Differential gene expression in anatomical compartments of the
human eye

Jennifer J Diehn*$, Maximilian Diehn', Michael F Marmor® and

Patrick O Brown™

Addresses: “Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA 94305, USA. "Department of Biochemistry,
Stanford University School of Medicine, Stanford, CA 94305, USA. fHoward Hughes Medical Institute, Stanford University School of Medicine,
Stanford, CA 94305, USA. §Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA.

Correspondence: Patrick O Brown. E-mail: pbrown@cmgm.stanford.edu

Published: 17 August 2005 Received: 10 May 2005

Genome Biology 2005, 6:R74 (doi: 0.1 186/gb-2005-6-9-r74) i’i‘é:;je : Jﬁ:ﬁgozsoos

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2005/6/9/R74

© 2005 Diehn et al.; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The human eye is composed of multiple compartments, diverse in form, function,
and embryologic origin, that work in concert to provide us with our sense of sight. We set out to
systematically characterize the global gene expression patterns that specify the distinctive
characteristics of the various eye compartments.

Results: We used DNA microarrays representing approximately 30,000 human genes to analyze
gene expression in the cornea, lens, iris, ciliary body, retina, and optic nerve. The distinctive
patterns of expression in each compartment could be interpreted in relation to the physiology and
cellular composition of each tissue. Notably, the sets of genes selectively expressed in the retina
and in the lens were particularly large and diverse. Genes with roles in immune defense, particularly
complement components, were expressed at especially high levels in the anterior segment tissues.
We also found consistent differences between the gene expression patterns of the macula and
peripheral retina, paralleling the differences in cell layer densities between these regions. Based on
the hypothesis that genes responsible for diseases that affect a particular eye compartment are
likely to be selectively expressed in that compartment, we compared our gene expression
signatures with genetic mapping studies to identify candidate genes for diseases affecting the
cornea, lens, and retina.

Conclusion: Through genome-scale gene expression profiling, we were able to discover distinct
gene expression 'signatures' for each eye compartment and identified candidate disease genes that
can serve as a reference database for investigating the physiology and pathophysiology of the eye.

Background fying the global patterns of gene expression that specify the
The human eye is composed of multiple substructures of  distinctive characteristics of each of the various compart-
diverse form, function, and even embryologic origin that = ments of the eye is an important step towards understanding
work in concert to provide us with our sense of sight. Identi-  how these complex normal tissues function, and how
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dysfunction leads to disease. The Human Genome sequence
[1,2] provides a basis for examining gene expression on a
genomic scale, and ¢cDNA microarrays provide an efficient
method for analyzing the expression of thousands of genes in
parallel. Previous studies have used microarrays to investi-
gate gene expression within normal eye tissues, including cor-
nea [3] and retina [4], as well as within pathological tissues
such as glaucomatous optic nerve heads [5], uveal melanomas
[6], and aging retina [7].

Analysis of gene expression in the eye has been notoriously
difficult because of the technical obstacles associated with
extracting sufficient quantities of high quality RNA from the
tissues. This is especially true for the lens and cornea, which
have relatively few RNA-producing cells when compared to a
highly cellular tissue such as retina. Furthermore, pigmented
ocular tissues contain melanin, which often co-purifies with
RNA and inhibits subsequent enzymatic reactions [8]. Any
delay between the patient's death and the harvesting of ocular
tissues can also compromise RNA quality and yield. To date,
many experiments examining the gene expression profile of
particular eye compartments have relied on pooled samples
or cell culture in order to obtain adequate amounts of RNA. In
contrast to these studies, the experiments described in this
paper were performed using a linear amplification procedure
[9], which made it possible to examine individual specimens
using DNA microarrays, thereby eliminating the potentially
confounding effects of pooling multiple donor samples or cul-
turing cells, which can elicit dramatic changes in gene expres-
sion based on the cell culture media [10]. We chose an in vitro
transcription-based, linear amplification approach because
this has previously been shown to reproducibly generate
microarray gene expression results that are extremely similar
to data generated using unamplified RNA [9,11,12]. Addition-
ally, the amplification process has been shown to selectively
and reproducibly 'over-amplify' some low-copy number tran-
scripts, resulting in a larger fraction of the expressed genome
that can be reliably measured on DNA microarrays. Impor-
tantly, by analyzing individual donor samples on arrays, we
can detect variation in the eye compartments of different
donors, which will be critical for future studies that examine
how gene expression varies between individuals at baseline
and also in disease states.

A major goal of this study was to discover how the various eye
compartments differ from one another on a molecular level
by identifying clusters of differentially expressed genes, or
'gene signatures', characteristic of each eye compartment. We
also wanted to investigate how gene expression varies
between geographical regions of the retina. Because certain
retinal diseases such as retinitis pigmentosa (RP) and age-
related macular degeneration (ARMD) preferentially affect a
specific retinal region, identification of genes that are differ-
entially expressed in the macula versus peripheral retina may
provide valuable clues to the molecular mechanisms underly-
ing these diseases. Recent work using serial analysis of gene
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expression (SAGE), a method that involves sequencing thou-
sands of transcripts from a given RNA sample, identified sev-
eral genes that were significantly enriched in either the
macula or the periphery [13]. Our cDNA microarray studies
confirmed some of these genes, but also significantly added to
the catalog of macula-enriched genes. Lastly, because many
ophthalmologic diseases preferentially affect a particular eye
compartment, our study demonstrates that gene signatures
can be combined with gene linkage studies in order to identify
candidate disease genes.

Results

To explore relationships among the different eye compart-
ments and among genes expressed in these compartments,
we performed hierarchical cluster analysis of both genes and
samples [14] using genes that met our selection criteria (see
Materials and methods). The display generated through hier-
archical clustering analysis is shown in Figure 1a. In this dis-
play, relatively high expression levels are indicated by a red
color, and relatively low expression levels are represented by
a green color; each column represents data from a single tis-
sue sample, and each row represents the series of measure-
ments for a single gene. Tissue samples with similar gene
expression patterns are clustered adjacent to one another,
and genes with similar expression patterns are clustered
together. In our experiments, samples of the same eye com-
partment from different donors clustered in discrete groups
(for example, cornea with cornea, retina with retina), with the
only exception being an intermingling of the ciliary body and
iris specimens (Figure 1a). The lack of a clear distinction
between the expression patterns of the ciliary body and iris
may be due to both their shared embryological origin and
their close anatomical approximation, resulting in sub-opti-
mal separation during dissection. The division between the
retinal samples and all other samples was the most striking.
Furthermore, there was a distinct grouping of the various
macula specimens, which formed a tightly clustered subgroup
among the retinal samples. The expression patterns of the
optic nerve samples were most similar to those of the three
brain specimens.

Each anatomical compartment of the eye expressed a distinct
set of genes that were not expressed, or expressed at much
lower levels, in the other eye compartments (Figure 1b). The
repertoire of genes specifically expressed in the retina was
especially large and diverse (3,727 genes), but we also found
a surprisingly large number of transcripts (1,777 genes)
expressed predominantly in the lens. To explore the connec-
tions between these compartment-enriched genes and phe-
notypic features of the compartments in which they were
expressed, we considered each group of compartment-
enriched genes in detail.
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Gene expression programs in the human eye. Unsupervised hierarchical clustering of 38 samples from human cadaver eyes and normal brain. Array
elements that varied at least 2.5-fold from the median on at least two microarrays were included (9,634 cDNA elements representing approximately 6,600
genes). () Array dendrogram. G| to G8 indicate the globes from which each compartment sample was dissected (see Materials and methods). Inf.,
inferior; Sup., superior; Temp., temporal. (b) Cluster image. Data are displayed as a hierarchical cluster where rows represent genes (unique cDNA
elements) and columns represent experimental samples. Colored pixels capture the magnitude of the response for any gene, where shades of red and
green represent induction and repression, respectively, relative to the median for each gene. Black pixels reflect no change from the median and gray
pixels represent missing data. Compartment-specific gene signatures are indicated. See our website for a searchable version of this cluster [75].

Corneal signature

The cornea is a multi-layered structure consisting of an epi-
thelium of stratified squamous cells, a thick stroma of layered
collagen fibrils, and an underlying endothelial layer. To pro-
vide an effective physical barrier to the outside world, the cor-
neal epithelial cells bind to one another and to the underlying
connective tissue through a series of linked structures known
collectively as the 'adhesion complex'. As shown in Figure 2a,
many genes enriched in the corneal signature encoded pro-
teins that stabilize epithelial sheets and promote cell-cell
adhesion, including keratins (KRT5, KRT6B, KRT13, KRT15,
KRT16, KRT17, KRT19), laminins (LAMB3, LAMC2), and
desmosomal components (DSG1, DSC3, BPAG1).

Other genes highly expressed in the cornea signature encoded
proteins that help maintain the shape, transparency, or integ-

rity of the cornea, which serves as the primary refractive ele-
ment in the eye. Some of the genes encoded proteins
specifically expressed by either squamous epithelial cells or
fibroblasts, reflecting the histological composition of corneal
tissue. For example, the signature included numerous genes
that encode collagens (COL5A2, COL6A3, COL12A1,
COL17A1), along with the gene for lysyl oxidase (LOX), an
enzyme that promotes collagen cross-linking. The gene
encoding keratocan (KERA), a proteoglycan involved in
maintaining corneal shape in mice knock-out studies [15],
and linked to abnormal corneal morphology (keratoconus
and cornea plana) in humans, was selectively expressed in
corneal tissue, as were the genes encoding lumican (LUM), a
keratan sulfate-containing proteoglycan that has been shown
to be important for mouse corneal transparency [16], and
aquaporin 3 (AQP3), which encodes a water/small solute-
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Figure 2

Expanded view of compartment-specific gene expression signatures in the
human eye. Data were extracted from Figure | and are displayed similarly.
Individual clusters depict genes associated with (@) cornea, (b) ciliary body
and iris, (c) lens and (d) optic nerve. Many of the array elements encode
uncharacterized genes and only a subset of named genes is shown.

transporting molecule. Immunolabeling studies performed
on corneas with pseudophakic bullous keratopathy
demonstrated increased AQP3 in the superficial epithelial
cells, suggesting that AQP3 may be associated with increased
fluid accumulation, resulting in the decrease in corneal trans-
parency seen in pseudophakic bullous keratopathy corneas
[17]. Modulating genes or proteins involved in corneal shape
and transparency could potentially lead to non-invasive treat-
ments for some corneal diseases, which are often only reme-
diable through corneal transplantation.

An intriguing subset of genes in the cornea signature has been
studied in tumor metastasis models because these genes
encode proteins that regulate cell-cell or cell-matrix interac-
tions (TWIST, MMP10, SERPINB5, THBS1, CEACAM1,
C4.4A). For example, TWIST encodes a transcription factor
shown to promote metastasis in a murine breast tumor model
through the loss of cadherin-mediated cell-cell adhesion [18].
Another corneal signature gene encodes matrix metallopro-
teinase 10 (MMP10), a protein capable of degrading extracel-
lular matrix components. Overexpression of MMP10 in
transfected lymphoma cells has been shown to stimulate
invasive activity in vitro and promote thymic lymphoma
growth in an in vivo murine model [19]. Various matrix met-
alloproteinases have been examined for their roles in corneal
wound healing (reviewed in [20]), including MMP10, which
was identified in migrating epithelial cells in cultured human
cornea tissues that were experimentally wounded [21], which
may suggest that the process of corneal wound healing may
mimic some aspects of tumor biology. Certainly, in both
wound healing and cancer, cells undergo rapid proliferation,
invade and remodel the extracellular matrix, and migrate to
other areas.

Recent microarray investigations identified a gene expression
signature related to a wound response in the expression pro-
files of several common carcinomas, and the presence of this
wound healing gene signature predicted an increased risk of
metastasis and death in breast, lung, and gastric carcinomas
[22,23]. Further research into corneal wound healing may
also provide us with a model for better understanding the
pathophysiology underlying tumor metastasis because the
cornea is exceptionally efficient among human tissues at
degrading and remodeling its extracellular matrix, allowing it
to heal superficial wounds within hours.

Genome Biology 2005, 6:R74
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Ciliary bodyliris signature

The ciliary body and iris are components of the eye's highly
pigmented and vascular layer known as the uveal tract. As
might be expected, genes related to pigmentation were a fea-
ture of the distinctive expression pattern of these tissues (Fig-
ure 2b). These genes encoded enzymes involved in
melanogenesis, including tyrosinase (TYR), tyrosinase-
related protein 1 (TYRP1), and dopachrome tautomerase
(DCT), as well as melanosomal matrix proteins such as SILV
and MLANA. Several of the ciliary body/iris signature genes
were noteworthy in that their mutation can lead to albinism
or hypopigmentation phenotypes, including OA1 (ocular albi-
nism type 1), TYR and TYRP1 (oculocutaneous albinism 1A
and 3, respectively), and MLPH (Griscelli syndrome). Inves-
tigation of the numerous uncharacterized genes with similar
expression patterns to those of pigmentation genes may
expand our knowledge about the pigmentation process in
eyes and the molecular mechanisms behind hypopigmenta-
tion syndromes.

The ciliary body is also responsible for aqueous humor forma-
tion and lens accommodation, while the contiguous iris filters
light entering the eye by constricting and dilating the muscles
around the pupillary opening. Histologically, the ciliary body
consists predominately of smooth muscle, but also contains
striated muscle (reviewed in [24]). Previous work has demon-
strated that contractility of both the ciliary body and the
trabecular meshwork is critical in modulating aqueous humor
outflow (reviewed in [25]), one of the key determinants of
intraocular pressure, along with aqueous humor production
and episcleral venous pressure. Muscle-related proteins
encoded by genes in the ciliary body/iris cluster included
smooth muscle actin (ACTG2), and actin cross-linking pro-
teins such as filamin (FLNC), tropomyosin (TPM2), and
tensin (TNS). Other iris/ciliary body signature genes have
known roles in myosin phosphorylation (PPP1R12B), sarco-
lemmal calcium homeostasis (CASQ2), and ATP availability
(CKMT?2), all of which may contribute to ciliary body/trabec-
ular meshwork contractility.

Both ciliary body and trabecular meshwork contractility, as
well as aqueous humor production, have been linked to
changes in membrane potential, and membrane channels
have been studied extensively in the ciliary body [25-27]. Of
note, transcripts encoding an inward-rectifying potassium
channel (KCNJ8), not previously identified in the ciliary
body, were highly enriched in the ciliary body/iris signature
and may warrant further study. The signature also included
the gene for adrenergic receptor 20, (ADRA2A), a regulator of
aqueous humor production and outflow, and the molecular
target of the ocular hypotensive agent brimonidine. Identifi-
cation of other genes that facilitate aqueous production and
outflow may provide additional molecular targets for future
glaucoma therapeutics aimed at lowering intraocular pres-
sure, the only modifiable risk factor for the development and
progression of glaucoma.

Genome Biology 2005, Volume 6, Issue 9, Article R74

Immune system genes expressed within anterior
segment tissues

Genes related to immune defense mechanisms were promi-
nent among the large set of genes selectively expressed in
both the ciliary body/iris and corneal tissues. These included
genes encoding proteins involved in intracellular antigen
processing and transport for eventual surface presentation to
immune cells (PSMB8, TAP1), antigen presentation proteins,
including HLA class I molecules (HLA-A, HLA-C, HLA-F, and
HLA-G) and HLA class II molecules (HLA-DRB1, DRB4,
DRBj5, DPA1, and DPB1), cytokines involved in the recruit-
ment of monocytes (SCYA3, SCYA4, CD14), and cytokine
receptors (IL1R2, IL4R, and IL6R). Several anterior segment-
enriched genes encoded proteins with intrinsic antibiotic
activity, including defensin (DEFB1) and lysozyme (LYZ),
which may protect epithelial surfaces from microbial
colonization.

Genes encoding components of the complement cascade, a
major arm of the innate immune system, were a particularly
prominent feature of the anterior segment signature. Most of
the early classical pathway complement genes, including C1
components (C1S, C1QA, C1QG, C1R), C2, and C4b, as well as
a component of the late complement cascade (C7), were selec-
tively expressed in both the corneal and ciliary body/iris tis-
sues. In addition, the gene encoding the trigger for the
alternative complement pathway, properdin (BF), was highly
expressed in these tissues.

To prevent the destructive reactions that could ensue from
the daily bombardment of the eye with potentially antigenic
stimuli, regulatory mechanisms must counteract the multi-
tude of pro-inflammatory mediators found in the eye. A study
by Sohn et al. [28] that examined a number of complement
and complement-regulating components in rat eyes sug-
gested that the complement system is continuously active at a
low level in the normal eye and is kept in check by regulatory
proteins. Indeed, we found that the anterior segment selec-
tively expressed many critical negative regulators of the
immune system, especially of the complement cascade. These
included SERPING1 and DAF, two genes that encode proteins
that limit the production of early complement components,
and CD59, which encodes a protein that inhibits the assembly
of complement subunits into the membrane attack complex.

The presence of complement activation products in the
human eye during infection or inflammation has been previ-
ously described [29]. Studies have suggested that the
complement pathway contributes to the pathophysiology of
uveitis, an inflammatory disease of the uveal tract that is often
idiopathic in etiology [30]. In support of this theory, Barden-
stein et al. [31] showed that blocking the complement regula-
tor CD59 in the rat eye precipitated massive inflammation in
the anterior eye, including intense conjunctival inflammation
and iritis. Our evidence that complement pathway compo-
nents and regulators are highly expressed in anterior segment
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tissues provides further impetus for investigating their links
to ocular disease.

A caution to bear in mind in interpreting these results is that
all of our ocular specimens were obtained post-mortem. The
expression of the inflammatory genes could therefore reflect,
at least in part, changes in the eye that occur after death.
Future studies examining gene expression in fresh tissue
samples obtained at surgery, such as peripheral iridectomy
specimens, should help to further address this issue.

Lens signature

The distinctive features of the lens are its transparency, pre-
cisely crafted shape, and deformability, all of which are criti-
cal for proper light refraction. Elucidating the molecular
mechanisms that maintain or disrupt lens transparency is
fundamental in preventing cataract, the leading cause of
world blindness. Our studies showed that lens gene expres-
sion is very distinct from the other eye compartments (Figure
2¢), perhaps reflecting the extraordinary specialization of the
lens as an isolated, avascular structure within the eye. We
found more than a thousand genes selectively expressed in
the lens; clearly, diverse RNA populations are still present in
the adult lens, even though its population of active epithelial
cells is outnumbered by the mature fiber cells that have lost
their organelles, including nuclei.

Genes encoding the subunits of crystallins, the predominant
structural proteins in the lens, were prominent in the lens sig-
nature, including subunits for crystallin alpha (CRYAA), beta
(CRYBA1, CRYBA4), and gamma (CRYGA, CRYGC). Work by
Horwitz and colleagues [32,33] on alpha-crystallins, which
are structurally similar to small heat shock proteins, showed
these crystallins may preserve lens transparency by serving as
molecular chaperones that protect other lens proteins from
irreversible denaturation and aggregation. Of the other heat
shock proteins highly enriched in the lens signature (HSPAS®6,
HSPAS8, HSPB1), HSPB1 may be of particular interest because
it is a protein with an alpha-crystallin domain that may have
a role in lens differentiation [34]. The lens signature also
included genes encoding subunits of the proteasome complex
(PSMA6, PSMA7, PSMB6, PSMB7, PSMB9g, PSMD13), a mul-
ticatalytic proteinase structure that is responsible for degrad-
ing intracellular proteins. Previous studies have
demonstrated the significance of the proteasome pathway in
removing oxidatively damaged proteins within the lens [35].

Besides the crystallin genes, other genes encoding previously
described structural components of the lens, including lens
intrinsic membrane (LIM2), beaded filament structural pro-
tein (BFSP2), spectrin (SPTBN2), and actin binding protein
(ABLIM) were included in the lens signature. More interest-
ingly, the signature also contained intermediate filament
genes, such as those encoding erythrocyte membrane band
4.9 and 4.1 (EPB49 and EPB41L1, EPB41L4), that are charac-
teristically expressed in erythrocytes, another cell whose

http://genomebiology.com/2005/6/9/R74

highly stereotyped shape is critical to its function. Previous
studies have shown that protein 4.1 helps stabilize the spec-
trin-actin cytoskeleton, which is present in both erythrocytes
and lenticular tissue [36]. Further investigations comparing
erythroid and lens cells may reveal other similarities in their
cytoskeletons, both of which define a distinctive and stereo-
typed cell shape that must endure substantial amounts of
mechanical stress.

Another notable feature of the lens signature was the enrich-
ment of genes encoding proteins involved in endocytosis,
including clathrin (CLTCL1, PICALM) and caveolin (CAV1).
Currently, intercellular transport within the lens is thought to
occur predominately by diffusion through gap junctions, but
several investigators have proposed the uptake of nutrients
must be supplemented by mechanisms other than gap junc-
tions because of the paucity of gap junctions identified in
microscopy studies and the confirmed presence of clathrin-
coated vesicles in freeze-fracture studies [37,38].

Oxidative stress mediated by free radical production has been
associated with cataract formation (reviewed in [39]). There-
fore, we looked for genes involved in scavenging free radicals
in the lens signature. Two of these genes encode enzymes,
glutathione synthetase (GSS) and glutathione reductase
(GSR), that facilitate the production of glutathione, a potent
anti-oxidant and essential cofactor for redox enzymes. Super-
oxide dismutase (SOD1) and anti-oxidant protein 2 (AOP2),
two proteins responsible for reducing free oxygen radicals
and hydrogen peroxide species, respectively, were also selec-
tively expressed in lens tissue. Drugs or environmental agents
that modulate the expression or activity of these proteins
could have a significant impact on cataract progression or
prevention.

Optic nerve signature

The gene expression pattern in the optic nerve was overall
quite similar to that seen in brain tissue (Figure 2d), very
likely reflecting the preponderance of glial cells present in
both tissues. Both signatures included a number of genes
(MBP, MOBP, MAG, OLIG1, and OLIG2) previously found in
glial cells, several of which have been linked to neurological
diseases. For example, myelin-associated oligodendrocyte
basic protein (MOBP) is implicated as an antigen stimulus for
multiple sclerosis, a disease that also can present with optic
neuritis (reviewed in [40]). Interestingly, the optic nerves in
MOBP knock-out mice lacked the radial component of
myelination [41]. In another study, transgenic mice with T-
cell receptors specific to myelin associated glycoprotein
(MAG) spontaneously presented with optic neuritis [42]. The
majority of the genes in the brain and optic nerve signatures
encoded proteins of unknown function; our results, showing
that these genes may have specialized roles in these tissues,
may be a step toward discovering the biological role(s) for
these uncharacterized proteins.

Genome Biology 2005, 6:R74
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Retinal gene expression. (a) The retina-specific gene expression signature
was extracted from Figure | and is displayed similarly. Many of the array
elements encode uncharacterized genes and only a subset of named genes
is shown. (b) Macula versus peripheral retina gene expression. Using the
statistical analysis of microarrays algorithm as described in Materials and
methods, we selected genes that differed significantly between the central
and peripheral retinal arrays at a false discovery rate <0.05.

Retina signature

The retina, a complex tissue composed of neuronal and glial
elements, is essentially an extension of the central nervous
system, and the genes found in the retina signature appear to
reflect its distinctive histology and embryology (Figure 3a).
For example, the signature included the receptors for known
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retinal neurotransmitters, including gamma-aminobutyric
acid (GABRA1, GABRG2, GABRB3), glutamate (GRIA1,
GRIN2D), glycine (GLRB), and dopamine (DRD2). Retinal
neurotransmitters are packaged into small vesicles in the pre-
synaptic regions of photoreceptors. Many retinal signature
genes encoded proteins associated with synaptic vesicle dock-
ing and fusion (SNAP25, VAMP2, SYP, SNPH), as well as ves-
icle exocytosis and neurotransmitter release (SYN2, SYT4).
One of the retinal signature genes with a role in synaptic
transmission, human retinal gene 4 (HRG4/UNC119), has
been linked to late-onset cone-rod dystrophy in humans and
marked synaptic degeneration in a transgenic mouse model
[43].

The retina protects the integrity of its neuronal layers by reg-
ulating its extracellular environment through a blood-retina
barrier consisting of vessel tight junctions and cell basement
membranes. The exchange of nutrients and metabolites
across these barriers likely requires diverse, specialized trans-
porters. Indeed, over 30 different genes encoding small mol-
ecule transporters were found within the retina signature,
including carriers of glucose (SLC2A1, SLC2A3), glutamate
(SLC1A7), and other amino acids (SLC7As5, SLC38A1,
SLC6A6). Of note, severe retinal degeneration was observed
in mice mutated in SLC6A6, a gene encoding a transporter of
the amino acid taurine [44]. Several genes encoding ABC
transporters (ABCA3, ABCA4, ABCA5, ABCA7), which use
ATP energy to transport various molecules across cell mem-
branes, were contained in the retinal signature. The most
notable of these, ABCA4, is involved in vitamin A transport in
photoreceptor cells; mutations in the gene encoding ABCA4
can result in a spectrum of retinopathies, including retinitis
pigmentosa, Stargardt's disease, cone-rod dystrophy, and
ARMD.

The retinal signature was also enriched in transcripts encod-
ing vitamin and mineral transporters. The inclusion of a vita-
min C transporter (SLC23A1) and a zinc transporter
(SLC39A3) within the signature was of particular interest, in
light of the Age-Related Eye Disease Research Group study
that demonstrated supplementation with zinc and anti-oxi-
dants, including vitamin C, lowered the probability of devel-
oping neovascular ARMD in some high-risk patient
subgroups [45]. The presence of transferrin (TF), an iron
transport molecule, and its receptor (TFRC), in the retina sig-
nature may also be noteworthy because a higher accumula-
tion of iron has been observed in some ARMD-affected
maculas [46].

Somewhat unexpectedly, the retina signature contained the
gene encoding thyroid releasing hormone (TRH) and numer-
ous thyroid hormone receptor-related genes (THRA, TRIPS,
TRIP15, TRAP100). TRH expression was previously observed
in the retinal amacrine cells of amphibians [47]. Previous
work has demonstrated the importance of thyroid hormone
in the developing rat retina [48], and thyroid hormone
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receptors are required for green cone photoreceptor develop-
ment in rodents [49]. Further studies of these genes may
uncover additional roles of thyroid hormone and its receptors
in the human retina.

The retina is ultimately responsible for executing the visual
cycle, the process by which a photon signal is translated into
an electrical impulse. This complex cycle is initiated when
photoreceptor pigments activate G-proteins. G-proteins in
turn activate phosphodiesterases to break down cyclic GMP
(cGMP) to GMP, thereby influencing cell polarization via the
downstream modulation of ion channel efflux. The retina sig-
nature incorporated many genes encoding known visual cycle
elements, including the photopigment rhodopsin (RHO), G-
proteins from rods and cones (GNAT1, GNAT2, GNBj5), sub-
units of rod and cone phosphodiesterases (PDE6A, PDE6B,
PDE6G, PDE6H), and cGMP-sensitive channels (CNGB1,
CNGAL1). Genes responsible for visual cycle recovery, such as
arrestins (SAG, ARR3), were also present. Intriguingly, tran-
scripts encoding other G-proteins (GNB1, GNAZ) and several
phosphodiesterases (PDESB, PDE7A, PDE4A) with no estab-
lished roles in the visual cycle were enriched in the retinal sig-
nature. Additionally, the signature contained CDS1, which,
though it has no clear function in humans, is homologous to
the phototransduction gene CDS that has been linked to light-
induced retinal degeneration in Drosophila mutants [50].
Perhaps further in-depth study of the many uncharacterized
genes in the retinal signature will reveal roles in phototrans-
duction for these genes, which may expand our current con-
cept of the visual cycle pathway.

Macula signature

We used the statistical analysis of microarrays (SAM) algo-
rithm to select genes whose expression differed significantly
between the central and peripheral retinal tissues (Figure 3b).
The large set of genes that we identified as selectively
expressed in macula tissues included a subset of genes
involved in lipid biosynthesis. The majority of these genes are
regulated by sterol response element-binding protein
(SREBP), a transcription factor that has emerged as a master
regulator of cholesterol and fatty acid metabolic pathways
[51]. Previous studies by Fliesler et al. [52] have provided evi-
dence for rapid de novo synthesis of cholesterol in the rat ret-
ina in vivo, and our findings strongly suggested the human
retina also contains the enzymes needed for cholesterol bio-
genesis. Transcripts encoding the enzymes that catalyze mul-
tiple steps in cholesterol synthesis were enriched in the
macula, including stearoyl-CoA desaturase (SCD), meval-
onate decarboxylase (MVD), hydroxy-3-methylglutaryl-coen-
zyme A synthase 1 (HMGCS1), and HMG-coenzyme A
reductase (HMGCR), the rate-limiting enzyme in cholesterol
synthesis and the target of the 'statin' class of drugs for
patients with dyslipidemia. Other macula signature genes
encoded enzymes that act later in cholesterol biosynthesis,
such as lanosterol synthase (LSS) and squalene epoxide
(SQLE). In addition, the macula-enriched cluster included
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the gene for low-density lipoprotein receptor (LDLR), known
for its role in binding low-density lipoprotein (LDL), the
major cholesterol-carrying lipoprotein of plasma. LDL recep-
tors and LDL-like receptors have been previously identified in
retinal pigment epithelium and retinal muller cells [53,54],
but their function in cholesterol transport within the retina
has been minimally explored.

The genes represented in the macula cluster at least partially
reflect cell types present in a higher density in the macula
than in the peripheral retina, such as ganglion cells and pho-
toreceptors. For example, a substantial number of genes in
the macula signature have previously been characterized in
ganglion cells (THY1, POU4F1, LiCAML1, NRN1). Interest-
ingly, cholesterol is involved in the physiology of both retinal
ganglion cells and photoreceptors. Cholesterol has been
identified in rod outer segments in a wide variety of animal
species (reviewed in [55]), as well as in oil droplets isolated
from chicken cone photoreceptors [56]. In vitro, cholesterol
has the capacity to modulate phototransduction in rods by
altering the rod outer segment membrane structure [57], as
well as by directly binding to rhodopsin itself [58]. Histologi-
cal studies on retinas from patients with abetalipoproteine-
mia and familial hypobetalipoproteinemia, (serum LDL-
cholesterol levels <5% of normal) demonstrated a profound
absence of photoreceptors throughout most of the posterior
retina [59,60]. In addition, patients with Smith-Lemli-Opitz
Syndrome, a disease of abnormal cholesterol metabolism
caused by a defect in 7-dehydrocholesterol reductase
(DHCR7), another enzyme encoded by a gene selectively
expressed in macula tissues, exhibited slower activation and
recovery kinetics of their rod photoreceptors [61].

In vitro studies by Mauch et al. [62] have demonstrated that
retinal ganglion cells require cholesterol in order to form
mature, functioning synapses. The retinal ganglion cells in
their experiments produced enough cholesterol to survive
and grow, but effective synaptogenesis demanded additional
cholesterol supplied by glial cells. Other work by Hayashi et
al. [63] showed that exposure to lipoproteins containing cho-
lesterol and apolipoprotein E stimulated retinal ganglion cell
axons to extend, and that this effect was mediated by recep-
tors of the LDL receptor family present on distal axons. Stud-
ying the role of cholesterol in synaptogenesis may lead to
insights useful in the development of protective or restorative
therapeutics for neurodegenerative disease, as well as for ocu-
lar diseases that affect ganglion cells.

In view of epidemiological studies that have suggested con-
nections among atherosclerosis, serum cholesterol levels, and
ARMD [64-66], the enrichment of cholesterol biosynthesis
genes within the macula warrants further investigation. The
presence of cholesterol in drusen, the extracellular deposits of
ARMD, has been confirmed [67,68], although the origin of
this cholesterol remains unclear. Disregulation of lipid
metabolism and transport, either on a local and/or systemic
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Compartment gene sets are enriched for candidate genes of ocular diseases

Disease-associated
genes expressed in
affected compartment

Disease-associated
genes on array

Percentage of known

Average fold P-value
enrichment compared
to total number of
genes in interval

disease-associated
genes identified

Lens 15
Cornea 13
Retina 42 23

53 24 0.002
69 2.0 0.005
55 23 0.0004

Arrays were standardized to the same median intensity and genes exhibiting minimum intensities of 2,500 in any compartment were identified.
Genetic diseases affecting the lens, cornea, or retina were collated from the RetNet [71] and Online Mendelian Inheritance in Man [72] databases,
along with their cytogenetic map positions. The table indicates the number of cloned disease genes on the arrays, the number contained in a given
compartment gene set, the percentage of known disease genes included in the signatures, the average fold enrichment compared to the total number
of genes in each cytogenetic interval, and the statistical significance of this enrichment (using the hypergeometric distribution).

level, may contribute to macular diseases, such as ARMD.
Studies have associated statin use with a decreased rate of
ARMD [69,70], but randomized, prospective studies have yet
to be completed.

Identifying candidate disease genes

One direct application of the gene expression patterns we
have defined is the identification of candidate genes for
genetic diseases that differentially affect the various eye com-
partments. This strategy relies on the hypothesis that if muta-
tions in a gene cause physiological aberrations specifically in
a particular tissue, the gene is more likely to be selectively
expressed in that tissue. We therefore used the literature, Ret-
Net [71], and the Online Mendelian Inheritance in Man [72]
databases, to collate lists of genetic diseases affecting the lens,
cornea, and retina, along with the genetic intervals to which
the disease loci have been mapped. Next, we identified genes
that were relatively selectively expressed in each of the three
compartments. Briefly, we standardized the Cys intensity
data for each array and calculated the average intensity for
every gene across all samples from each compartment. We
then empirically identified an intensity cut-off that resulted in
selection of greater than 85% of genes included in the retinal
compartment signature from Figure 1, but also included
highly expressed genes that were expressed in more than one
compartment. Using this cut-off, we identified separate com-
partment gene lists for the three compartments and identified
the subset of these genes that were located in the appropriate
cytogenetic intervals for each compartment-specific disease
(see Additional data files 4, 5, 6 and Materials and methods).

To assess the potential of this approach, we analyzed the sub-
set of diseases for which candidate intervals were listed in our
sources but for which the causative gene is now known. The
density of affected-tissue-expressed genes located in the can-
didate intervals was similar to that for the unknown diseases,
and thus this subset served as a reliable positive control. The
disease gene for a remarkable 50% to 70% of the diseases of

known genetic cause was selectively expressed in the cognate
compartment (Table 1). We tested the statistical significance
of this result by comparing the number of disease genes iden-
tified by the compartment gene expression lists with the
aggregate list of all genes detectably expressed in any of the
samples shown in Figure 1. We found that for all three groups
of diseases, the compartment signatures were significantly
enriched for candidate disease genes (lens, p < 0.002; cornea,
P < 0.005; retina, p < 0.0004, by the hypergeometric distri-
bution). By focusing on the genes expressed within the com-
partment displaying the disease phenotype, we could enrich
for potential candidate genes by an average of 2 to 2.5-fold.

As an example of this approach, we more closely examined
Retinitis Pigmentosa 29 (RP 29), an autosomal recessive
form of RP that was mapped to chromosomal region 4q32-
g34 in a consanguineous Pakistani family [73]. At least two
genes within this interval (WDR17, GPM6A), and one gene
near the interval (CCN3), were previously examined by
sequencing and were excluded as candidates [74]. In our data,
only one gene, KIAA1712, was both located within the
mapped interval and selectively expressed in our retinal sam-
ples. Little is currently known about this gene, except that it
appears in expressed sequence tags (EST) and SAGE libraries
from several tissues, including brain. Our analysis suggests
that KIAA1712 is a strong candidate gene for RP 29, and
deserves further study. We expect our candidate gene lists to
be highly enriched for the causative genes for a large fraction
of the diseases we analyzed, and thus should prove useful in
accelerating identification of genes important in various
aspects of ocular pathology.

Discussion

Our microarray studies identified distinct molecular signa-
tures for each compartment of the human eye. As we pre-
dicted, many of the genes differentially expressed in each
tissue could be related to the histology and embryology of the
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cognate structure in the eye; more usefully, each signature
uncovered numerous genes whose expression or function in
the eye had not been previously characterized and for which
their expression pattern now provides a new clue to their
roles. Through a comparative analysis of gene expression
among eye compartments, we can also gain insight into the
pathophysiology of diseases that afflict specific eye tissues.
Furthermore, our data may help anticipate or understand
drug effects and side-effects, when the molecular targets of
the drugs are preferentially expressed in particular ocular
tissues.

The extensive set of genes selectively expressed in the macula
demonstrates that there is significant regional variation in
gene expression programs in the human retina. The macula-
enriched expression pattern may provide clues to the patho-
genesis of retinal diseases that preferentially affect the mac-
ula, such as ARMD. Because no ophthalmologic clinical data
accompanied the autopsy globe samples used in our experi-
ments and because of our limited sample sizes, we were una-
ble to correlate our gene expression data with clinical exam
findings or disease course. The techniques used in these
experiments did, however, allow us to examine tissues from
individual donors rather than requiring us to rely on either
pooled tissue samples or cultured cells. Thus, our results
show that future experiments examining individual diseased
samples will be possible.

By analyzing our global gene expression data together with
previous genetic mapping data, we were able to greatly refine
sets of candidate genes for many corneal, lenticular, and reti-
nal diseases whose genetic basis is still undefined. When we
used a control set of diseases with known causative genes, the
candidate gene lists we generated included 50% to 70% of the
causative genes for this control set. One explanation for why
we did not identify all the causative genes for the control dis-
ease set was that some causative genes did not meet our
intensity threshold, and thus were not included in the com-
partment expression lists. Furthermore, we could not have
identified those causative genes that are only expressed in the
diseased state (but not in normal tissues), because we limited
our microarray analyses to tissues with no known ocular
pathology. Other reasons why our approach may have missed
causative genes include expression of causative genes only at
certain points in development and not in adult tissues, tech-
nical problems with the array element(s) representing these
genes, and possible loss of transcripts in the RNA isolation or
amplification process. Future investigation of these potential
problems and comparison of our candidate gene lists with
genome-scale gene expression data from diseased tissues will
result in further refinement of the approach presented here.

Finally, our studies were designed to provide an open
resource for all investigators interested in ocular physiology
and disease. The tissue signature data, as well as the diseases,
genetic intervals, and candidate genes for all the diseases we
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examined, and the complete set of data from our studies is
freely available without restriction from the Authors’ Web
Supplement accompanying this manuscript [75].

Materials and methods

Tissue specimens

Eight whole globes (G1 to G8) were harvested from autopsy
donors (age range 30 to 85 years old) within 24 h of death,
and the tissues were immediately stored at 4°C in RNAlater
(Ambion, Austin, TX, USA). Four of the globes were from
female donors (G3, G6 to G8) and four were from male
donors (G1, G2, G4, G5). Globes 4 and 5 were harvested as a
set from a single donor, as were globes 6 and 7. No ophthal-
mologic clinical records were available for any of the globes at
the time of harvest. Seven of the globes (G1 to G7) were dis-
sected into the following components: cornea, lens, iris, cili-
ary body, retina, and optic nerve, while only retinal tissue was
available from G8. The maculas and the peripheral retinal tis-
sues were further dissected from several of the retinal
samples. The macula was defined as the visible xanthophyll-
containing tissue temporal to the optic nerve, which encom-
passed an approximate area of 4 mm?2. For comparison pur-
poses, three post-mortem brain specimens were analyzed.

RNA extraction and amplification

Specimens were disrupted in TRIZOL (Gibco, Carlsbad, CA,
USA) solution using a tissue homogenizer. Samples were
processed according to the manufacturer's protocol until the
aqueous supernatant was retrieved. The supernatant was
mixed with 1 volume of 70% ethanol, applied to an RNeasy
column (Qiagen, Valencia, CA, USA), and purified according
to the manufacturer's protocol. RNA quality and quantity
were assessed by gel electrophoresis and spectrophotometer
measurements. Total RNA was amplified using a single
round, linear amplification method [9] (also see Additional
data files 1 and 2). Tissue samples that yielded inadequate
amounts of RNA were excluded from any further analysis. A
reference mixture of mRNAs derived from 10 different cell
lines (Universal Human Reference RNA, Stratagene, La Jolla,
CA, USA) was used in all experiments as an internal standard
for comparative two-color fluorescence hybridization.

Microarray procedures

Human c¢DNA microarray construction and hybridization
were as previously described [76]. The microarrays contained
43,198 elements, representing approximately 30,000 genes
(estimated by UniGene clusters) and were manufactured by
the Stanford Functional Genomics Facility [77]. In each anal-
ysis, amplified RNA from an eye tissue sample was labeled
with Cys, and amplified reference RNA was labeled with Cy3.
The two labeled samples were combined, and the mixture was
hybridized to a microarray. Arrays were scanned using a
GenePix 4000B scanner (Axon Instruments Inc., Sunnyvale,
CA, USA). The array images were processed using GenePix
Pro 3.0, and the resulting data were indexed in the Stanford
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Microarray Database and normalized using their default total
intensity normalization algorithm (more detailed methods
are available in Additional data file 3). Searchable figures and
all raw microarray data can be found at [75]. The complete
microarray dataset is also accessible through the Gene
Expression Omnibus [78] (accession number GSE3023).

Bioinformatic analyses

For the data shown in Figures 1 and 2, only elements for
which at least 50% of the measurements across all samples
had fluorescence intensity in either channel at least 3.25-fold
over background intensity were included. The logarithm of
the ratio of background-subtracted Cys fluorescence to back-
ground-subtracted Cy3 fluorescence was calculated. Then
values for each array and each gene were median centered,
and only ¢cDNA array elements for which at least two meas-
urements differed by more than 2.5-fold from the median
were included in subsequent analyses. For the data in Figures
3, we employed the Statistical Analysis of Microarrays (SAM)
package [79]. Only elements for which the intensity to back-
ground ratio was at least 3.25 in at least 35% of the retina
samples were considered. Only genes whose expression sig-
nificantly differed between the macula and peripheral retina
(false discovery rate <0.05 with 500 permutations) were
selected. Finally, to focus on genes with the largest absolute
difference in expression between the two regions, we selected
genes whose expression differed by at least four-fold from the
median in at least two samples.

Candidate disease gene analysis

To identify the gene sets expressed in each compartment,
background-subtracted Cys intensities from each microarray
were standardized to an array-median of 1,500, and genes
exhibiting an average intensity of at least 2,500 in a compart-
ment were identified (see Additional data file 4). This thresh-
old was chosen empirically because it resulted in greater than
85% of the retinal signature from Figures 1 to be included in
the retina set, while less than 5% of these genes were con-
tained in any of the other compartment sets. Genetic diseases
affecting the lens, cornea, or retina were collated from the
Online Mendelian Inheritance in Man database [72] and the
Retinal Information Network [71], along with the genetic
intervals to which they have been mapped (see Additional
data file 5). Using Perl scripts, we mapped every sequence on
our arrays to the human genome using data from the UCSC
genome browser [80]. Genes in the corresponding compart-
ment expression set that were located in the genetic interval
associated with each compartment-specific disease were
identified. For the benchmark analysis of diseases that were
associated with known genes, we also identified all genes in
the human genome that fell into the genetic interval associ-
ated with each disease. The compartment expression sets and
our lists of candidate genes for the 147 diseases we analyzed
can be found in Additional data file 6.

Genome Biology 2005, Volume 6, Issue 9, Article R74 Diehn et al.

Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 contains the step-
by-step amplification protocol used in this work. Additional
data file 2 is a table detailing RNA isolation and amplification
yields. Additional data file 3 contains more detailed supple-
mental materials and methods. Additional data file 4 contains
the compartment gene lists used in the disease gene analysis.
Additional data file 5 contains the list of diseases for each
compartment with their mapped genetic intervals. Additional
data file 6 contains the results of the disease gene analysis,
including the list of candidate genes for each disease.
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