
Genome Biology 2005, 6:P4

Deposited research article
A novel scheme to assess factors involved in the reproducibility of
DNA-microarray data
Sacha AFT van Hijum1, Anne de Jong1, Richard JS Baerends1, 
Harma A Karsens1, Naomi E Kramer1, Rasmus Larsen1, Chris D den Hengst1,
Casper J Albers2, Jan Kok1 and Oscar P Kuipers1

Addresses: 1Department of Molecular Genetics, 2Groningen Bioinformatics Centre, University of Groningen, Groningen Biomolecular
Sciences and Biotechnology Institute, PO Box 14, 9750 AA Haren, the Netherlands.

Correspondence: Oscar P Kuipers. E-mail: o.p.kuipers@rug.nl

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

.deposited research

AS A SERVICE TO THE RESEARCH COMMUNITY, GENOME BIOLOGY PROVIDES A 'PREPRINT' DEPOSITORY

TO WHICH ANY ORIGINAL RESEARCH CAN BE SUBMITTED AND WHICH ALL INDIVIDUALS CAN ACCESS

FREE OF CHARGE. ANY ARTICLE CAN BE SUBMITTED BY AUTHORS, WHO HAVE SOLE RESPONSIBILITY FOR

THE ARTICLE'S CONTENT. THE ONLY SCREENING IS TO ENSURE RELEVANCE OF THE PREPRINT TO

GENOME BIOLOGY'S SCOPE AND TO AVOID ABUSIVE, LIBELLOUS OR INDECENT ARTICLES. ARTICLES IN THIS SECTION OF

THE JOURNAL HAVE NOT BEEN PEER-REVIEWED. EACH PREPRINT HAS A PERMANENT URL, BY WHICH IT CAN BE CITED.

RESEARCH SUBMITTED TO THE PREPRINT DEPOSITORY MAY BE SIMULTANEOUSLY OR SUBSEQUENTLY SUBMITTED TO

GENOME BIOLOGY OR ANY OTHER PUBLICATION FOR PEER REVIEW; THE ONLY REQUIREMENT IS AN EXPLICIT CITATION

OF, AND LINK TO, THE PREPRINT IN ANY VERSION OF THE ARTICLE THAT IS EVENTUALLY PUBLISHED. IF POSSIBLE, GENOME

BIOLOGY WILL PROVIDE A RECIPROCAL LINK FROM THE PREPRINT TO THE PUBLISHED ARTICLE. 

Posted: 3 March 2005

Genome Biology 2005, 6:P4

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2005/6/4/P4

© 2005 BioMed Central Ltd

Received: 3 March 2005

This is the first version of this article to be made available publicly. 

This information has not been peer-reviewed. Responsibility for the findings rests solely with the author(s).



A novel scheme to assess factors involved in the reproducibility of DNA-microarray 

data 

 

Running title: a novel scheme to assess DNA-microarray data quality 

 

 

Sacha A.F.T. van Hijum1, Anne de Jong1, Richard J.S. Baerends1, Harma A. Karsens1, Naomi 

E. Kramer1, Rasmus Larsen1, Chris D. den Hengst1, Casper J. Albers2, Jan Kok1 and Oscar P. 

Kuipers1,* 

 

1 Department of Molecular Genetics, 2 Groningen Bioinformatics Centre, University of 

Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, PO Box 14, 9750 

AA Haren, the Netherlands. 

  

* Corresponding author: o.p.kuipers@rug.nl. 

 

 



ABSTRACT 

 

Background 

In research laboratories using DNA-microarrays, usually a number of researchers perform 

experiments, each generating possible sources of error. There is a need for a quick and robust 

method to assess data quality and sources of errors in DNA-microarray experiments. To this 

end, a novel and cost-effective validation scheme was devised, implemented, and employed. 

Results 

A number of validation experiments were performed on Lactococcus lactis IL1403 amplicon-

based DNA-microarrays. Using the validation scheme and ANOVA, the factors contributing 

to the variance in normalized DNA-microarray data were estimated. Day-to-day as well as 

experimenter-dependent variances were shown to contribute strongly to the variance, while 

dye and culturing had a relatively modest contribution to the variance. 

Conclusions 

Even in cases where 90 % of the data were kept for analysis and the experiments were 

performed under challenging conditions (e.g. on different days), the CV was at an acceptable 

25 %. Clustering experiments showed that trends can be reliably detected also from (very) 

lowly expressed genes. The validation scheme thus allows determining conditions that could 

be improved to yield even higher DNA-microarray data quality. 

 



BACKGROUND 

 

The development of DNA-microarray technology has enabled genome-wide expression 

profiling to become a valuable tool in the investigation of an organisms’ gene regulation [1-

3]. For our studies on gene regulation in Gram-positive bacteria [4] we use in-house 

developed DNA-microarrays containing amplified DNA fragments of the annotated genes of 

Lactococcus lactis ssp. lactis IL1403 [5], L. lactis ssp. cremoris MG1363 [6], Bacillus 

subtilis 168 [7], Bacillus cereus ATCC 14579 [8], and Streptococcus pneumoniae TIGR4 [9]. 

Standardization of every step in the DNA-microarray procedure is crucial to correctly 

and efficiently perform DNA-microarray experiments, and to obtain reproducible data [10-

13]. In the process from manufacturing DNA-microarrays to performing the actual 

experiments, systematic errors and / or bias in the data are introduced in each of the different 

steps. The effects of various factors (e.g. dye and slide) on the quality of DNA-microarray 

data have been studied quite extensively albeit for experiments performed with eukaryotic 

systems [14-20]. In contrast, no data quality determination has yet been performed on DNA-

microarray data from experiments with bacterial cultures. Furthermore, the effects of 

different array batches or the influence of the experimenter on data quality have not been 

included in the previous mentioned experimental designs. Here, we show that the latter 

factors are indeed important for optimizing DNA-microarray data quality. 

In order to assess the reproducibility of- and factors involved in DNA-microarray data 

produced in our laboratory during transcriptome analyses by a number of researchers, a 

validation experiment was designed and implemented. This validation scheme is routinely 

applied to validate the DNA-microarrays of the various organisms under study in this group 



and allowed to set a quality standard as well as to assess sources of errors in the expression 

data.  

We discuss a novel validation scheme and assess data quality of a number of 

validation experiments performed on amplicon-based DNA-microarrays of L. lactis IL1403. 

For any laboratory in which DNA-microarray experiments are performed on a regular basis, 

the validation scheme will provide at the cost of only a few hybridizations, valuable 

information on the DNA-microarray data quality. Combining multiple validation experiments 

allows estimating the main sources of errors. 

 



RESULTS 

 

DNA-microarray quality assessment 

Six researchers working with L. lactis IL1403 slides performed nine validation experiments 

(see Methods and Fig. 1). General statistics on these validation datasets are listed in Table 1. 

One has to bear in mind that DNA-microarrays with lower signals will yield more noisy data, 

and thus higher coefficients of variance (CVs). Since these lower signals might also contain 

valuable information, they are included in the analyses described here. 

No differentially expressed genes were detected 

Differential expression tests were performed for the factors (additional Table 1; e.g. spot-

pins, experimenters, and validation experiments), but no genes meeting the criteria were 

observed. No differential expression was expected because the hybridizations were 

performed with cDNA derived from cells grown under (very) similar conditions. The 

resulting expression ratios were thus close to 1.  

CV comparison 

The CVs of the validation experiments range from 9 % to 28 % with an average of 17 % and 

using about 90 % of the spots. The lower CVs of the 40 % low-intensity-spot-filtered data 

(Table 1) indicate that a significant part of the variance originates from lowly expressed 

genes. Slides 2 and 3 of each validation experiment (S2 and S3, respectively) examine 

biological replicates of independent comparisons between the cultures A and B (Fig. 1). Their 

data quality is thus a “worst case scenario” estimate of the quality to be expected from “real” 

DNA-microarray experiments as the validation experiments were performed with a large 

number of differing parameters: (i) different researchers performed the experiments, (ii) on 

different days, while, lastly, (iii) the cells were harvested in a growth phase in which small 



changes in culture optical density will result in relatively large differences in expression 

levels (see below). Table 1 shows, as expected, that data from the pooled slides 1 of all 

validation experiments (S1) have a smaller average CV (22 %) than those of S2 (26 %) and 

S3 (25 %). The CV frequency distribution for S1 is shifted towards zero while S2 and S3 

have quite similar distributions (additional Fig. 1) because of intra-culture differences (Ba or 

Bb; Fig. 1). 

Detailed comparison of two slides  

The two representative validation experiments, i.e. E and H, showed clear differences in data 

quality (additional Table 1). Box plots of data before the Lowess grid-based normalization 

show clear spot pin-dependent patterns in average signal levels (additional Fig. 2). A non-

linear intensity-dependent dye-effect in data from slide E3 (additional Fig. 2, graph E2, i) is 

evident from the curved Lowess fits. The Lowess curves (one curve fitted for each spotted 

grid; additional Fig. 2, graphs ii) of slides E3 and H2 are “stacked”, indicative of a grid-

dependent gradient of ratios. The above-mentioned effects can be normalized by using the 

Lowess grid-based normalization method (additional Fig. 2, graphs v).  

 

Gene-dependent fluctuations in ratios and signals 

Clustering was performed on the SDs of the ratio-data to investigate gene-dependent behavior 

across the validation experiments (Fig. 2). Cluster 1 contains more strongly expressed genes 

than cluster 4, with clusters 2 and 3 encompassing genes with intermediate expression levels. 

The clustering results were simplified by grouping genes  

A first selection of genes was based on the L. lactis IL1403 genome annotation with the 

underlying assumption that related genes (either by function or because they are part of the 



same operon) are expected to show similar expression behavior. Only related genes with all 

members occurring in the same cluster (probability lower than 0.02) were considered.  

Cell growth-related genes show large fluctuations 

Clustering revealed that genes with similar SD fluctuations were involved in (i) amino acid 

biosynthesis, (ii) energy metabolism, (iii) cell-wall synthesis, and (iv) salvage of nucleosides 

and nucleotides (Fig. 2). Genes showing highest ratio and signal CVs (additional Table 2): (i) 

are of unknown function, (ii) are (pro) phage-derived, (iii) encode proteins involved in 

transport of various compounds, or (iv) encode transcriptional regulators.  

Some lowly expressed genes show correlated expression fluctuations 

Fig. 3 clearly illustrates that (i) the lowly expressed genes have significantly higher CVs than 

the highly expressed genes, which is most probably due to their lower signals, and (ii) the 

related genes (clustered in Fig. 3) showing similar expression behavior have average 

expression levels varying from very low (1.7 % of the maximum intensity) to relatively high 

(65 % of the maximum intensity). After a close inspection of these (mostly low-intensity) 

spots, the fluctuations in ratio and / or expression levels did not appear to be correlated to 

spot quality (data not shown). 

 

ANOVA 

A clear correlation between CVs (data quality) and e.g. array batches or experiments could 

not be determined. For instance, validation experiments H and I were performed on the same 

DNA microarray batch by the same experimenter, but yielded different CVs. The ANOVA 

technique allowed estimating the contribution of several sources of errors to the total variance 

in the DNA-microarray data of all slides (Fig. 4; S=1v2v3). The following factors contributed 

significantly to the total variance: G (gene; 5 %; Table 2), VG (validation experiment and 



gene interaction; 27 %), SG (slide and gene interaction indicative for dye-effects; 4 %; Table 

2), and VSG (validation experiment, slides, and gene interactions; 31 %).  

The VSG interaction detailed 

In order to distinguish the separate sources of errors in the VSG interaction, additional 

variance analyses were performed with combinations of 2 slides: (i) by omitting slide 1 (S1; 

containing a self-hybridization) the VSG interaction (S=2v3) decreased with 7.8 %; (ii) by 

omitting slides 2 or 3 (S2 or S3; containing inter-culturing hybridizations) the VSG 

interaction (S=1v2 or S=1v3) decreased with 9.4 % and 9.1 %, respectively; and (iii) the 

decrease in the VSG interactions coincides with an increase of the VG interaction. This leads 

to the conclusion that variances occur on each slide (Gene × Array; Table 2) and are probably 

(partly) due to hybridization effects. Since the variance for a particular slide (7.8 %) is 

omitted from the variance analyses, the VSG interaction will decrease, but the VG interaction 

will increase (the 7.8 % variance was specific for the slide that was omitted from the 

analyses). This 7.8 % variance is assumed to be the same for each of the three slides. The 

larger effect of S2 and S3 compared to S1 in the VSG interaction is probably caused by the 

fact that on these slides inter-culture comparisons were performed. Since dye-effects are 

assumed to be global, it can be concluded that the intra-culturing differences (differences 

between the Ba and Bb cultures) account for the 1.6 and 1.3 % larger decrease in the VSG 

interaction (by omitting S2 or S3, respectively). The variance introduced by the Ba and Bb 

cultures is quite reproducible (1.3 – 1.6 %) and is caused by RNA isolation and labeling 

(Table 2).  

Slide and sampling differences can be determined from VSG  

The variance of S1 versus the pooled S2 and S3 (S=1v23) in the VSG interaction decreased 

with 16.1 % to 14.9 %, with the variance in the VG interaction remaining virtually 



unchanged. By combining S2 and S3, the Gene × Array interactions occurring specifically on 

S2 and S3 are pooled. They are, thus, not accommodated in the VG interaction, but rather in 

the residual error. The remaining 14.9 % variance in the VSG interaction still contains the 

Gene × Array interactions for S1 (7.8 %) and sampling differences (7.1 %; Table 2). 

Day-to-day differences are most prominent in the VG interaction  

The VG interaction contains differences between validation experiments (Fig. 4): the DNA 

microarray batch used (BG), day-to-day differences (AG), the researcher performing the 

experiment (PG), and spot-pin / RNA isolation method used (DU). Due to confounding of 

these factors, a less efficient estimation of their relative contributions was unavoidable. 

However, the contributions of BG, PG, AG, DU in relation to the VG interaction could be 

determined (Table 2). The day-to-day differences were estimated to have the largest 

contribution to the variance, followed by experimenter, the DNA microarray batch, and lastly 

a relatively low contribution of switching the RNA isolation method (coinciding with a 

change from 8 to 12 spot-pins). 

 



DISCUSSION 

 

The validation procedure presented here was implemented to provide a standardized 

method to assess DNA-microarray data quality generated in our laboratory and should be 

well-suited for use in other laboratories. A workable trade-off between costs, time 

investment, and data-quality was obtained by using only three DNA-microarray slides for 

each validation experiment. This scheme is suitable for identifying factors that yield 

“unreliable” data (i.e. data with ratios that deviate from 1 due to, for instance, outliers). In a 

number of cases, the validation experiment even identified experimenters who did not flag 

bad spots stringently enough.  

Assessment of high-throughput gene expression data quality is a challenging task. A 

potential problem arises from the fact that many studies do not describe in detail the resulting 

amount of data on which statistic analyses was based. This information is, however, crucial to 

determine data-quality. To demonstrate the effect of filtering on data quality, statistics were 

also calculated for data in which 40 % of the lowest intensity spots were removed (Table 1). 

These rigorously filtered data do show improved data quality, but at the expense of many 

measurements that could contain valuable information. The 5 % low-intensity spot filter 

employed in our study was selected after careful examination of data from various DNA-

microarray experiments performed in our laboratory. Some lowly expressed targets allowed 

grouping genes by function, revealing trends that would have been difficult to discern with 

more rigorous filtering. A thorough discussion of these results is, however, outside the scope 

of this study. 

The data quality of the validation experiments described in this paper proved to be 

satisfactory, while at same time a maximum amount of data was preserved. One has to bear in 



mind that a significant part of the variance in our data is caused by varying factors (e.g. 

differences in the days on which the experiments were performed; discussed in more detail 

below). In addition, the quality of the glass surfaces used in this study was lower than that of 

presently used superamine glass slides (Telechem International Inc.). Together with recently 

implemented increased stringency of clean-room rules, this will increase data-quality even 

more. The average CV value for the validation experiments was 26.1 % and 24.6 % for S2 

and S3 with use of 90 % of the spots (Table 1). These results are comparable to CVs, ranging 

from 11 to 23 %, reported for a number of studies using cDNA derived from eukaryotic cell 

cultures hybridized on various DNA microarray platforms [20-22]. For other DNA-

microarray experiments performed in our laboratory the data quality is considerably higher 

(average CVs of under 20 %) stipulating that in effect, the average CV of about 25 % 

described in this study is an underestimation of the data quality one could obtain.  

By mining the data from several validation datasets it was possible to determine 

which factors contribute to the variance in normalized DNA-microarray data. The following 

factors were identified (Fig. 4 and Table 2): (i) validation experiments (VG; 27 %), (ii) 

sampling (7 %), (iii) Array × Gene (8 %), gene variances (5 %), and dye-effects (4 %). The 

contributions of RNA isolation and labeling to the variance were quite low (1.5 %; Table 2). 

Additional variance analyses showed that the day-to-day differences contribute most to the 27 

% variance observed for the VG interaction, followed by the experimenter, the DNA 

microarray batch, and lastly a change in the RNA isolation method (coinciding with the use 

of arrays spotted with 12 instead of 8 spot-pins). The contribution of dye-effects was 

determined to be only 4 %, which is low compared to the contribution of dye-effects 

determined for in studies from Chen et al. and Dombrowski et al. [18,23]. The latter study 

describes the use of a direct labeling kit. In contrast, indirect labeling was used in our study, 



in which differential hybridization of Cy3 and Cy5-labeled cDNA is anticipated. Direct-

labeling adds, next to this differential hybridization, (i) preference of the reverse transcriptase 

enzyme for the Cy3 label and (ii) prolonged exposure to air and light of the dyes increasing 

the chance of oxidation and / or bleaching. The main contributing factors identified in this 

study are in agreement with a number of studies involving cDNA derived from eukaryotic 

tissue cultures [18,19,24]. In contrast to these studies, we were able to attribute a relatively 

large contribution of the total variance to specific sources of errors (67 %) because of the 

efficient design of the validation experiment described here. Since the contributions of day-

to-day variation , DNA microarray batch differences, and the experimenter to the variance 

amounted up to 27 %, it can be concluded that even higher data-quality can be obtained when 

experiments are performed under identical conditions. 

The ANOVA model used does not account for gene-to-gene variances. Additional 

variance analyses were performed with datasets of which the 10 % most noisy genes (with 

highest CVs) were omitted. In these experiments, the relative contribution of the various 

factors identified above remained unchanged (results not shown), indicating that the proposed 

procedure is robust and that its results are not dependent on a relatively small portion of noisy 

genes.  

In this paper, data from hybridizations with RNA derived from the same experimental 

conditions were used. To examine whether the used probes on the slides are correct and 

whether observed gene expression levels are accurate, experiments should be carried out 

which measure known differentially expressed genes. A number of such studies in which 

targets were identified by DNA-microarray experiments (e.g. on arginine and glucose 

metabolism and on nisin resistance development), and subsequently verified by alternative 



techniques (real-time PCR, gene knock-out and / or overexpression studies), have 

successfully been performed in our laboratory (results not shown). 

 The validation experiments described in this study were designed to be a “worst case 

scenario”. Data quality proved to be good even though they were obtained at challenging 

conditions: (i) flask-grown cells, (ii) harvesting in a growth phase in which relatively large 

changes in gene-expressions occur, and (iii) change of factors (e.g. day). The results of 

clustering indicate that functionally related genes share specific behavior across the 

validation experiments (Fig. 3). The significant expression levels and relatively large 

fluctuations in ratios of the ybg, ybj, and yia gene groups are probably due to biological 

variations (growth-phase and medium-batch related). Furthermore, one can conclude that data 

from even (very) lowly expressed genes can reveal interesting trends. By preserving the 

maximum amount of data, one might be able to discern more subtle differences in expression 

levels of lowly expressed genes. 



CONCLUSIONS 

 

In this paper a novel validation scheme was employed to assess data quality and sources of 

errors of DNA-microarrays. Even in the case that 90 % of the data were preserved and the 

experiments were performed at challenging conditions, the coefficient of variance was at an 

acceptable 25 %. Clustering experiments showed that trends could be detected from (very) 

lowly expressed genes. Using ANOVA, day-to-day as well as experimenter-dependent 

variances were found to contribute strongly to the variance, while dye and culturing 

contributions to the variance were relatively modest. The validation scheme thus allows 

determining conditions that could be used to obtain DNA-microarray data of improved 

quality. 

 

 

 



METHODS 

 

DNA-microarray experimental procedures  

DNA-microarrays were prepared from amplicons of 2108 genes in the genome of 

Lactococcus lactis ssp. lactis IL1403 (Genbank accession number NC_002662; its annotation 

is based on the B. subtilis genome, Genbank accession number NC_000964). Primers were 

designed to amplify unique regions of these genes [25]. Generation of the amplicons, slide 

spotting, slide treatment after spotting, and slide quality control were performed as described 

[4] with modifications (additional data). Samples for RNA isolation were taken by rapid 

sampling of exponentially growing cultures of L. lactis. Methods for cell disruption, RNA 

isolation, RNA quality control, complementary DNA (target) synthesis, indirect labeling, 

hybridization, and scanning are described in the additional data. 

 

Validation experiment 

The validation experiment (Fig. 1) was designed as follows: two independent cultures of L. 

lactis ssp. lactis IL1403 were grown at 30ºC to an optical density at 600 nm (OD600) of 2.0 / 

cm (corresponding to end-log phase) in standing flasks with 50 mL M17 medium [26] 

containing 0.5 % glucose (w/v). A 10 mL sample was taken from one of these cultures, while 

from the other culture two samples of 10 mL were withdrawn. For the validations 

experiments (additional Table 1), total RNA was extracted using the RNA isolation methods 

with and without ‘macaloid’, for slides made with 12 spot pins and 8 spot pins, respectively. 

The cDNAs were labeled according to the scheme in Fig. 1. The mRNA derived from the A 

culture was labeled once with Cy3 and three times with the Cy5 dye. The mRNA derived 



from the Ba and Bb cultures were both labeled with the Cy3 dye. Finally, the labeled cDNAs 

were hybridized on L. lactis IL1403 DNA-microarrays (Fig. 1).  

 

Data processing 

Slide data were processed by using MicroPreP [27,28]: (i) flagged (bad) spots were deleted; 

(ii) the spot backgrounds in each grid for both channels were corrected for autofluorescense 

by subtracting the intensity of the weakest spot; (iii) the 5 % or 40 % weakest spots (sum of 

Cy3 and Cy5 net signals) were deleted; (iv) normalization was performed (the ratios were 

made comparable across slides) using a grid-based Lowess transformation [29] with f = 0.5 

(fraction of genes to use); (v) for both channels the intensities of the “Lowess” fraction of 

genes were added to yield a total signal, and all intensities were divided by this total signal, 

yielding scaled, arbitrary expression levels; (vi) tables for variance analyses were made.  

 The scanned images, data, and experimental conditions were stored in the MIAME-

compliant Molecular Genetics Information System (MolGenIS) [30]. 

 

Statistical procedures and clustering 

The quality of the validation datasets discussed in this paper is presented by coefficient of 

variance (CV). CVs are calculated by dividing the standard deviation (SD) by the mean ratio 

of a gene and multiplying by 100%. The minimum and maximum numbers of measurements 

for each gene were 13 and 54 (i.e. 9 validation experiments × 3 slides per validation 

experiment × 2 technical replicates per slide), respectively. For single validation experiments, 

CVs and differential expression levels were determined for genes for which at least 4 

measurements were available.  



Differential expression tests were performed with the Cyber-T implementation of a 

variant of the t-test [31]. False discovery rates (FDRs) were calculated by (i) ranking the 

genes by p-value, (ii) multiplying the p-values with the number of tests performed (similar to 

Bonferroni correction), and (iii) dividing by the number of genes with lower p-values. Genes 

were considered differentially expressed at both p < 0.01 and FDR < 0.01. 

The SDs of log (base 2)-transformed ratios were used for clustering purposes. The 

values of missing SDs were interpolated by using the K-nearest two neighbors approach 

using Engene [32]: only four genes which lacked the first or last SD had to be omitted. For 

each gene, SDs were centered after which clustering was performed using the Kohonen self-

organizing map (SOM) algorithm (2 × 2 matrix) in the Engene clustering package.  

 

ANOVA 

The statistical software package SPSS (version 11; SPSS Inc., Chicago, IL) was used to 

perform variance analyses (ANOVA). Additional Table 1 presents factors and their levels 

used for ANOVA.  

ANOVA is robust with respect to violations 

The assumptions of ANOVA that (i) error variances are equal and (ii) the residuals of the 

model are normally distributed generally do not hold for DNA microarray data. However, the 

sole purpose of ANOVA for this paper was to estimate the relative contributions of the 

various factors, a purpose for which ANOVA is extremely robust. If the error variances are 

not equal, the estimators for the type III sums of squares of the various factors, although less 

efficient, are still valid and unbiased [33]. Furthermore, the efficiency reduces most when the 

ANOVA design is very unbalanced and/or random factors are implemented [34].  In our case, 

the design is quite balanced and a fixed-factors model is used. The (relative) sums of squares 



are used instead of p-values, because the latter might be violated by deviations from the 

assumptions.  

A whole-slide model was chosen over a gene-by-gene model 

When performing variance analyses on DNA-microarray data, instead of our model, one 

could use a more complicated model that allows gene-to-gene differences to be estimated. 

Gene-by-gene models can deal better with variances that are gene-dependent (due to 

differences in gene expression levels). However, as each of the three hybridized slides (Fig. 

1) contains different combinations of cDNAs derived from the A and B cultures, the gene 

expression levels are expected to differ from slide-to-slide, rendering the gene-by-gene 

method less effective than our whole-slide model.  

Genes were randomly selected for ANOVA 

The software could not handle a gene factor of 2108 levels (genes) and additional interactions 

in model (1). To reduce data dimensions, we chose to randomly select genes instead of other 

methods (e.g. grouping of genes based on clustering or function) because the latter depend on 

assumptions of which the validity for the datasets are difficult to determine. The selection 

was repeated 10 times (with 5% or 105 random genes each time) yielding 1050 genes of 

which 196 were drawn two or more times. These 854 uniquely selected genes (40.5 % of the 

total genes) corresponded well to the predicted 40.0 % (calculated by [1 – (((2108 – 105) / 

2108)10)]). The sums of squares were averaged for the sources (i.e. factors) contributing 

significantly to the variance (α = 0.05).  

The ANOVA model uses log-transformed ratio data 

Attempts to identify the sources of errors and their contributions to the variance based on 

signal data, proved to be unsuccessful due to large differences in gene expression levels. A 



similar observation has been made for oligonucleotide-based DNA-microarrays hybridized 

with liver tissue RNA [17]. For this reason, we used the following ANOVA model: 

 

rigpbtv = µ + Si + Gg + Aa + Pp + Bb + Tt + Vv + Uu + (VG)vg + (SG)ig + (VSG)vig + εigpbtv (1) 

 

, where rigpbtv is the log (base 2)-transformed ratio of gene g, which is the tth replicate 

spot on slide i performed by experimenter p on array batch b which was spotted with u spot 

pins (either 8 or 12) in validation experiment v. rigpbtv is determined by µ (the mean ratio 

across all the factors) and the global factors slide (S), experimenter (P), array batch (B), day 

(A), the validation experiment (V), replicate spot (T; 1 or 2), the number of spot pins used 

(U), and a residual error (εigpbtv). Dye-effects are assumed to be in the SG interaction: they are 

global although the relative contributions of slides 1 – 3 might differ since only slide 1 

contains a self-hybridization. The VSG interaction contains variances due to hybridization 

and sampling.  

Some factors are confounded 

Due to the fact that in our DNA-microarray laboratory validation experiments are only 

performed when necessary (i.e. to introduce a new scientist (experimenter) in the laboratory) 

confounding of some factors could not be avoided. Therefore, variance analyses were 

performed by employing the validation experiment (VG) interaction which incorporates: 

experimenter (PG), array batch (BG), day (AG), and the number of spot pins, coinciding with 

a change in RNA isolation method (GU).  
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FIGURE LEGENDS 

 

Figure 1. The validation procedure. It consists of 4 steps: (i) cell culturing, (ii) cell pelleting 

and RNA isolation, (iii) cDNA labeling, and (iv) hybridization, scanning, image- and data 

analysis.  

 

Figure 2. Sammon projection of the clustering of validation data using a self-organizing 

Kohonen map. Validation experiments (A-I) are shown as well as the clusters (1 – 4; 

consisting of 761, 230, 227, 886 genes, respectively). Operon names, the number of 

members, and their (putative) functions are listed to the right of the corresponding clusters. 

The minimum number of genes in an operon of which all members should be in a certain 

cluster was determined at a probability of 0.02 or lower for clusters 1 (4 genes), 2 (2 genes), 3 

(2 genes), and 4 (5 genes).  

 

Figure 3. Plot of percentage of maximal intensity versus CV values calculated for the 

expression levels of genes in the 9 validation datasets (dark-blue small squares). Brown solid 

triangles show the top 40 genes with highest variability in ratio and signals (additional Table 

2). Functionally related genes showing validation experiment-dependent SDs (Fig. 2) are 

indicated by cluster 1 (solid yellow circles), cluster 2 (open light-blue triangles), cluster 3 

(open red squares), and cluster 4 (open green circles). 

 

Figure 4. ANOVA results. Each bar represents averages (with error bars signifying the 

standard deviations for the respective interactions) for 10 random samples of ratio data 

obtained for the indicated slide combinations (1, 2, and 3; Fig. 1). E.g. S=1v2 indicates a 



comparison of data from slides 1 with data from slides 2. Interactions are.. The interactions 

(indicated by the colored bars as detailed in the inset) and “Error” (residual variance) amount 

up to 100 % (the total variance present in the data).  
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 (7) ATP synthase alpha subunit
 (4) Energy metabolism, electron transport
 (4) Salvage of nucleosides and nucleotides
 (4) Cell envelope, murein sacculus and peptidoglycan 

 (4) Transport and binding protein; amino acids, peptides and amines 
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 (5) Anaerobic energy metabolism; glycerol utilization pathway 
 (7) Hypothetical protein

 (5) Unknown; transposon related
 (6) Unknown; transport and binding protein, cation
 (7) Unknown

 (6) Unknown; energy metabolism, electron transport
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Figure 4.  



TABLES 

 

Table 1. General statistics on data obtained from the validation experiments (Fig. 1 and 

additional Table 1).  

 

Validation  Validation slide 5 % low spot filter  40 % low spot filter 

 

  1 2 3 CV (%) Spots (%) CV (%)  

 

A-I  x x x 27.3  89.5  17.4    

A-I  x   21.6  88.7  13.4   

A-I   x  26.1  88.9  17.3   

A-I    x 24.6  91.1  16.5   

A  x x x 16.4  86.0  12.5   

B  x x x 13.0  84.3  9.4   

C  x x x 14.0  94.5  8.6   

D  x x x 16.7  92.1  11.1   

E  x x x 9.2  90.4  6.7   

F  x x x 27.5  87.3  20.2   

G  x x x 16.5  88.5  10.3   

H  x x x 23.8  91.0  15.1   

I  x x x 18.1  92.2  12.4   

 

 



 

Table 2. Contribution of sources to the variance estimated for the nine validation experiments 
(Fig. 4) and contribution of individual factors to the VG interactiona.  
 
Variance source   Contribution to the variance (%) 
 
Gene (G)     5.0 
Dye (SG)     4.2 
Gene × Arrayb     7.8 
RNA isolation and labelingc   1.5 
Sampling     7.1 
VGd      26.9 
 
 Day × Gene    19.7e 

Experimenter × Gene   17.3e 
Array batch × Gene   14.9e 

 Spot pins × Gene   4.5f 
 
a The degrees of freedom results in the separate ANOVAs are listed in the additional 
materials. 
b Assumed to consist of hybridization effects and signal-to-noise differences per slide. 
c Derived from the variance observed between Ba and Bb cultures (Fig. 1). 
d Variances that are dependent on the validation experiment performed and due to day-to-day 
differences, identity of the experimenter, and DNA microarray batch differences. 
e Due to overlap in levels, the contribution of these interactions were individually determined. 
f A change from 8 to 12 spot-pins used for array spotting coincided with a switch in the RNA 
isolation method. 
 
 



ADDITIONAL DATA FILES 

 

Protocols [35] 

DNA-microarray spotting and quality control 

RNA isolation and quality control 

Indirect labeling, hybridization, and slide scanning 

Figures and tables [35] 

Factors and their levels used for variance analyses (additional Table 1) 

Forty genes that show highest CVs in ratios or signals across 9 validation experiments 

(additional Table 2) 

Frequency distribution of CVs observed in the validation datasets (additional Fig. 1) 

A visual representation of data from two slides (additional Fig. 2) 

Data files [35] 

IL1403 amplicon sequences 

TIF scans 

Spot quantizations 

Preprocessed data 

Normalized data 

The merged result tables 

Data used for clustering 

ANOVA 
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