 at 180
mg/m2 at C1, increased to 220 mg/m?2 at C2 and to 260 mg/
m?2at C3 and subsequent cycles if the toxicity grade remained
less than 3 [94]. Initial (primary) response rates were
assessed after each series of two treatment cycles based on
WHO response criteria [8], considering complete or partial
regression, stabilization or progression of the disease based
on the evaluation of growth and records of diagnosed liver
metastases, as described in [11].

Microarray design and manufacture

The human c¢DNA microarrays used contained 11,520
sequences derived from various sequence-verified clone col-
lections, including a Mammalian Gene Collection human
sequence-verified subset (9,600) [95], a private collection of
1,536 human clones identified by a unique IMAGE Clone ID
[96] and 384 control calibrators (Lucidea™ Universal Score-
card™, Lucidea™ microarray Scorecard™ vi.1, Amersham
Biosciences, part of GE Healthcare, Palo Alto, CA, USA; and
SpotReport™-3 array validation system, Stratagene, La Jolla,
CA, USA). The array set provides a genome-wide coverage of
functional pathways, such as cell cycle and checkpoints, cell
growth and/or maintenance, cell adhesion and proliferation,
development, extracellular matrix, apoptosis, response to
DNA damage and DNA repair, DNA replication, transcription
and RNA processing. High confidence qualifications and
annotations of the clone collections used the Genexpress
workbench as described in Additional data file 2. The corre-
sponding data are available through our web site [97].

All arrays were printed in the laboratory on amino-modified
mirrored glass slides using the Lucidea™ array spotter
(Amersham Biosciences) as described in Additional data file
2. The suite of amplified cDNAs was printed as a group in two
spatially separated replicates.

Nucleic acid extraction

Frozen sections from each tumor biopsy were examined
microscopically prior to RNA extraction to confirm that the
sample was representative and contained more than 50%
tumor cells [30]. Total RNA was extracted using RNeasy col-

http://genomebiology.com/2006/7/3/R 19

umns (Qiagen Ltd, Hilden, Germany) according to the manu-
facturer's instructions. RNA purity and quantity was assessed
by UV measurement. RNA integrity was judged using RNA
6000 nano chips and the Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA) according to the manufac-
turer's instructions. RNA quality-control was performed
using user-independent classifiers as described in [98].

Hybridization experimental design

Microarray analyses were applied to tumor and metastasis
biopsies from 13 individuals following a randomized and
blinded unbalanced design. Additional human normal colon
samples (C,, Cg, C(), one colon adenocarcinoma sample (Cr)
and one normal liver (C;) tissue sample (Stratagene) were
included as calibration controls but were not considered in
statistical analyses. Uneven numbers of samples were ran-
domly allocated to each of the engineers who were not aware
of sample phenotypes. To assess data reproducibility and
minimize dye bias effects, each of the samples was measured
four times, twice with Cy3 and twice with Cys. To ensure
robustness and flexibility in data analysis, a reference design
was used with a universal reference sample (Stratagene) serv-
ing as a baseline for the comparisons of tumor samples. Such
a design does not require pre-definition of the subgroups for
comparison, allows robust discovery of non-anticipated
classes among the samples and is compatible with subsequent
additional sampling.

Statistical power (1-B) for t statistics of the experimental
design was computed for estimation of false negatives (FNR)
and FDRs [99] as shown in Additional data file 3. This calcu-
lation is based on the observation that the gene-specific
expression measurements are approximately normally
distributed, and takes into account the accepted confidence
level (o), the magnitude of the effect measured (@), the bio-
logical variation (o) expected in the population investigated,
and the size of the groups of samples from individual patients
(n1, n2). Statistical comparison was done considering that
biopsies collected prior to drug exposure may be subse-
quently categorized in two groups of chemo-sensitive (com-
plete and partial responses) or resistant (progressive and
stable diseases; Additional data file 10) samples in view of the
initial response rates of individual patients to combined
chemotherapy [11].

Gene expression profiles

RNA for hybridization was prepared by amplification using a
modified Eberwine protocol [100]. Reverse transcription, in
vitro transcription and amplification factors were used for
amplified-RNA quality control (Additional data file 2). One
microgram of each amplified RNA and human universal ref-
erence RNA (Stratagene) were labeled alternatively with Cy-
5-dCTP and Cy-3-dCTP (Amersham Biosciences). Following
a vigilant quality control procedure based on three levels of
qualification (RNA quality, linear amplification and target
synthesis specifications) using a set of 16 specific parameters
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(described in Additional data file 2; see also [51,98]), 26
among the 40 samples were included in the microarray work-
flow (Additional data file 10). Hybridizations to the arrays
were performed as described in Additional data file 2; array
images and raw data were obtained using the GenlIII array
scanner (Amersham Biosciences) and ArrayVision™ 7.0 soft-
ware (Imaging Research Inc., Amersham Biosciences, Palo
Alto, CA, USA). Raw data were first imported into a
Genetraffic™ duo database (Iobion Informatics, Toronto,
Canada), local background-subtracted and normalized using
a Lowess (locally weighted linear regression) transformation
[101]. The following selection criteria were applied: all spots
having a mean signal (after background subtraction) less than
that of the background and below that of the negative controls
in both Cy3 and Cys channels were systematically excluded;
the data were also filtered to exclude spots flagged as missing
or corrupted in one array. We next calculated the average
expression ratios (test/reference) in all analyses. Log, values
of lowess-transformed data were used for all subsequent sta-
tistical analyses. For reporting genes by name, IMAGE Clone
IDs corresponding to the microarray probe sequences were
used to extract UniGene Cluster IDs and names (Build 184,
June 2005). For genes represented by multiple probes (that
is, different clones corresponding to the same gene) on the
array, each probe and the related expression ratios were
considered and reported separately. MIAME-compliant data
[102] have been deposited in Gene Expression Omnibus
(GEO) at NCBI [103] and are accessible through GEO Series
accession number GSE3964.

Quantitative RT-PCR analysis

The expression of selected genes was also analyzed by Q-PCR
using the TagMan® low density Micro Fluidic Card or Tag-
Man® single assays (Applied Biosystems, Foster City, CA,
USA), according to the manufacturer's instructions.

Total RNA (1 pg) from tumor biopsies from 15 individuals
prepared as described above was used in the Q-PCR reactions
(Additional data file 10). cDNA was prepared using the high-
capacity cDNA archive kit (Applied Biosystems) as described
in the manufacturer's instructions. Preliminary experiments
using 18S rRNA TagMan® probes were carried to test the effi-
ciency and reproducibility of the reverse transcription. The
expression levels were determined using the Applied Biosys-
tems 7900-HT SDS instrument; duplicate threshold cycle
(Ct) values were averaged, and transformed using a relative
quantification method [104]. Fold changes for each tested
gene (target gene) was normalized to the GUSB housekeeping
gene (reference gene) and compared to the relative median
expression of all samples (calibrator sample), using the for-
mula Fold change = 2-4ACt where AACt = (C C
ence)Sample—n - (Ct—target - Ct—reference)Calibrator sample* Sample'n
corresponds to any sample for the target gene normalized to
the reference gene and the calibrator sample represents the 1
x expression of the target gene normalized to the reference
gene considering all tested samples.

t-target ~ “t-refer-
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The data are expressed as mean 2-44Ct of each group of sam-
ples (resistant and sensitive states) and lower and upper
bound mean of 95% confidence intervals. Differences
between groups were examined for statistical significance
using z-statistics, with FDR p values adjustment (o = 0.05).
Expression changes in the same direction in both microarray
analysis and Q-PCR, and p < 0.05 was considered statistically
significant.

Statistical analysis of cDNA microarray data

Centered Pearson correlation was used as a similarity meas-
ure to visualize the expression patterns among samples. Aver-
age linkage hierarchical clustering analysis was implemented
using the Cluster program and the results were displayed
using TreeView [105]. The distances between samples are
represented on a dendrogram as shown in Figure 1.

t statistics with permutation-based p values adjustment were
used to select clusters (nodes) of genes significantly differen-
tially expressed between two groups using the Cluster Identi-
fication Tool [106]. The group labels (resistant and sensitive
states) were randomly permuted and the t statistic for each
gene node in the permuted data set was calculated. The proc-
ess was repeated 10,000 times. A p value was reported for
each gene node by comparing the observed statistic with the
permutation statistics. Only gene nodes with p values < 0.05
were considered relevant.

ArrayStat 1.0 software (Imaging Research Inc.) was used for
parametric analysis. For the data, only elements for which at
least one-third of the measurements across all samples had
values were included. A pooled curve-fit error method was
used for random error estimation; a range of 3.0 median
absolute deviations (MADS) to 4.0 MAD established outlier-
detection thresholds automatically. Then, groups were com-
pared as independent conditions by a z-test (o = 0.01). In this
step, data were subjected to iterative normalization by center-
ing to the median across groups. For multiple testing correc-
tions, the FDR procedure was used [107]. Only genes whose
expression significantly differed between the resistant and
sensitive states (p values < 0.001) were selected.

Bioinformatics

Gene name, aliases, representative accession number,
Locuslink IDs (LLID), UniGene Cluster IDs (Hs.) and GO IDs
[52], chromosome and sub-cellular localization of genes from
microarrays were obtained from the SOURCE browser
[108,109]. Attributes were collected using the individual
IMAGE Clone ID, corresponding to the microarray probe
sequences. A complete GO annotation and descriptions [52]
were obtained from QuickGO, a browser for the GO data at
the European Bioinformatics Institute [110].

Ontology enrichment
Genes had previously been categorized into various ontolo-
gies and pathways. If a particular ontology term was enriched
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for genes that are significantly expressed in response to the
process under study, it was concluded that the ontology term
is likely to be involved in the process. EASE online [53,111] via
the LLID and GoMiner [54,112] via the gene symbol were
used to analyze the lists of up- and down-regulated genes for
GO categories [52] that were significantly statistically over-
represented. EASE scores were used as upper bound of the
one-sided jackknife Fisher's exact probability test and GoM-
iner that estimates the p value using two-sided Fisher's exact
test of p values. Only GO categories that had p values of less
than 0.05 were reported.

Networks searches

Differentially expressed genes were mapped onto relevant
biological themes and represented using the CellDesigner
version 2.5 program [55], a structured diagram editor that
represent the dynamics and dependencies of gene modula-
tions with specific components of the cellular machinery.
Gene expression data were displayed using the HUGO symbol
nomenclature by color-coding over-regulated genes in red,
down-regulated genes in green, genes present onto the micro-
array in gray and untested genes in white. Networks are
stored using SBML, a standard for representing biochemical
networks [56].

Additional data files

The following additional data are available with the online
version of this paper and can also be obtained through our
web site [113]. Additional data file 1 outlines the workflow of
the experimental design and analysis strategies. Additional
data file 2 is a comprehensive description of the experimental
procedures used in this study. Additional data file 3 is a
spreadsheet file including the statistical power simulations.
Additional data file 4 is a spreadsheet file including descrip-
tive statistics and annotation of differentially expressed
genes. Additional data file 5 is the gene expression matrix of
the significant node NODE519X. Additional data file 6 is the
gene expression matrix of the significant node NODE547X.
Additional data file 7 is a serial representation of the relative
expression of a series of genes collected by Q-PCR during the
validation step performed on a new metastasis sample col-
lected from an additional patient. Additional data file 8 is a
spreadsheet file including the search results for significantly
enriched GO classes. Additional data file 9 is a spreadsheet
file including Q-PCR analysis collected for additional genes
representative of key biological processes. Additional data file
10 is a spreadsheet file that contains the information relative
to the patients and tumor samples used in this study, and QC
selections [52,95,98,100,114-122].
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