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Distinct yet linked: chaperone networks in the eukaryotic cytosol
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Abstract

The terms chaperone and heat-shock protein are frequently used as synonyms, but this is an
oversimplification. Although one subset of chaperones is induced by heat stress, a distinct group
fails to respond in the same manner. Recent work reveals that this latter group is linked to the
translational apparatus and functions in co-translational processes.
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A decade ago it was recognized that chaperone systems in

bacteria form a lateral network of cooperating proteins [1]. The

idea of chaperones acting in parallel, with the capacity to

replace each other, turned out to be a best-seller and is now

generally accepted. Recent work by Albanese et al. [2] in the

yeast Saccharomyces cerevisiae now modifies this concept and

suggests the existence of distinct and independent chaperone

networks in eukaryotes. One network consists of heat-inducible

chaperones that can rescue or dispose of proteins in response

to various environmental stresses. The other is thought to be

required specifically during de novo protein folding. 

A chaperone is not always a heat-shock protein
as well   
Some years ago Brown and co-workers [3] analyzed the tran-

scriptional profiles of yeast in response to environmental

changes, including a variety of stress conditions. Now,

Albanese et al. [2] have performed clustering analysis of these

datasets for chaperone-encoding genes, discovering that tran-

scription of a defined group is co-regulated with the 138 yeast

ribosomal protein genes. The authors termed this subgroup

‘chaperones linked to protein synthesis’ (CLIPS). 

Ribosome biogenesis is strictly controlled, and ribosomal

protein genes form one of the most prominent clusters in

studies of the yeast transcriptome. One important characteris-

tic of the ribosomal gene cluster is that heat stress leads to its

downregulation [3]. This means that CLIPS mRNA levels are

changing in the opposite direction of the ‘classic’ heat shock

factor-dependent chaperones [2]. Prominent examples of

chaperones co-regulated with the ribosomal protein genes are

TRiC (chaperonin-containing T-complex), prefoldin, NAC

(nascent-polypeptide associated complex), RAC (ribosome-

associated complex), and the Hsp70 homolog Ssb. Consistent

with the lack of induction of CLIPS by heat stress, yeast strains

lacking nonessential CLIPS are not specifically sensitive to ele-

vated temperatures [4-7], although exceptions have been

reported [8,9].

CLIPS interact with polysomes and cope with
specific stress conditions  
In their comprehensive survey, Albanese et al. [2] used

sucrose gradient fractionation to investigate which cytosolic

chaperones have the propensity to interact with polysomes.

When these results are combined with previous analyses it

becomes clear that the extent of ribosome association is

characteristic for each chaperone [4-6,10-13]. For example,

among the yeast homologs of Hsp70 classified as CLIPS [2],

only a minor fraction of Ssa [2,11] and Sse1 [2], about half of

Ssb [4], and virtually all of Ssz1 [6] is ribosome-associated.

These differences suggest that some CLIPS are confined to

co-translational processes, whereas others serve multiple

functions in the cell.

Stimulated by the transcriptome data, the polysome associa-

tion, and the lack of temperature sensitivity, Albanese et al. [2]



tested the idea that CLIPS specifically mediate de novo

protein folding. The question was tackled using the imino

acid analog azetidine-2-carboxylic acid (AZC), which is

incorporated into proteins competitively with proline and

affects de novo folding. Indeed, yeast strains lacking CLIPS

such as Ssb were hypersensitive to AZC. On the basis of

these findings the authors propose a model in which CLIPS

chaperone polypeptides during their synthesis but fail to

handle misfolding of preexisting proteins induced by heat

stress. Consistent with this model, Albanese et al. [2] find

that toxic misfolded protein species cause growth defects in

yeast strains lacking Ssb. To that end they used the so-called

GroEL trap, which is an elegant molecular device that cap-

tures unfolded polypeptides but is unable to mediate folding

[14]. When GroEL trap was expressed in a yeast strain

lacking Ssb, growth defects were attenuated, suggesting that

simple capturing of misfolded polypeptides can suppress

growth defects in the absence of Ssb.

In this context it is worth noting that AZC also affects the

stability of proteins [15]. The drug is known to selectively

repress expression of ribosomal protein genes while heat

shock factor-regulated genes are strongly induced [15]. Fur-

thermore, it has been reported that defects in the disposal of

misfolded proteins result in hypersensitivity to this drug

[16]. More than a decade ago, Ssb was discovered as a multi-

copy suppressor of a yeast strain carrying a temperature-

sensitive mutation in an essential proteasome subunit [17].

One possible scenario would thus be that Ssb and other

CLIPS are involved in the degradation of proteins that fail to

fold correctly. Earlier observations by Frydman and co-

workers [18] had indicated, however, that the degradation of

the VHL tumor suppressor was independent of Ssb. From

the new data one may now speculate that high cellular con-

centrations of Ssb reduce de novo misfolding, alleviating the

pressure on the malfunctioning proteasome.

Functional overlap of distinct chaperone
networks 
On the basis of its interaction with polysomes, Albanese et

al. [2] classify Ssa, the housekeeping Hsp70 in the yeast

cytosol, as a CLIPS. In contrast to most CLIPS, however, SSA

is regulated in a heat shock factor-dependent manner and is

also involved in the rescue of proteins denatured after an up-

shift in temperature [2,19]. In folding, Ssa is thought to act

predominantly posttranslationally, and may ensure that

nascent polypeptides that have initiated folding on the ribo-

some complete the process after their release [20]. Ssa’s reg-

ulation and function thus overlaps with the CLIPS as well as

with the heat shock factor-regulated chaperone network.

Is it possible to assign clear-cut functions to Ssb and Ssa, the

major cytosolic Hsp70s in yeast? To date, only limited infor-

mation is available. Ssa-dependent folding of a few proteins

has been demonstrated in vivo. These Ssa substrates did not

require Ssb for folding [20,21]. Instead, Ssb was found to

cooperate with the TRiC machinery, which is engaged in the

folding of a specific set of substrates [13]. Interestingly,

Albanese et al. [2] find that Ssb is the most efficient binder

of nascent polypeptides among the chaperones compared in

this study. Whether this interaction is functionally confined

to the delivery of folding-competent polypeptides to TRiC

awaits further investigation.

Chaperone networks in yeast and higher
eukaryotes 
Most components of the yeast chaperone networks are present

also in higher eukaryotes, suggesting that the mechanisms of

protein biogenesis are conserved in eukaryotes. Some of the

ribosome-associated chaperones have been discovered only

recently. The Hsp40 homolog MPP11 [22,23] and the Hsp70

homolog Hsp70L1 [23] form a heterodimer functionally

equivalent to yeast RAC [6,23]. In yeast, both subunits of RAC

are tightly connected to Ssb and the three chaperones form a

functional triad [12,24]. Ssb, the central player of the yeast

CLIPS system [2], does not, however, seem to have an obvious

counterpart in mammalian cells. This has led to the suggestion

that mammalian Hsc70, a close homolog of yeast Ssa, serves a

dual function and mediates processes that in yeast are divided

between Ssa and Ssb [22]. In agreement with this, Hsc70

cooperates with TRiC, a function that in yeast is performed by

Ssb [13,25]. Thus, compared with Ssa, Hsc70 even more inti-

mately connects with cytosolic and ribosome-associated chap-

erone networks. The question of how interconnections are

established and what distinguishes yeast and mammalian

chaperone networks will certainly continue to be a central

topic for researchers in the field. 
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