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Abstract

A ‘better’ Escherichia coli K-12 genome has recently been engineered in which about 15% of the
genome has been removed by planned deletions. Comparison with related bacterial genomes that
have undergone a natural reduction in size suggests that there is plenty of scope for yet more
deletions.
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Why should one want to design a better bacterium? One

answer is that this is one way of really testing our under-

standing of how a living cell works - by making predictions,

manipulating the object, and seeing what we get. This is the

province of synthetic biology, whose ultimate goal is to

understand life by constructing it from scratch; it is hoped

that along the way will emerge an understanding of the

properties of living cells and organisms that is difficult to

arrive at by conventional investigation of the organisms

themselves [1,2]. Much progress has been made recently

towards designing and synthesizing novel biological

organisms from a set of standardized parts [3], such as

protein-coding genes, regulators, and terminators, as listed

on the BioBrick website [4].

In contrast, in work recently published in Science, Posfai et al.

[5] have taken a ‘deconstructionist’ approach to redesigning

life. Specific regions of the Escherichia coli K-12 genome were

targeted for deletion with the intention of improving the

production potential of this model organism. As an unantici-

pated side effect, they have come up with a bacterium that is

even better than the parental strain for some purposes, in that

it is more efficiently electroporated and accurately propagates

unstable recombinant genes and plasmids. It is interesting to

compare these engineered reduced genomes [5] with the

genomes of other bacteria within the Enterobacteriaceae,

some of which are endosymbionts whose genomes have

become dramatically reduced during evolution.

Smaller is indeed often better, as people who travel

frequently or who worry about buying fuel for their cars

know. Posfai et al. [5] chose which genes and genomic

regions to remove on the basis of several criteria, including

“troublesome sequences” such as insertion sequence (IS)

sites and transposable elements that appear to code only for

their own replication, and repeat regions that can cause

homologous recombination. They also removed some regions

that are not present in all E. coli genomes, and so are unlikely

to be essential for basic properties such as growth. There are

many large regions throughout the E. coli K-12 genome that

are not conserved among other E. coli genomes, but given the

variation in genome size between different strains, with

differences of more than 1 million base pairs (20% of the

genome) being common, this is perhaps not surprising.

To make the deletions, synthetic oligomers containing

regions homologous to target sites flanking the desired region

were used. Regions were deleted by recombination mediated

by the phage lambda Red system, and done in a way that gave

‘scarless’ deletions where no marker sequence was left. The

strains with deletions were then tested for growth in minimal

media. Finally, as one last step to check for quality, the

reduced strains were hybridized to tiling microarrays of the

E. coli K-12 genome. The first reduced strain yielded

surprising results. In the words of the authors: “Alarmingly,

we found five unexpected copies of IS that had transposed to

new locations since the project began in 2002.” Thus new

strains were made, which were shown to be free of IS

elements. The engineered strains had similar growth rates to

their parent strain, and the electroporation efficiency of

engineered strain MDS42 was 100 times greater than for the

original E. coli MG1655 K-12. Furthermore, plasmid genes



that were unstable in MG1655 were found to be completely

stable in the engineered strains. IS mutagenesis is a natural

defense against deleterious genes, and is normally helpful to

bacteria in the wild, but is detrimental when one wishes to

grow these genes in laboratory strains of E. coli.

Natural genome reduction
If synthetic biology can be used to design a reduced E. coli

genome with some desirable new functions, what about ‘non-

synthetic’ biology - that is, evolution? Is there anything that we

can learn from evolutionary biology about how to make a

237.2 Genome Biology 2006, Volume 7, Issue 10, Article 237 Ussery http://genomebiology.com/2006/7/10/237

Genome Biology 2006, 7:237

Table 1

List of currently sequenced genomes from the family Enterobacteriaceae of the ��-Proteobacteria

Number of Genome Number of Number of Accession 
proteins size (bp) Organism %AT tRNA genes rRNA genes number

5,379 5,231,428 Escherichia coli CFT073 49.5 89 7 AE014075

5,361 5,498,450 Escherichia coli O157 RIMD 49.5 105 7 BA000007

5,349 5,528,445 Escherichia coli O157 EDL 49.5 98 7 AE005174

5,066 5,065,741 Escherichia coli UTI89 49.4 88 7 CP000243

4,905 5,688,987 Photorhabdus luminescens 57.2 85 7 AP009048

4,685 4,938,920 Escherichia coli strain 536 49.5 81 7 CP000247

4,600 4,809,037 Salmonella enterica CT18 47.9 79 7 AL513382

4,492 5,064,019 Erwinia carotovora 49.0 76 7 BX950851

4,452 4,857,432 Salmonella typhimurium LT2 47.8 85 7 AE006468

4,445 4,755,700 Salmonella enterica SCB67 47.8 85 7 AE017220

4,436 4,607,203 Shigella flexneri 2a301 49.1 97 7 AE005674

4,337 4,646,332 Escherichia coli K-12 W3110 49.2 86 7 U00096

4,331 4,639,675 Escherichia coli K-12 MG1655 49.2 86 7 AP009048

4,323 4,791,961 Salmonella enterica Ty2 47.2 78 7 AE014613

4,277 4,369,232 Shigella dysenteriae Sd197 48.8 85 7 CP000034

4,224 4,825,265 Shigella sonnei Ss046 49.0 97 7 CP000038

4,167 4,702,289 Yersinia pestis Antiqua 52.3 68 7 CP000308

4,142 4,519,823 Shigella boydii Sb227 48.8 91 7 CP000036

4,116 4,574,284 Shigella flexneri 5str8401 49.1 91 7 CP000266

4,093 4,585,229 Salmonella enterica ATCC9150 47.8 82 7 CP000026

4,090 4,600,755 Yersinia pestis KIM 52.4 73 7 AE009952

4,073 4,599,354 Shigella flexneri 2457T 49.1 98 7 AE014073

4,011 4,263,492 Escherichia coli MDS12 49.2 86 7 [5]

4,008 4,653,728 Yersinia pestis CO-92 52.4 70 6 AL590842

3,981 4,534,590 Yersinia pestis Nepal516 52.4 72 7 CP000305

3,974 4,744,671 Yersinia pseudotuber IP32953 52.4 85 7 BX936398

3,895 4,595,065 Yersinia pestis Mediaevails 52.3 72 7 AE017042

3,731 3,977,067 Escherichia coli MDS41 49.2 86 7 [5]

3,730 3,976,359 Escherichia coli MDS42 49.2 86 7 [5]

3,691 3,931,408 Escherichia coli MDS43 49.2 86 7 [5]

2,432 4,171,146 Sodalis glossinidius 45.3 69 7 AP008232

611 697,724 Wiggelsworthia glossinidia 77.5 34 2 BA000021

610 791,654 Blochmannia pennsylvanicus 70.4 39 1 CP000016

595 686,194 Baumannia cicadellinicola 61.2 39 2 CP000238

589 705,557 Blochmannia floridanus 72.6 37 1 BX248583

564 640,681 Buchnera aphidicola APS 73.7 32 1 BA000003

545 641,454 Buchnera aphidicola Sg 74.7 32 1 AE013218

504 615,980 Buchnera aphidicola BBp 74.7 32 1 AE016826

The genomes are sorted by the number of genes, from the largest to smallest, and the E. coli genomes are in bold. The multi-deletion series (MDS) strain
data are from Posfai et al. [5], and data for the other genomes are from EMBL files (EMBL accession numbers in the last column). An up-to-date table of
the enteric genomes sequenced and available so far can be obtained from the GenomeAtlas database [13] by typing in ‘BProt GE’ in the keyword search.



reduced E. coli genome? Soon after Posfai et al. [5] published

their paper, a study by Wu et al. [6] appeared on the reduced

genomes of two very different bacteria living inside an insect

called the glassy-winged sharpshooter (Homalodisca

coagulata) [6]. One of these bacteria (Baumannia

cicadellinicola) belongs phylogenetically to the same group as

E. coli, which inspired me to make a comparison of all of the

engineered E. coli genomes of Posfai et al. [5] with other

enteric bacterial genomes sequenced so far (Table 1).

The B. cicadellinicola genome is towards the bottom of the

table, but there are four known genomes in this family that

encode an even smaller number of proteins. The genome at

the bottom of the list (Buchnera aphidicola strain BBp)

codes for only 504 proteins, or less than 10% of the number

of proteins encoded by the larger E. coli genomes (5,379

proteins in E. coli CFT073). The smallest ‘normal’, free-

living enterobacter (apart from the newly engineered E. coli

genomes) is a Yersinia pestis strain (Mediaevalis), with

3,895 genes, or only 72% of the number of genes found in

the largest enterobacterial genome. Furthermore, only

slightly more than half of the Y. pestis Mediaevalis genes

have homologs in the CFT073 genome (52% - that is, 2,938

Y. pestis genes/5,379 E. coli CFT073 genes). Thus, just on

the basis of gene diversity within the enteric bacteria, it

seems that perhaps half or more of the genes in the larger

enterobacterial genomes might be expendable - at least

under laboratory growth conditions. Indeed, only 620 E. coli

K-12 genes have been found experimentally to be essential

for growth in rich media, while 3,126 genes were found to be
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Figure 1
A BLAST atlas diagram of eight enteric bacterial genomes, compared to the reference E. coli K-12 isolate MG1655. The outer five circles are other similar
genomes from E. coli, S. enterica and Y. pestis (outer circle), while the inner three circles reflect the reduced genomes (from the innermost circle
outwards) of B. aphidicola, B. cicadellinicola and S. glossinidius. Each colored circle represents the BLAST score of the best hit of the given bacterial
proteome versus the gene at a given location in the reference E. coli MG1655 genome. Note that the scale is -log E-value, which means that the strongly
colored regions have an E-value of less than 10-100, which corresponds to a very good match. The locations of all the deletions engineered by Posfai et al.
[5] are indicated outside the circles. Coding sequences of the reference genome (E. coli k-12 strain MG1655) are indicated as blue and red blocks,
corresponding to genes orientated clockwise or counterclockwise. The gaps in the E.coli W3110 genome are due to rRNA operons and other non-
coding RNAs, which do not show up on the protein BLAST results.
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dispensable for growth under this condition [7]. This

indicates that there could well be more room for engineered

deletions in the E. coli genomes.

Figure 1 compares the proteins encoded by some of the

genomes in Table 1. E. coli K-12 isolate MG1655 was the

genome used as a starting point by Posfai et al. [5] to make

the reduced genomes, and it is used as the reference here.

The locations of all the deletions engineered by Posfai et al.

[5] are indicated outside the circles. The location of each

gene from the E. coli MG1655 genome is used to visualize the

best hit based on a BLAST search of all the proteins encoded

by the different genomes indicated in the legend. A strong

hit is represented by a solid bar so the extensive solid regions

in the circles represent regions of homology with the other

genomes. Each circle represents a different genome, with the

outer five circles representing nonreduced genomes, and the

inner three circles reduced genomes. Thus, the outermost

circle is for the Y. pestis genome, followed by a Salmonella

genome, and then three E. coli genomes. Note that many of

the planned deletions made by Posfai et al. [5] correspond to

gaps in the otherwise mostly solid dark circles; these gaps

represent large chromosomal regions lacking homology in

terms of protein sequences in the other genomes.

The reduced genomes are shown in the inner circles. B. aphid-

icola strain BBp is the smallest genome, and is depicted as the

orange inner circle, which has few hits, as expected, as this

genome encodes so few proteins. The B. cicadellinicola

genome is the next circle (red), and the third is Sodalis

glossinidius, which is a genome that is undergoing reduction,

but still contains about 2,500 genes, as well as about 1,000

pseudogenes [8]. This circle contains more hits, although it is

still a bit sparse compared to the inner three circles, which

have large regions where nearly all of the proteins are

conserved.

These reduced genomes contain only about 10% of the

genes in the larger E. coli genomes from which they

originated long ago. This raises many questions. What

about the remaining 90%? Does E. coli really not need most

of these genes? Some are certainly redundant - a necessary

condition for robust systems [9] - and the definition of

‘essential genes’ might include some genes that do not give a

lethal phenotype when deleted [10].

Is it possible to model which genes would remain, and which

90% or so could be removed, under the right conditions? A

model of E. coli metabolism was recently used to generate

reduced genomes in silico [11], and to compare these

genomes with the endosymbiotic genomes shown at the

bottom of Table 1. The idea was to use a known metabolic

environment and then to model random gene loss, and

evaluate relative viability. If the gene loss had no apparent

effect, then another gene would be removed, and this

process was repeated until a minimal genome was obtained.

Two different endosymbiotic bacterial environments were

modeled - those of Buchnera and Wiggelsworthia - and the

model predicted the gene content of the two genomes to

about 80% accuracy [11].

There are, of course, several different ways to arrive at the

same reduced genome, but by looking at which genes are

necessary to perform core metabolic activities (for a given

endosymbiotic environment, it should be stressed), it is

possible in general to predict the genes that are likely to

remain in a reduced genome. This information can then be

used in future experiments to design better genomes,

tailor-made for specific applications. Posfai et al. [5] were

not intending to manufacture a ‘minimal genome’ such as

the highly reduced ones discussed here, but rather they

simply wanted to engineer an E. coli genome that would be

a better ‘workhorse’ - that is, it would be easier to get DNA

into the cells, and the DNA and its gene products would be

stable once it was there. There are others, however, who do

have the aim of using synthetic biology to design and

manufacture a minimal genome [12]. Perhaps the time is

near when mircobiology will join the engineering sciences.
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