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The tissue distribution of human pathways<p>A comparison of five different measures of pathway expression and a public map of pathway expression in human tissues are pre-sented.</p>

Abstract

Background: Interpretation of lists of genes or proteins with altered expression is a critical and
time-consuming part of microarray and proteomics research, but relatively little attention has been
paid to methods for extracting biological meaning from these output lists. One powerful approach
is to examine the expression of predefined biological pathways and gene sets, such as metabolic
and signaling pathways and macromolecular complexes. Although many methods for measuring
pathway expression have been proposed, a systematic analysis of the performance of multiple
methods over multiple independent data sets has not previously been reported.

Results: Five different measures of pathway expression were compared in an analysis of nine
publicly available mRNA expression data sets. The relative sensitivity of the metrics varied greatly
across data sets, and the biological pathways identified for each data set are also dependent on the
choice of pathway activation metric. In addition, we show that removing incoherent pathways prior
to analysis improves specificity. Finally, we create and analyze a public map of pathway expression
in human tissues by gene-set analysis of a large compendium of human expression data.

Conclusion: We show that both the detection sensitivity and identity of pathways significantly
perturbed in a microarray experiment are highly dependent on the analysis methods used and how
incoherent pathways are treated. Analysts should thus consider using multiple approaches to test
the robustness of their biological interpretations. We also provide a comprehensive picture of the
tissue distribution of human gene pathways and a useful public archive of human pathway
expression data.

Background
Microarray experiments typically measure mRNA popula-
tions in tissue samples and changes in those populations fol-
lowing perturbations. The main result of a microarray

experiment is a list of genes whose expression is significantly
changed relative to a comparison sample. This gene list will
typically contain hundreds to thousands of genes, and biolog-
ical interpretation of this list is often the most time-consum-
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ing analysis step. To interpret the set of differentially
regulated genes, a scientist may order them by statistical sig-
nificance or expression fold-change and then work through
the list, picking out familiar genes, grouping genes that
appear to have similar functions, and conducting literature
searches to help understand the functions of unfamiliar
genes. Eventually, most of the genes in the list are grouped
and understood in terms of biological processes that have
meaning to the scientist, such as the activation or repression
of particular pathways or sets of genes with common func-
tion. Recent increases in available gene annotation and path-
way databases have made it possible and worthwhile to
complement this manual approach with automated analysis
of pathway expression changes, the coordinated induction or
repression of multiple genes in a predefined pathway, by ref-
erence to a database of known pathways. Here, we present
and examine approaches that pre-filter gene sets in a data-
base for correlated behavior over multiple experiments and
then test the differential regulation of each gene set or path-
way. In what follows, we use the terms 'pathway' and 'gene
set' interchangeably.

The idea of inspecting output gene lists from microarray
experiments for statistical enrichment of previously anno-
tated gene sets emerged with early microarray studies [1,2].
Over time the approach has become more systematic, relying
on the use of keyword databases such as Swiss-Prot [3],
MEDLINE [4], and Gene Ontology [5-12] as annotation
sources. Several tools have also been developed to help facili-
tate automation of enrichment analyses from a gene list, gen-
erally using Gene Ontology categories [6,9,13-15]. Recently,
there has been a trend to look for enrichment not just in the
analysis of individual experiments, but among different
classes of experiments [16] and in larger compendia of
expression data, including a set of 55 mouse tissues [17], a
database of expression from 19 human organs [18], and a
meta-analysis of 22 human tumor types [19]. Many different
methods for measuring pathway expression have been used,
but to date no substantial systematic comparison of multiple
methods over multiple independent data sets has been per-
formed.

Here, we compare five different methods for defining path-
way expression over nine publicly available mRNA expres-
sion data sets. Many pathways are identified by all methods as
significantly changed. However, there are also a number of
pathways that are only identified as significantly changed by
a subset of the measures. These results are dependent on
whether and to what extent pathways with incoherent (uncor-
related) expression [20] are removed. Biological interpreta-
tion of the results may thus be dependent upon the choice of
pathway expression metric and how incoherent pathways are
handled. Following the comparison of methods, we apply
these methods and use coherence filtering to construct a pub-
lic reference map of human pathway expression data. This
map is a two-dimensional matrix of 290 pathways by 52 sam-

ples, showing which pathways are upregulated or downregu-
lated in each of these normal tissues and cancer cell lines. A
high-resolution version of this map and all expression data
are freely available [21]. The resulting map of the expression
of human pathways and other gene sets is consistent with the
known tissue specificities of many molecular processes and
suggests new insights into the action of different pathways in
human tissues. Finally, we demonstrate the use of pathway
measurements to refine and correct errors in pathway anno-
tations.

Results and discussion
Measuring gene set expression
We compared the following five pathway 'activation metrics'
for mapping the vector of expression values for all genes in a
pathway to a scalar value representing the expression level of
the pathway (Figure 1).

Z-score
Suggested recently in a microarray context [22,23], the Z
score used here represents the difference (in standard devia-
tions) between the error-weighted mean of the expression
values of the genes in a pathway and the error-weighted mean
of all genes in a sample after normalization. The result reflects
both the magnitude and relative direction of a gene set's
expression.

Hypergeometric
This metric measures the enrichment of transcriptionally
active genes in a gene set by calculating a p value using the
hypergeometric distribution. It requires the user to define a
statistical threshold for significant induction or repression.
To reflect directionality, induced and repressed genes are
considered separately and the more significant of the two p
values, along with the appropriate sign (negative if repressed
genes were more significant, positive otherwise) is used.

Principal component analysis
The first principal component of the expression values in a
gene set captures the dominant linear mode of covariation of
the expression of the genes in that gene set.

Wilcoxon Z-score
This metric is the mean rank of the genes in the pathway
(among all genes on the microarray), normalized to mean
zero and standard deviation one.

Kolmogorov-Smirnov
The Kolmogorov-Smirnov (KS) statistic used here represents
the maximum absolute deviation between the cumulative dis-
tribution function (CDF) of the expression values of the genes
in the pathway and the CDF of all the genes in the experiment.
To reflect directionality, we give a sign to the KS statistic
according to whether the maximum absolute deviation arose
from a positive or negative difference between the two CDFs.
Genome Biology 2006, 7:R93
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Coherence of gene set expression
Separately, we developed a simple metric to quantify the
degree of co-regulation, or 'coherence', of the genes in the
gene set over a given set of experimental samples. Pathways
whose component genes are perturbed in a correlated man-
ner are, in general, more likely to be relevant to biological
interpretation of the experimental results, while pathways
whose component genes demonstrate uncorrelated, incoher-
ent expression are less likely to be relevant to the biological
meaning of the list of perturbed genes. We also explored the
hypothesis that different metrics of gene set activation are
more likely to give concordant results for coherent pathways
than for incoherent pathways. As the measure of coherence,
we use the percentage of total variance of the expression val-
ues within the gene set captured by the first principal compo-
nent across all samples. Unlike some of the other possible
methods for measuring coherence, this measure is not biased
against gene sets whose component genes are regulated in
opposing directions over the samples, as long as the relative
behavior of pairs of component genes is consistent across the
samples. This is not a perfect filter, however, since it may miss
certain activated pathways, for example, certain signaling
pathways that may not exhibit a strong transcriptional
response.

To test the ability of each metric to convert gene-level expres-
sion into pathway expression, we assembled a database of
1,401 annotated human pathways and gene sets: 120 from
KEGG [24,25], 1040 from the Biological Process hierarchy of
the Gene Ontology (GO) database [26], and 241 from the Cel-
lular Component hierarchy of GO. For evaluation of the five
pathway metrics described above we selected nine recent data
sets from the GEO database [27] (GDS1062 [28], GDS1067
[29], GDS1210 [30], GDS1220, GDS1221 [31], GDS1231 [32],
GDS1332 [33] and two data sets from GDS1239 [34]). Each
data set contains two subsets of samples: a baseline set of
samples and one subset of samples representing a disease
state or a different disease state from the baseline (Table 1).
Since each of the two subsets contains multiple relatively sim-
ilar samples, these are used as biological replicates to esti-
mate the false discovery rate (FDR) for each pathway
activation metric in the analysis below. Although this is not
the same as comparing two sets of control and experimental
samples each consisting of replicates of the same tissue from
genetically identical animals, it is representative of compari-
sons made in the literature using clinical samples from differ-
ent patients, and diversity of samples within each subgroup
increases the likelihood that the differentially regulated path-
ways will generalize to other samples of the same types. In
addition, the performance of each activation metric, although
variable in absolute terms across datasets, remained consist-
ent relative to other metrics across datasets, which increases
our confidence that the differences described below are real.

Using receiver-operator characteristic (ROC) curves we
measured the sensitivity of each pathway activation metric to

differences between the two sample subsets in each of the
nine independent data sets as a function of FDR. For compar-
ison, we also measured the sensitivity of the expression vec-
tors of individual genes (see Materials and methods). To test
the hypothesis that coherence-filtering would affect the
results, we studied each metric for its performance on gene
sets of varying coherence (coherence p values ≤ 0.01, 0.05,
0.10, and 1.0). Sensitivities at a given FDR were averaged over
all nine data sets for each of the metrics and for each coher-
ence threshold. The combined performance results are shown
in Figure 2. Results for the individual data sets are provided
as Supplemental Figures F1 to F9 in Additional data file 1 .
Using coherent gene sets, all activation metrics except the
hypergeometric were more sensitive in detecting differences
between the two replicate groups than was a comparison
using the expression of individual genes. The observation that
small but coordinated changes in expression may be easier to
detect at the pathway level than at the gene level has been
noted previously [16]. Qualitatively, this can also be observed
in Figure 1, in which the expression of the individual genes is
somewhat noisy, but the pathway activation metric captures
the predominant signal more clearly.

The relative performance of the different metrics varied
widely over the data sets (see Supplemental Tables T1 to T9 in
Additional file 2 and Supplemental Figures F1 to F9 in Addi-
tional data file 1). The best performing metric also varied over
the data sets; each of Z score, KS, Wilcoxon Z score, and prin-
cipal component analysis (PCA) was the most sensitive for at
least one of the data sets. In general, for data sets with very
different samples and thus large numbers of genes with sig-
nificant differential expression ('signature genes'), all of the
metrics tended to perform well and the choice of metric is less
critical. However, for data sets with lower numbers of signa-
ture genes, results were much more variable. For example,
because the hypergeometric metric considers only the set of
predefined signature genes, it performed poorly when there
were very few such genes and should not be used in such cir-
cumstances. The other metrics take into account the expres-
sion of each gene in a pathway, regardless of whether the
individual gene expression differences are above or below a
threshold of significance.

When we combined classification results over all of the data
sets (as in Figure 2), the PCA metric proved more sensitive
than the other metrics. In this aggregate ROC analysis, the Z
score performed second best, slightly outperforming the Wil-
coxon Z score metric, which in turn slightly outperformed the
KS metric. The sensitivity of the signed hypergeometric met-
ric, which is arguably the most commonly applied method in
gene expression analysis publications, was uniformly inferior
to the other metrics and often not as sensitive as individual
genes. The sensitivity of all methods declined as a function of
decreasing pathway coherence, presumably because the acti-
vation signal from a coherent gene set, in which most of the
genes are upregulated or downregulated in concert, is
Genome Biology 2006, 7:R93
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Figure 1 (see legend on following page)
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stronger than that from a set that is not coherent. The PCA
activation metric is the least affected by this trend, retaining
reasonable sensitivity even for incoherent gene sets (Figure
2d). Although PCA performed best in the combined classifica-
tion test, it may not always be the best choice to use to inter-
pret the biology of an expression data set. There were some
data sets in which it did not perform as well as the other met-
rics (Supplemental Figures F3, F5, F6, F8 and F9 in Addi-
tional data file 1), but more importantly, because the principal
component is highly data-set specific (that is, the weighting of
individual genes is chosen to maximize the percentage of var-
iance explained in that data set only), PCA may artifactually
detect and use noise to discriminate between samples.

The number of pathways with significant changes in expres-
sion varied greatly across the nine data sets, and for some
combinations of data sets and metrics no significant pathway
expression changes were detected. For example, using PCA,
two GEO data sets, GDS1062 [28] and GDS1221 [31], show no
differentially activated gene sets at an estimated FDR of 0.2,
suggesting that both sample subgroups are very similar to
each other. Similarly, GDS1231 [32] shows only one activated
gene set at the same FDR. The other six data sets showed large
numbers of activated gene sets at all FDR levels. Finding no
differentially activated gene sets for GDS1221, a study of
response to the drug Gleevec (imatinib mesylate), is consist-
ent with the findings of the original investigators [31].
Although the KS statistic performs better than chance and
better than individual genes for this data set (p < 0.01; Sup-

plemental Figure F3 in Additional data file 1 and Supplemen-
tal Table T3 in Additional data file 2), no activated pathways
are found for an estimated FDR <0.2. O'Donnell et al. [28]
used gene expression to classify non-metastatic versus meta-
static head and neck cancer, deriving a 116-gene set of differ-
entially expressed genes that correctly classified the training
samples and a limited set of test samples. Their discussion
does not identify any known biological gene sets that are con-
sistently up- or downregulated between subgroups. Here,
several pathway metrics, the Z score and Wilcoxon Z in par-
ticular, are able to do so (Supplemental Figure F9 in Addi-
tional data file 1, Supplemental Table T9 in Additional data
file 2).

Not only does the detection sensitivity of the metrics vary
(Figure 2), the pathways identified by them as differentially
regulated are often different. To explore this quantitatively,
we ranked the pathways by the statistical significance of their
differences between each pair of sample groups using the p
value from a two-sided Wilcoxon rank sum test for equal
medians (see Materials and methods). This analysis shows
that often a pathway that is detected as significant for one
metric is not detected as significant by another. Motivated by
these differences, we further compared the similarity of the
five metrics by computing the Spearman (rank) correlation
between them. Using all nine data sets we measured their cor-
relation as a function of the FDR and coherence. At low FDRs
we computed the Spearman correlation using only the most
strongly differentially activated gene sets, while at higher

Table 1

GEO identifiers and data sets used for pathway activation method comparison

GEO ID Subgroup 1 (Baseline) Subgroup 2

GDS1062 Metastasis-negative squamous cell carcinoma (8) Metastasis-positive squamous cell carcinoma (14)

GDS1067 Monoclonal gammopathy (7) Multiple myeloma (39)

GDS1210 Normal gastric tissue (8) Gastric carcinoma (14)

GDS1220 Normal pleural tissue (8) Malignant mesothelioma (40)

GDS1221 Peripheral blood, CML responsive Gleevec (9) Peripheral blood, CML not responsive Gleevec (7)

GDS1231 Enriched for hematopoietic stem cells (9) Enriched for committed hematopoietic cells (9)

GDS1329 'Basal' breast tumors (16) 'Luminal' breast tumors (27)

GDS1329 'Basal' breast tumors (16) 'Apocrine' breast tumors (6)

GDS1332 Whole blood normal controls (14) Whole blood symptomatic Huntington disease (12)

The numbers in parentheses are the number of samples in each subgroup. CML, chronic myelogenous leukemia. References are provided in the main 
text.

Example of pathway activation calculationFigure 1 (see previous page)
Example of pathway activation calculation. Shown on the left are the expression levels of the 70 genes in the KEGG Ribosome gene set measured across a 
set of tissue samples. The columns are genes and the rows are tissues. Bright red indicates overexpression of a gene relative to a pool of all tissues, and 
dark blue significant underexpression. For each tissue, the pathway activation metric (represented by the black arrow) is used to calculate a corresponding 
scalar value that captures the predominant expression of the genes in the Ribosome gene set in that tissue. Taken together, these scalar values constitute 
the pathway activation metric vector shown on the right.
Genome Biology 2006, 7:R93
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FDRs we include a progressively larger subset of the 1,401
gene sets. Interestingly, we found the correlation between
metrics depended only weakly on the FDR. Table 2 contains
representative correlations for a FDR of 0.05 and coherence
p value < 0.05. Although the exact correlation values vary
with the FDR and coherence range, the Z-score, Wilcoxon,
and KS metrics all had similar gene set rankings. However,
the correlation of these three metrics to the PCA and hyperge-
ometric metrics was substantially weaker. The correlation of
these three with PCA was weaker still when incoherent sets
were included (data not shown), indicating that pathway
interpretations using different metrics are more consistent
for coherent than for incoherent sets.

We can conclude from the above analyses that the list of path-
ways significantly changed between two sets of biological
samples is strongly dependent on the type of data set (for
example, the number of individual genes differentially
expressed), the selected pathway activation metric, and
whether or not 'incoherent' pathways are removed. For
deeper exploration of these points, we use the data set of
Farmer et al. [34], focusing on the differences between two
estrogen-receptor (ER) negative subsets of breast cancer
samples, termed 'basal' and 'apocrine'. Gene expression dif-
ferences between breast cancer samples are dominated by ER
status and so, as expected, the differences between basal and
apocrine subtypes are relatively subtle. In fact, using the

ROC analysis was used to compare the detection sensitivity of five metrics of gene set activation and individual genes to discriminate between two different subgroups in nine different data sets (Table 1)Figure 2
ROC analysis was used to compare the detection sensitivity of five metrics of gene set activation and individual genes to discriminate between two 
different subgroups in nine different data sets (Table 1). A Wilcoxon rank sum test was used to test the null hypothesis for each gene set and individual 
gene that the two different subgroups groups were drawn from the same distribution. (a-d) The four graphs show results using four different p value 
thresholds for pathway coherence. Shown on the y-axis is the positive rate: the percentage of the gene sets or genes declared different between the two 
subgroups as a function of the FDR (the x-axis). The results are averaged over all nine data sets. The operating range of the X axis, [0.0, 0.3] was chosen 
to correspond to the range of FDRs that might be acceptable in practice. ROC curves were also calculated for each of the nine data sets individually 
(Supplemental Figures F1 to F9 in Additional data file 1). HG, hypergeometric; WC, Wilcoxon Z score; Z, Z score.
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hypergeometric metric for gene-set activation, none of the
1,401 pathways are found to be differentially expressed at a
FDR of 30%. The Wilcoxon and KS metrics are also relatively
insensitive for this data set (Supplemental Figure F1 in Addi-
tional data file 1, Supplemental Table T1 in Additional data
file 2). Neither of the metrics detects any activated pathways
in the apocrine versus basal comparison with a FDR of 1%,
and each detects only three pathways with a FDR of 10% (with
one pathway in common). In contrast, many activated path-
ways are detected by the PCA metric, even at a FDR of 1%. As
noted above, however, the sensitivity of the PCA metric may
be spuriously high because the principal component adapts to
the data set, so it is not clear all statistically significant path-
ways are biologically significant. At a FDR of 10%, for the total
of the 71 gene sets with a coherence p value < 0.01, the Z score
activation metric detects 22 activated gene sets and the PCA
metric detects 41.

Of the 22 gene sets detected at a FDR of 10% by the Z score
metric in the apocrine versus basal data set, almost all are
related either to the cell cycle or to protein and amino acid
metabolism. Compared to basal-type breast cancer samples,
apocrine-type cancers demonstrate consistently lower activa-
tion of gene sets related to the cell cycle, particularly mitosis,
and higher levels of activation of gene sets related to regula-
tion of protein synthesis. The inflammatory response (pre-
sumably related to the infiltration of lymphocytes into the
tumor) is lower in apocrine-type samples. If we rank path-
ways by the number of metrics showing a Wilcoxon rank sum
p value for differential activation of <0.01, similar trends
emerge; in addition, multiple sex-hormone related pathways
demonstrate increased activation in apocrine-type cancers.
This latter finding is consistent with the main hypothesis of
Farmer et al. However, our conclusion that mitotic cell cycle
pathways (for example, the pathways 'mitosis', 'nuclear divi-
sion', 'spindle', 'cell cycle', 'mitotic cell cycle', 'regulation of
mitosis') are expressed at significantly higher levels in apo-
crine samples relative to basal samples - detected by both Z
score and PCA at a FDR of <10% - is not made by Farmer et
al. This indicates the potential value of using multiple meth-
ods for assessing pathway activation. Likewise, several of the
pathways listed in Farmer et al. as significantly upregulated

in the apocrine samples (for example sulfur, lipid, and alcohol
metabolism) do not pass the coherence threshold of p < 0.01.
The expression of the individual genes in the sulfur metabo-
lism pathway is shown in Supplemental Figure F11 (Addi-
tional data file 1) as one example. Although the expression of
several individual genes in these pathways can separate the
two tumor types, the vast majority of the genes in these path-
ways are not differentially expressed between the two sample
types, and biological conclusions about the pathways' differ-
ential expression may not be warranted.

Atlas of human gene expression
As a second illustration of the methods described above, we
compiled a human gene expression atlas of approximately
11,000 RefSeq transcripts in 44 normal tissues and 8 cell
lines. Most of the data were obtained by re-analysis of expres-
sion data from a genome-wide scan of alternative splicing as
described in Materials and methods [35]. The data were pre-
viously available only at the probe level, but are now organ-
ized by transcript and gene. Five additional samples
(pancreas, kidney, and three cell lines) were also re-hybrid-
ized for this study to improve data quality and coverage. Each
normal tissue sample was made from a pool of individual
donors. Finally, because the probes in this splicing study
measured the expression of every exon-exon junction
throughout each transcript, the median intensity of all probes
for all transcripts representing a given gene provides a more
robust measure of the gene's expression than array experi-
ments using a single probe or set of probes near the 3' end of
a single transcript. The expression data and their associated
errors are provided in Supplemental Tables T10 and T11
(Additional data file 2).

Human pathway expression map
As described above, we first removed gene sets with incoher-
ent expression over the samples in this study, resulting in 290
coherent gene sets (Supplemental Table T12 in Additional
data file 2). The discarded sets and pathways may, of course,
be actively transcribed and highly relevant in certain cell
types within human tissues and yet represent only small frac-
tions of the RNA populations within these tissues. For each
coherent gene set in each tissue, we analyzed the expression

Table 2

Spearman correlation of pathway activation metrics over the nine data sets of Table 1

Z HG PCA WC KS

Z 1.0 0.30 0.53 0.77 0.64

HG 1.0 0.32 0.18 0.12

PCA 1.0 0.32 0.24

WC 1.0 0.85

KS 1.0

Spearman correlation of pathway activation metrics over the nine data sets of Table 1, with consistent FDR of 0.05 and coherence p value ≤ 0.05. 
Columns and rows are Z score (Z), signed hypergeometric (HG), principal component analysis (PCA), Wilcoxon Z score (WC) and Kolmogorov-
Smirnov (KS).
Genome Biology 2006, 7:R93
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level of that set using each of the five pathway activation met-
rics. Each resulting map is a matrix of 52 tissues and cell lines
versus 290 gene sets and pathways (Figure 3). Results for the
different metrics were more similar than for most of the
experiments described above, possibly because of the larger
differences in gene expression among body tissues. Although
the maps in Figure 3 are broadly alike, specific differences in
the maps are visible upon inspection. For example, the rela-
tive insensitivity of the signed hypergeometric metric is easily
seen. Although the Z score did not perform as well as PCA in
the combined ROC analysis described above, we selected it
for further analysis and discussion of the human body atlas
data because it characterizes each gene set with an intuitive
interpretation as induced or repressed, provides a magnitude
of activation that can be used in further analyses, had a simi-
lar pathway expression profile to PCA (Figure 3), and is less
susceptible to fitting to noise in the data.

The Z-score map is shown at higher resolution in Figure 4.
The expression patterns of the gene sets in the figure range
from tissue-specific to ubiquitously expressed. At one
extreme, the gene sets representing phototransduction, ster-
oid hormone metabolism, and muscle filaments are
expressed uniquely in retina, adrenal gland, and muscle,
respectively. At the other extreme, sets expressed in all tissues
in the atlas ('housekeeping' pathways) include those repre-
senting chromatin modification, RNA splicing, the ribosome,
and mRNA processing. The largest set of tissue-specific path-
ways is unique to the brain. In what follows, references are
made to a series of 'blocks' in Figure 4 that represent clusters
of related gene sets with unique patterns of tissue expression.
A higher resolution figure including all of the pathway names
is provided as Supplemental Figure F12 (Additional data file
1), along with the gene sets in each block (Supplemental Table
T12 in Additional data file 2), and the full table of Z-scores for
every pathway in every tissue (Supplemental Table T13 in
Additional data file 2). Specific gene set names are followed
by CC, BP, or KG, according to whether the gene set was
derived from the Gene Ontology Cellular Component hierar-
chy, the Gene Ontology Biological Process hierarchy, or
KEGG pathways, respectively.

The pigmentation block consists of gene sets related to mela-
nin synthesis, expressed at high levels in retina and a
melanoma cell line. The eight gene sets in the muscle block
are specifically expressed in heart and skeletal muscle, and
includes expected categories such as 'sarcomere' (CC), 'myofi-
bril' (CC), and 'regulation of muscle contraction' (BP). Two
sets ('muscle contraction' (BP) and 'muscle development'
(BP)) are also active in smooth muscle. Interestingly, these
gene sets are also expressed in the tonsil sample; this is
assumed to be a contaminant from the dissection process.
This contamination was much easier to identify by upregula-
tion of a muscle-specific pathway as a whole than by inspec-
tion of individual genes, illustrating the utility of the pathway
expression map for quality control of tissue samples.

The energy block consists of gene sets of mitochondrial pro-
teins, most highly expressed in striated muscle and at moder-
ate levels in cancer cell lines, thyroid, and kidney. Activation
of these energy pathways is not observed in some normal tis-
sues with high expression of cell cycle-related gene sets, such
as testis, bone marrow, and thymus. This shows that high cell
turnover does not necessarily imply high levels of energy uti-
lization. Examination of the expression of component genes
from a representative pathway from this block, 'oxidative
phosphorylation' (BP), demonstrates that there is coherent
activation of approximately two-thirds of these genes in skel-
etal muscle, heart, and cell lines, accounting for the strong
activation in these tissues, with only scattered activation of
other genes in this GO category in other tissues (Supplemen-
tal Figure F13 in Additional data file 1). This coherently acti-
vated set of genes consists primarily of mitochondrial
ATPases, and most of the apparent activation in other normal
tissues, including brain, is accounted for by lysosomal (vacu-
olar) ATPases. The expression in thyroid is presumably
related to the fact that lysosome formation is part of the path-
way for cleavage of active thyroid hormone from thyroglobu-
lin for release into the circulation. In kidney, vacuolar
ATPases are essential for bicarbonate resorption in the neph-
ron [36]. These observations highlight the potential for fur-
ther improvement in these gene sets by refining their
membership or dividing them into smaller groups, as we dis-
cuss in more detail below.

The cell-line selective block includes tRNA metabolism and
proteasome subunit gene sets, indicating that certain aspects
of protein biosynthesis and degradation are highly and selec-
tively activated in malignant cells but not in normal highly
proliferative tissues like bone marrow, thymus and testis. The
differential expression of proteasomal genes seen here may
be partly related to the increased susceptibility of cancer cells
versus normal cells to proteasome inhibitors like bortezomib
[37]. The housekeeping block comprises 55 gene sets
expressed at high levels in cell lines and proliferating normal
tissues, but expressed at intermediate levels in all tissues.
These consist primarily of pathways related to gene transcrip-
tion, messenger RNA processing and splicing, and nuclear
export/import. The mitotic cell cycle block is a collection of
gene sets strongly upregulated in cell lines relative to normal
tissues, and expressed at moderate levels in bone marrow,
testis, thymus, gut, and fetal brain and liver. The majority of
these pathways are related to DNA synthesis or repair and to
regulation of the cell cycle. In all cases, the activity of these
pathways is higher in fetal tissues than in the corresponding
adult tissues [38]. Pathways in the ribosome block consist
largely of ribosomal proteins and show a broader distribution
of expression across tissues than the pathways in the ribos-
omal rRNA-processing block discussed above. They are
strongly expressed in the rapidly dividing tissues such as the
cell lines and also expressed in tissues in which protein syn-
thesis for export is active (pancreas, thyroid, and lymph
nodes). The ribosome gene sets are expressed at very low lev-
Genome Biology 2006, 7:R93
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Comparison plot of human body atlas pathway expression computed by five different activations metrics: (a) Z score, (b) Wilcoxon Z score, (c) PCA, (d) signed KS, (e) signed hypergeometricFigure 3
Comparison plot of human body atlas pathway expression computed by five different activations metrics: (a) Z score, (b) Wilcoxon Z score, (c) PCA, (d) 
signed KS, (e) signed hypergeometric. The rows are 52 tissues and cell lines (rows) and the columns are 290 gene sets and pathways. The order of 
pathways on both axes was determined by standard two-dimensional hierarchical clustering of the Z score results, and is the same as in Figure 4.
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els in testis and subregions of adult brain. Lower expression
of the ribosome in non-proliferative tissues is expected, and
the similarity of ribosomal expression in brain and testis has
been previously reported [39].

The collagen/smooth muscle block consists of six pathways
relating to smooth muscle contraction or collagen produc-
tion. As expected, these gene sets are expressed primarily in
mesenchymal tissues and not expressed in brain or cell lines.
The immune block consists of gene sets specific to lymphoid-
derived tissues (antigen presentation and processing, B- and
T-cell activation). These gene sets are expressed at high levels
in lymphoid tissues and the two lymphoma cell lines studied
here. These gene sets are also expressed in other tissues, par-
ticularly gut, probably representing the normal presence of
lymphocytes in gastrointestinal tissue in the form of Peyer's
patches.

The liver-selective block contains five sub-blocks of gene sets,
all of which are highly upregulated in liver and fetal liver.
Some of these sub-blocks also appear to be upregulated in
other tissues. For example, while the complement pathway is
strongly activated in liver and fetal liver, some activity is also
seen in gut and lung. Recent reports support the existence of
locally, that is, extrahepatically, synthesized complement
[40]. Acute phase response activation in fetal lung may simi-
larly be related to inflammation, while the apparent activa-
tion of lipid transport may be related to surfactant synthesis.
The hemoglobin block is made up of genes for various hemo-
globins, serving as markers for hematopoiesis. Tissues with
high gene set expression levels include fetal, but not adult,
liver and kidney, and lung and bone marrow. Expression was
also noted in placenta. Expression of hemoglobin genes in the
erythroleukemia line K562 (Supplemental Figure F14 in
Additional data file 1), observed here, has been described pre-
viously [41]. Expression in fetal liver reflects the fact that the
liver is a primary location for hematopoiesis in the fetus; we
are unable to explain the apparent expression of these genes
in fetal kidney and lung.

The hormone biosynthesis block contains genes involved in
sterol biosynthesis (adrenal tissue and liver), which includes
cholesterol synthesis, and more specific pathways relating to
the synthesis of C-21 steroids, such as progesterone, glucocor-
ticoids, and mineralocorticoids (adrenal tissue and placenta).
Finally, the CNS-selective block consists of a series of path-
ways that are largely specific to neural tissue, including cor-
pus callosum, spinal cord, retina, and brain. These pathways

cover a multitude of aspects of nerve cell growth and signal-
ing, including nerve maturation, axonic transport and ion
channels, glial cell growth and differentiation, synaptic trans-
mission, neurotransmitter regulation, perception of pain, as
well as gene sets for Alzheimer's and Parkinson's diseases.
Some of the apparent expression of these pathways in other
tissues arises from the properties of the GO hierarchy. For
example, the Biological Process classification 'Sodium ion
transport' includes both genes expressed in neurons and
genes expressed in colon and renal tubules, while the 'Micro-
tubule-based process' classification and related gene sets
includes genes involved in mitosis (and thus highly expressed
in cell lines) and in axoplasmic transport (and thus highly
expressed in neural tissue). Sodium and potassium transport
pathways are also expressed in gut.

Non-uniform expression of pathways and gene sets
The gene sets used in the pathway map above have relatively
consistent expression of their constituent genes because we
have filtered out the sets with the least coherent expression
over the 52 human mRNA samples. In most of the gene sets
that remain there is a large group of regulated genes and a
smaller number of discordantly regulated genes. In many
cases, however, a gene set passing the coherence filter still
contains one or more genes with markedly different expres-
sion pattern from the global pattern. The five pathway activa-
tion metrics sometimes treat these cases differently. Three
examples of this are discussed below and shown in Figure 5.

The GO Biological Process gene set 'Microtubule-based proc-
ess' is composed largely of tubulins and kinesins and provides
the first example. This gene set contains genes with two major
patterns of expression (Figure 5a). The first subset is highly
expressed in proliferative tissues, such as cell lines, testis,
bone marrow, and colon, and contains mitotic kinesins like
KIF11. A second major subset of genes is expressed at low lev-
els in the proliferative tissues, but at high levels in neural tis-
sues. This set contains genes involved in organelle transport,
synaptic transmission, and synaptogenesis, like KIF1A,
KIF5A, and MAP2. The rest of the genes display little corre-
lated expression with either of the two major subsets or with
each other. All of the pathway metrics consider this gene set
activated, but for many samples PCA and hypergeometric dis-
agree with the consensus of other metrics on the sign of the
activation (Figure 5a, left panel). Because the two major sets
have complementary tissue expression, for most set-based
analyses it is more useful to consider them as biologically dis-
tinct processes - and appropriately there are GO Biological

The tissue distribution of human gene pathwaysFigure 4 (see following page)
The tissue distribution of human gene pathways. A matrix of 52 tissues and cell lines (columns) versus 290 gene sets and pathways (rows). Each cell in the 
matrix indicates the Z score, the degree to which the genes in the pathway are over- or under-expressed relative to average (see Materials and methods). 
Both axes have been clustered with standard two-dimensional hierarchical clustering. A high resolution version of this figure with row labels and a table of 
expression Z scores of each set in each sample are available as supplemental materials from [21].
Genome Biology 2006, 7:R93
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Figure 4 (see legend on previous page)
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Figure 5 (see legend on next page)
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Process terms to represent these sub-processes. This example
suggests how gene set analyses of gene expression may offer
an important mechanism for dividing gene sets into biologi-
cally meaningful subsets with more specific annotations.
Automated methods could be developed, for example to sub-
divide pathways in high-throughput by clustering the expres-
sion patterns of component genes.

The GO Biological Process category 'Complement Activation,
Classical Pathway' illustrates another kind of complexity that
may occur (Figure 5b). Here, one connected biological proc-
ess is made up of proteins that reside in different tissues, so
coherent expression over this data set is not expected. For
example, most of the pathway components are enriched in
liver, where complement proteins are produced. However,
transcripts coding for complement components C1R and C2R
are also observed in tissues where antigens are encountered
(for example, intestines and lung, but not brain, testis or bone
marrow), and the messenger RNAs for inflammatory
response mediators such as complement receptors CR1 and
CR2, which are expressed on lymphoid cells, are seen at
higher levels in spleen, tonsil, and lymph node.

In a third example, the gene set representing 'tRNA aminoa-
cylation', one gene (SLC22A17) deviates from the dominant
expression pattern of the set, which shows higher expression
in proliferative tissues, and instead shows high expression in
brain (Figure 5c). In this case, the gene's membership in the
tRNA aminoacylation GO Biological Process is somewhat
incongruous with its annotation as a brain-specific organic
ion transporter. Both of these annotations, tRNA aminoacyla-
tion and organic ion transport, are derived from automated
sequence similarity searches using the Interpro database
[42]. Deeper investigation of the sequence homology reveals
that the Interpro hit for 'tRNA ligase' (IPR001412) occurs
within the sequence matching the transporter Interpro
domain (IPR007114, 'Major Facilitator Superfamily') and is a
lower confidence match, suggesting it is spurious, and the
gene does not play a role in tRNA aminoacylation. Of the five
pathway metrics, KS seems to be most affected by the outlier,
but all of the metrics appear to capture the dominant signal
correctly. This example also shows how analysis of gene set
expression can be effective in identifying possible annotation
errors, and serves as a reminder that annotations of gene set
membership, particularly those derived from automated pro-
cedures, should not be taken as fact.

Although there are set-specific differences in how the five
metrics handle incoherent expression within these three gene
sets, overall, the examples highlight the strong correlation of
the Wilcoxon, KS, and Z score metrics, and the divergence of
the PCA and hypergeometric metrics from the others. It is
also clear from these examples and others in our analysis that
few gene sets and pathways in public databases comprise sin-
gle molecular machines whose components are always co-
expressed. Two conclusions can be drawn from this. First,
although analysis of pathways and gene sets is a powerful way
to simplify and expedite analysis of genomic data sets, cau-
tion is necessary because of the immaturity of the current set
annotations and the complexity of the underlying biology,
and refinement of many of the sets will be required. Second,
systematic examination of the expression-coherence of com-
ponent genes over a data set (like the human expression atlas
here) is a promising approach for refinement and extension of
gene set and pathway membership. It should also be noted
that different coherence filters may apply to each data set or
experimental regime. Pathways perturbed by drug treatment
or a disease state, for instance, could differ from those
observed in a large set of pooled, normal tissues as presented
here.

Methods of measuring pathway expression
Arguably the most common method for analyzing experimen-
tal gene lists for pathway enrichment involves setting a
threshold for differential expression of genes, and then using
the hypergeometric distribution to determine if there is an
excess number of induced or repressed genes in a predefined
pathway relative to what is expected by chance [8,19,43].
Another reported method, called 'gene set enrichment analy-
sis' (GSEA) analyzes a ranked list of all genes on a microarray
(not just those differentially expressed above a threshold) for
statistical enrichment of membership in gene sets and path-
ways among the top-ranking genes [16]. In subsequent work
[44,45], a more computationally intensive version of GSEA
was introduced. The KS activation metric used in this study is
very similar to the original implementation of GSEA, but is
less computationally intensive. Kim and colleagues [23]
introduced PAGE (parametric analysis of gene set enrich-
ment), which is similar to the Z-score metric, and compare it
(favorably) to GSEA. Principal component analysis has been
used in previous studies as well [46,47]. In a recent review of
microarray analysis methods, Curtis et al. [48] compared the
number of significant gene sets found by GSEA with two met-

Expression of component genes for three gene sets over the tissues in the expression atlas showing varying patterns of expression coherence among the component genesFigure 5 (see previous page)
Expression of component genes for three gene sets over the tissues in the expression atlas showing varying patterns of expression coherence among the 
component genes. Shown to the left of each gene set are the pathway measurements calculated using each of the five activation metrics. Expression data 
are log10 ratio relative to average (see Materials and methods). Magenta and cyan indicate higher and lower expression of a gene or pathway in a given 
sample, respectively. The x-axis of each plot lists the component genes for each of three pathways: (a) 'Microtubule-based process'; (b) 'Complement 
Activation, Classical Pathway'; and (c) 'tRNA aminoacylation'. All are GO Biological Process categories. The 52 tissues and cell lines used in this study are 
listed on the y-axes of each plot. Color axes are from -0.75 to 0.75 for gene expression log10 ratios (right plots). Missing data points are in white. For the 
activation metrics the color axes are normalized by the maximum and minimum values to range from 0 to 1.
Genome Biology 2006, 7:R93
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rics based on the hypergeometric distribution and concluded
that more downregulated pathways were found by GSEA.

In our analysis, the PCA metric was the most sensitive at dis-
criminating between two subgroups across multiple data sets
and the least affected by incoherent gene sets. The Z-score,
Wilcoxon Z score, and KS metrics had approximately equal
results in the ROC comparison and showed a high correlation
of detected pathways (Table 2). The signed hypergeometric
metric was inferior to all of the others. The sensitivity of all
methods declined as the coherence of the gene sets they were
measuring declined. PCA is also useful in providing an esti-
mate for the coherence of a gene set over a given set of exper-
iments, and was used here as our coherence filter (see
Materials and methods). In spite of the superior performance
of the PCA metric in class discrimination, it has two limita-
tions: it is data-set dependent and its output is not readily
interpretable. In contrast, the Z score is simple in interpreta-
tion, capturing both the magnitude and significance of
expression of the gene set and, in the case of ratio experimen-
tal data, the direction of change. Another potential advantage
of a collective activation score like the Z score is that it lends
itself easily to analysis techniques such as clustering, correla-
tion, or analysis of variance, while p values from enrichment
calculations do not. However, the Z-score has limitations as
well. It is somewhat sensitive to outliers and in some cases
induced and repressed genes from the same pathway may
cancel each other out and prevent detection.

Conclusion
There are many advantages to performing analysis of micro-
array data at the gene set and pathway level. First, a global
view of the behavior of defined biological modules is more
intuitive than expression levels of hundreds or thousands of
individual genes, and biological interpretation is much faster
than analyzing a list of genes with significant expression
changes because functionally understood gene sets with sig-
nificant expression changes are identified automatically.
Gene set analysis can also provide a better signal-to-noise
ratio than the analysis of individual genes, and can detect
coordinated activation of a pathway whose components
would not pass single-gene significance thresholds. Finally,
analysis techniques normally used at the gene-level to analyze
individual genes such as correlation, clustering, and analysis
of variance may be leveraged to analyze gene sets and offer
additional insights. The gene-level expression atlas will also
be useful for identifying new functional groups of genes or
gene interaction networks through analysis of co-expressed
gene clusters, as previous reports have shown [47,49-53]. We
have illustrated the general utility of this approach by con-
structing a map of the expression of human pathways and
gene sets over a large, robust set of gene-level expression
data. This map is consistent with known tissue-specific path-
ways and provides new insights into the tissue distribution of
other pathways and processes.

We also showed by comparing the sensitivities of five meas-
ures of pathway expression over nine other mRNA expression
data sets that conclusions about pathway activation are sensi-
tive to the method of measurement and whether or not inco-
herent pathways are excluded. The most appropriate pathway
analysis is, therefore, dependent on the data set being ana-
lyzed, since the subset of coherent pathways is highly variable
over different experiments. We recommend using coherence
filtering in all cases to select the pathways most relevant to
the samples in the study. When there are large gene expres-
sion differences between samples, all of the methods per-
formed well, with mostly similar results. In this situation, we
recommend using the Z score metric or one of the non-para-
metric methods (KS, Wilcoxon) and avoiding the over-fitting
to a specific data set that can occur with PCA. For more subtle
perturbations with limited numbers of genes differentially
regulated, PCA was clearly the most sensitive and hypergeo-
metric the least. To achieve maximum biological sensitivity
and accuracy in these cases, we recommend using PCA, com-
bined with at least one of the other three methods, Z score,
KS, or Wilcoxon Z.

Materials and methods
DNA microarray data
The nine data sets used to compare the gene-set activation
metrics were selected from eight studies in the GEO database.
Each data set contained two relatively homogeneous subsets
of samples. One study (GDS1329) provided two data sets.
These subsets consisted of a baseline type and pathological
samples or, in some cases, two different but related disease
types. (Samples not in either subset were omitted from the
comparisons.) We treated these single-channel data sets as
ratio data sets by computing the median for each gene over all
the baseline samples and dividing all expression values by the
corresponding median and taking the base-10 logarithm. For
each data set, Table 1 contains the GEO identifier and nature
and sizes (in parentheses) of the two sample subgroups. In
each data set the samples in Subgroup 1 constitute the base-
line set.

To create the human body atlas, oligonucleotide probes were
placed at each exon-exon junction of 11,138 RefSeq tran-
scripts [35]. Purchased mRNA from 44 tissues in normal
physiological state, pooled from multiple individuals, and 8
cell lines were amplified and labeled using a full-length
amplification protocol and hybridized in duplicate in a two-
color dye swap experiment[54]. In Johnson et al. [35], six of
52 tissues contained data for only 80% of the genes. For five
of these tissues (pancreas, kidney, Burkitt's lymphoma (Raji),
lung carcinoma (A549), and melanoma (G361)), new hybrid-
izations were performed here to fill in the missing data. After
background normalization, the intensity value of each probe
in each tissue was divided by the average intensity across all
52 tissues to determine a ratio, and then the log10 of that ratio
Genome Biology 2006, 7:R93
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used for further analysis. Standard deviations (SDs) for each
intensity measurement were calculated using the equation:

where a = 100 and b = 0.2 were empirically derived from indi-
vidual same-versus-same and same-versus-different hybridi-
zation experiments and represent single-hybridization,
single-probe estimates of background (a) and fractional error
(b). As we used multiple probes per gene and two hybridiza-
tions per sample pair (a dye-swap), final error estimates for
gene expression are a combination of both propagation of this
model measurement error and variance over the repeat meas-
urements. These error estimates were then propagated to
ratio and log10 ratio error estimates (Supplemental Tables
T10 and T11 in Additional data file 2). Since the initial array
design, NCBI has removed over 300 of the RefSeq transcripts
from their databases. After removing these transcripts and
any other transcripts currently unmapped to Entrez gene
identifiers from our data set, the remaining 10,815 RefSeq
transcripts map to 9,982 genes. Finally, using all gene-associ-
ated probes, we calculated an error-weighted average of log10
ratios for each gene in each tissue. Probe-level expression
data have been deposited in the GEO database [35]
(GSE740), and all gene and pathway expression data are
available online [21].

Gene sets and coherence filtering
We compiled 1,281 gene sets from the 1 November 2004
Release of GO (241 from cellular component and 1,040 from
biological process), and 117 gene sets from KEGG Release 33,
downloaded 11 January 2005. The mean number of genes in
each set was 23.8 ± 28.5 (mean ± SD; minimum 1, maximum
159). To build the human pathway expression map we
reduced these to 290 gene sets (23 from KEGG, 89 from the
GO Cellular Component hierarchy, and 178 from the GO Bio-
logical Process hierarchy) by applying two filters. First, we
required that each gene set retained contain at least five genes
and no more than 200 genes. Second, we filtered gene sets
based on their coherence, the percentage of total variance of
the expression values within a gene set captured by the first
principal component across all tissues. This idea has been dis-
cussed previously [20], although we used a different test for
coherence here. To determine the appropriate cutoff for a
gene set of size |S|, we generated 1,000 random gene sets of
size |S|, and calculated the distribution of coherence values.
The random-set coherence distribution was approximately
normal, although its mean and standard deviation were size-
dependent. Of the initial 1,401 gene sets, 290 had a coherence
over the human body atlas data set that was more than 2.6
standard deviations greater than the mean of the random-set
distribution for that size (corresponding to a one-sided p
value of 0.005), and these 290 sets were retained for further
analysis. The mean number of genes in these 290 coherent
gene sets was 33.8 ± 32.9 (mean ± SD; minimum 5, maximum
159).

Some of the 290 gene sets overlap in component genes, and
some gene sets are subsets of others. This is due to the hierar-
chical nature of GO and functional overlap with gene sets in
KEGG. Rather than merge these sets we kept them all in order
to maximize the functional annotation conveyed by the gene
set names. To measure the overlap between two gene sets we
used the average of the two ratios of the number of genes in
the intersection of the two gene sets to the total number of
genes in each gene set. The overlap is most significant
between gene sets in the same block ranging from a low of 7%
in the Cell-selective block to a high of 85% in the Hemoglobin
block with a mean within-block overlap over all 14 blocks of
31%.

Measuring gene set expression
We compared five gene-set activation metrics. Given a gene g,
let Xtg be the expression value (log10 fold change, relative to
background) for gene g in tissue t. Let S be the set of genes in
a pathway. For tissue t, if <XtS > and <Xt > are the mean of Xtg

over the genes in S and all the genes on the microarray,
respectively, and σt is the standard deviation of Xtg over all the
genes on the microarray, then the Z-score activation metric
used to measure the relative expression level of pathway S in
tissue t is:

where |S| is the number of genes in S. The value of Z is

expressed in units of standard deviation and is a measure of

violation of the null hypothesis that the genes in S are inde-

pendently sampled from a distribution similar to that of all

the genes on the microarray. If the null hypothesis is valid,

then Z will have approximately a standard normal distribu-

tion, and so a large positive value of Zt suggests collective

upregulation of the genes in S (which we consider to repre-

sent 'activation' of S) in tissue t; a large negative value sug-

gests collective downregulation. The normalization by 

makes comparison of different-sized gene sets possible and

reflects the fact that, for larger gene sets, even a slight collec-

tive shift in fold change can be significant.

Because the Z-statistic essentially measures a shift in location
(mean expression) for the genes in S, we compared its sensi-
tivity to several other possible signed measures of location
shift, which were created by modifying, where necessary,
standard statistics with a sign to indicate the direction of
expression change. The Wilcoxon Z statistic is a well-known
statistic that is calculated according to a similar formula, but
using the ranks of the Xtg among all genes in tissue t, rather
than the actual fold changes. To calculate a signed KS statis-
tic, we computed each of the two one-sided KS statistics, com-
paring the distribution of the expression values in S with the
distribution of the genes on the microarray as a whole, and

SD = + ∗a b intensity

Z
X X

StS
tS t

t
=

< > − < >
σ

S
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took the larger of the two statistics, with the appropriate sign.
To calculate a hypergeometric p value, we used a threshold of
two-fold differential expression (other threshold values
showed qualitatively similar results, data not shown) to
define an induced or repressed gene, and then calculated the
probability that the relative enrichment of differentially
expressed genes observed in a gene set in a particular tissue
could have been observed by chance, using the hypergeomet-
ric distribution. To provide a sign for the hypergeometric p
value, the calculation was done separately for the induced and
repressed genes in each set, and the smaller of the two p value
was used, as well as its 'sign' (negative if repressed genes were
more enriched in the gene set than induced genes, positive
otherwise). The relative insensitivity of the HG metric was lit-
tle changed by varying the differential expression threshold.
Finally, for the PCA statistic, we calculated PC1, the first prin-
cipal component of the expression values of the genes in S
across all tissues, and used the projection (scalar product) of
the expression values in a tissue with PC1 as a measure of acti-
vation of the gene set in that tissue.

ROC comparison of activation metrics
We compared the five activation metrics for measuring gene
set expression, and the individual genes in the expression
data set, for their detection sensitivity. We applied each met-
ric to measure the activation of the gene sets that met a coher-
ence threshold (p ≤ 0.01, 0.05, 0.10, and 1.0) in each of the
nine GEO data sets. For each data set we compared two
classes that were known to be different (typically one class
was normal and the other pathological). Each gene set was
measured in each sample in each of the two classes by each
metric. We used a two-sided Wilcoxon rank sum test for equal
medians to test the null hypothesis that the activation metric
values for each gene set in the two classes come from distribu-
tions with equal medians. The result of this test is quantified
by the returned p value. The smaller the p value, the more
unlikely is the null hypothesis that the gene set median values
are equal. We performed this test between the two classes for
all gene sets. In a similar manner, we used the same test to
compare individual gene expression values between the two
classes. We used the p value from the two-sided Wilcoxon
rank sum statistic to compute a false detection rate for each p
value threshold using the adaptive method of Benjamini and
Hochberg [55] and displayed the results using ROC curves
[56]. The x-axis is the proportion of false positives; the per-
cent of gene sets that did not distinguish the two classes at the
specified p value threshold. The y-axis is the true positive
rate; the percent of gene sets that did distinguish the two
classes at the specified threshold. The interval of [0, 0.3] was
chosen to correspond to what might be an acceptable FDR.
The percent of true positives varies between data sets and is
presumably indicative of the type(s) of biological differences
between the two classes in each data set.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file1 contains supple-
mental figures. Additional data file2 contains supplemental
tables.
Additional data file 1Supplemental figuresSupplemental figuresClick here for fileAdditional data file 2Supplemental tablesSupplemental tablesClick here for file
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