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Mapping InDel sequence polymorphisms.<p>A high-throughput method for genotyping by mapping InDels. This method has been used to create fragment-length polymorphism maps for Drosophila and C. elegans.</p>

Abstract

Small insertions or deletions (InDels) constitute a ubiquituous class of sequence polymorphisms
found in eukaryotic genomes. Here, we present an automated high-throughput genotyping method
that relies on the detection of fragment-length polymorphisms (FLPs) caused by InDels. The
protocol utilizes standard sequencers and genotyping software. We have established genome-wide
FLP maps for both Caenorhabditis elegans and Drosophila melanogaster that facilitate genetic mapping
with a minimum of manual input and at comparatively low cost.

Background
For humans and model organisms, such as worms and flies,
the availability of high-density sequence polymorphism maps
greatly facilitates the rapid mapping and cloning of genes [1-
3]. Key advantages of most molecular polymorphisms are the
fact that they are codominant and in general phenotypically
neutral. The vast majority of sequence polymorphisms are
single-nucleotide polymorphisms (SNPs).

The most direct approach for SNP detection is sequencing of
a PCR product spanning the polymorphism, but this is too
costly and labor intense for high-throughput genotyping. For
this reason, several different strategies and methods have
been developed in order to detect SNPs more efficiently. In
general, assays can be grouped into strategies, where the
nature of the SNP is determined by directly analyzing the pri-
mary PCR product and those that require a secondary assay
performed on the primary amplification product [4-6]. An
important strategy of the first group is the 5' nuclease assay,

where allele-specific, dual-labeled fluorescent TaqMan
probes guarantee specificity [7]. However, the need for two
dual-labeled fluorescent probes, expensive specialized chem-
istry and specialized machinery increase the costs per assay of
this approach significantly. Similarly, denaturing high-per-
formance liquid chromatography (DHPLC) also analyses the
primary amplification product [8]. This approach is based on
melting differences of homo- versus heteroduplex DNA frag-
ments under increasingly denaturing conditions and requires
no specific labeling of the PCR fragments. However, condi-
tions have to be optimized for every assay, throughput is lim-
ited and specialized equipment is required. DHPLC has been
used in small-scale genotyping projects in Drosophila mela-
nogaster [9].

Of the methods that detect the SNP in a secondary assay,
restriction fragment length polymorphism (RFLP) analysis
are very popular [10]. For this purpose, only those SNPs that
alter a restriction site are analyzed. A great advantage of
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FLP detection of InDels of various sizes in homozygotes and heterozygotesFigure 1
FLP detection of InDels of various sizes in homozygotes and heterozygotes. In each panel the top two graphs show the homozygotes and the bottom 
graph the heterozygote. Gray shaded areas mark the defined expected allele lengths and red lines indicate the borders of a predefined window of expected 
allele lengths. (a-c) Detection of InDels in C. elegans that show increasing levels of adenosine (A) addition. (a) 3-bp InDel ZH1-01 with no A addition; (b) 
12-bp InDel ZH2-01 with A addition; (c) 2-bp InDel ZH3-05a with A addition. (d) 1-bp InDel ZH3-23 in C. elegans with A addition. An unambiguous allele-
call can be made, irrespectively of the level of A addition: both homozygous samples consist of two peaks at different positions, whereas the heterozygous 
animal exhibits three peaks. (e) The 1-bp InDel 3R160 in Drosophila runs over a 12-13 nucleotide poly(T) stretch and exhibits stutter bands. Even in this 
case, a clear allele-call can be made (three peaks in homozygous and four peaks in heterozygous animals). (f) The 6-bp InDel ZHX-22 in C. elegans occurs 
in a poly(C) stretch and the FLP graph displays stutter bands. As expected, the longer fragment exhibits a higher degree of stuttering.
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RFLP analysis is that no specialized equipment is needed and
it can be carried out in every laboratory. RFLP maps recently
established for Caenorhabditis elegans and Drosophila are
used regularly in genotyping projects [2,3,11]. However,
RFLP analysis requires significant manual input. Moreover,
the use of different restriction enzymes with different reac-
tion requirements adds another level of complexity that
makes this method difficult to automate. Primer-extension-
based technologies have also gained some prominence [12].
Here, a primer that anneals right next to the polymorphism is
extended by one polymorphism-specific terminator nucle-
otide. Extension products are analyzed by size or, alterna-
tively, by differences in the behavior of incorporated versus
non-incorporated terminator nucleotides under polarized
fluorescent light [13]. Swan and colleagues [14] have devel-
oped a set of fluorescence polarization-template directed
incorporation (FP-TDI) assays for C. elegans. However, this
approach is labor intensive and requires specialized chemis-
try and equipment. Using DNA microarrays, large numbers of
SNPs can be analyzed in parallel, but the number of individu-
als that can be analyzed is low because of the high cost per
chip [15,16].

Besides SNPs, short tandem repeats (STRs) or microsatellites
represent another class of sequence polymorphisms used for
genotyping [17-21]. STRs result in fragment length differ-
ences that are either detected on gel-based or capillary
sequencers or high-resolution hydrogels (Elchrom Scientific
Inc.). One advantage of STRs over SNPs is that they are highly
polymorphic and are thus ideal for measuring the degree of
variability in natural populations. STRs are, however, present
at much lower density than SNPs and are therefore not suita-
ble for high-resolution mapping of genes.

Interestingly, a significant proportion of the currently availa-
ble polymorphisms are caused by small insertions or dele-
tions (InDels). Weber et al. [22] identified a genome-wide set
of about 2,000 human InDel polymorphisms and estimated
that InDels comprise at least 8% and up to 20% of all human
polymorphisms. This is in line with the findings of Berger and
co-workers [2] who found that 16.2% of polymorphisms in
Drosophila are of the InDel type. Also, two independent stud-
ies in C. elegans found that InDels constitute between 25%
and 28% of all polymorphisms [3,14]. In addition, those stud-
ies found that the vast majority of InDels are due to 1-2 base-
pair (bp) differences (65% in Drosophila [2], 84% in C. ele-
gans [3]).

To take full advantage of this class of small InDel polymor-
phisms, we have developed a strategy that allows us to detect
most, if not all, InDels by analyzing the lengths of primary
PCR products on a capillary sequencer at single base-pair res-
olution. We call these assays fragment length polymorphism
(FLP) assays. Importantly, this approach can easily be auto-
mated on standard robotic pipetting platforms as it involves a
simple PCR reaction setup. Furthermore, allele calling is per-

formed automatically using the Applied Biosystems GeneMa-
pper software commonly used for genotyping STRs
(Materials and methods).

To demonstrate the feasibility of this strategy, we have vali-
dated 112 evenly spaced FLP assays at 3 centimorgan (cM)
resolution in C. elegans (one every 0.9 megabase-pair (Mbp))
and 54 FLP assays at 4 cM resolution for the Drosophila auto-
somes. This set of FLP assays allows us to rapidly map muta-
tions to small chromosomal subregions with a minimum of
manual input. Furthermore, we provide a list of predicted
InDels for which additional assays can be readily designed in
the chromosomal subregion of interest. Those non-validated
FLPs enhance the resolution of the map by a factor of 5.6 and
17.9, respectively.

We show the usefulness of this approach by identifying novel
alleles of previously characterized genes. In summary, we
have taken advantage of a publicly available dataset to adapt
a technology widely used for STR analysis to genetic mapping.
Thanks to the complete automation of genotyping, this
approach is considerably faster, more reliable and cheaper
than previously used mapping strategies in C. elegans or Dro-
sophila.

Results and discussion
Detection of fragment length polymorphisms (FLPs)
To detect a FLP, the region of interest is amplified in a stand-
ard PCR reaction with one fluorescently labeled primer, and
the PCR products are directly analyzed on a capillary
sequencer. Fragment sizes are determined automatically rel-
ative to an internal size standard with AppliedBiosystem's
GeneMapper software (for details see Materials and meth-
ods). The software then allocates fragment sizes to previously
calibrated genotypes.

Taq polymerase has the tendency to catalyze the addition of
adenosine (A) to the 3' end of PCR products. This activity
could make it difficult to achieve the single base-pair resolu-
tion required to assay all available InDels and may hamper
allele-calling [23]. However, we have found that the sensitiv-
ity of a capillary sequencer and the genotyping software is suf-
ficient to allow for unambiguous allele assignment even for
'difficult' sequences exhibiting 3' A addition. The examples
shown in Figure 1a-d illustrate that robust genotyping is fea-
sible for 1-bp InDels even when 3' A addition occurs. Another
problem is the stuttering of the polymerase when it encoun-
ters poly(N) stretches. However, larger InDels are reliably
detected by the software in poly(N) stretches (Figure 1f), and
in a few difficult cases visual inspection can even resolve and
unambiguously assign 'stuttering' 1-bp InDels according to
the location and number of peaks (Figure 1e).

Genotyping with FLP assays is extremely accurate. In a con-
trol experiment, we genotyped all 96 samples of the fly strains
Genome Biology 2005, 6:R19
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FRT42B and EP0755 for the 1-bp InDel 2R090 and 231 sam-
ples homo- and heterozygous for the C. elegans Bristol and
Hawaii backgrounds, respectively, for the 1-bp InDel ZH5-16.
2R090 exhibits both stuttering and A addition and hence is
especially difficult to resolve (see Additional data file 8). The
genotype was correctly and automatically assigned by Gen-
eMapper in all 423 assays. Thus, automated genotyping based
on FLPs is sensitive down to single base-pair resolution and
is extremely robust. The accuracy of FLP mapping is compa-
rable to other methods such as TaqMan (error rate less than 1
in 2,000 [24]), minisequencing (99.5% [25]), and pyrose-
quencing (97.3 % [25]).

C. elegans and Drosophila FLP maps
In C. elegans, genetic experiments are performed almost
exclusively in the background of the standard wild-type strain
N2 (C. elegans variety Bristol) [26]. For gene mapping exper-
iments, the polymorphic strain CB4856 (C. elegans, variety
Hawaii) has proved extremely useful [3]. When compared to
N2, CB4856 contains on average one SNP every 840 bp and
approximately 25% of all polymorphisms are InDels [14].
Starting from the dataset previously published by Wicks et al.
[3], 112 FLPs that are evenly spaced on the physical map of C.
elegans were validated to date (Figure 2a). The confirmation
rate of the predicted InDels was 88% (n = 169). Most failures
to detect a FLP are probably due to original sequencing
errors. The average distance between neighboring FLP assays
is about 0.9 Mbp. This physical distance corresponds to about
3 cM, assuming 300 kb per map unit, and encompasses
between 100 and a maximum of 500 genes (Figure 2a). The
length of the amplicons ranges from 100 to 444 bp, and the
fragment length differences are between 1 and 21 bp (Addi-
tional data file 9). If necessary, another 2,454 predicted
InDels are available to increase the mapping resolution down
to 50 kbp on average (Additional data files 12-17).

To establish a Drosophila FLP map, a set of 54 FLP assays (12
to 17 per arm of the two major autosomes) was validated from
the list of polymorphisms identified by Berger et al. [2] (Fig-
ure 2b, and Additional data file 10); high-resolution X-chro-
mosomal SNP and FLP maps have yet to be established.
Similarly to C. elegans, the confirmation rate of the predicted
Drosophila InDels was 80% (n = 30). Furthermore, another
509 InDels are predicted at 248 sites for which an assay can
be established to discriminate between EP and FRT strains
(Additional data file 18). The validated Drosophila FLP

assays were evenly spaced on the genetic map with an average
distance between neighboring assays of about 4 cM, corre-
sponding to an average resolution of 1.77 Mbp on the physical
map encompassing 95,55 Mbp [27,28]. Taking into account
the non-validated InDels, the maximal average resolution is
currently 314 kb or 0.7 cM. On the left arm of chromosome 3,
where the genetic map is inexact, FLPs were spaced on the
physical map assuming colinearity between the two maps.
The length of amplicons ranges from 99 to 365 bp, and the
size difference ranges from 1 to 54 bp (Additional data file 9).

Our Drosophila FLP assays are in part derived from a set of
InDels of size difference 7 bp or more (termed PLPs by Berger
et al. [2]). However, since 86.8% of all Drosophila InDels
exhibit a length difference of one to six nucleotides [2], so far
only a small subset of the available InDels has been covered.
The approach presented here significantly increases the
number of possible FLP assays for genotyping and offers a
greater flexibility and higher resolution.

FLP mapping of C. elegans genes
To demonstrate the usefulness of the C. elegans FLP map, we
mapped three previously characterized mutations on chro-
mosome II that exhibit diverse phenotypes. Those were the
centrally located let-23(sy1) allele that causes an 80% pene-
trant vulvaless phenotype [29], rol-1(e91) in the middle of the
left chromosome arm, which causes the animals to roll
around their body axis [30], and the unc-52(e444) mutation
located at the right end of the chromosome, which results in a
paralyzed phenotype [31]. Mutant hermaphrodites were
crossed with CB4856 males, and wild-type F1 cross-progeny
was selected (F1 self-progeny would exhibit a mutant pheno-
type). Finally, mutant self-progeny was isolated in the F2 gen-
eration and used for genotyping (Figure 3a). To minimize the
number of PCR reactions, we pursued a two-step strategy.
First, we determined chromosomal linkage by analyzing 16
individual F2 animals (corresponding to 32 chromosomes in
total) with one centrally located FLP assay per chromosome
(Tier 1, Figure 2a). This allowed us to establish clear linkage
to chromosome 2 for all three mutations (Additional data file
2). Surprisingly, the rol-1(e91) mutation showed linkage to
the X chromosome of N2 in addition to chromosome II. This
pseudo-linkage could be due to a suppressor of the Rol phe-
notype present on the CB4856 X chromosome. In a second
step, 48 F2 animals for each mutation were analyzed with
eight FLP assays along chromosome 2 (Tier 2, Figure 2a). In

C. elegans and Drosophila FLP mapsFigure 2 (see following page)
C. elegans and Drosophila FLP maps. (a) The C. elegans FLP map. Marker names comprise a ZH prefix followed by the chromosome number and a unique 
identifier number. Markers used in first-level assays (Tier 1) for determination of chromosomal linkage are in red, those used for second-level assays (Tier 
2) for higher resolution mapping are in black. (b) The Drosophila FLP map of chromosomes 2 and 3. The FRT sites and EP elements are symbolized by blue 
and green triangles, respectively. The strains that were genotyped are shown below each chromosome. Green indicates the EP genotype, blue the FRT 
genotypes and new alleles are shown in other colors.
Genome Biology 2005, 6:R19
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Figure 2 (see legend on previous page)

I
ZH1-

16

ZH1-
17

ZH1-
10

a

ZH1-
25

ZH1-
07

ZH1-
03

ZH1-
21

ZH1-
01

ZH1-
22

ZH1-
23

ZH1-
15

ZH1-
05

ZH1-
08

ZH1-
09

ZH1-
06

ZH1-
24

0 5 10 15 20

Mb

ZH2-
15

ZH2-
04

a

ZH2-
05

ZH2-
16

ZH2-
06

a

ZH2-
07

ZH2-
17

ZH2-
13

ZH2-
19

ZH2-
01

ZH2-
02

ZH2-
20

ZH2-
09

ZH2-
10

ZH2-
11

ZH2-
12

ZH2-
23

ZH3-
06

ZH3-
08

ZH3-
15

ZH3-
04

ZH3-
02

ZH3-
05

a

ZH3-
10

a

ZH3-
23

ZH3-
11

ZH3-
12

ZH3-
13

ZH3-
07

ZH4-
04

a

ZH4-
05

ZH4-
06

ZH4-
07

ZH4-
16

ZH4-
08

ZH4-
02

ZH4-
03

ZH4-
17

ZH4-
18

ZH4-
09

ZH4-
19

ZH4-
20

ZH4-
10

a

ZH4-
21

ZH4-
11

ZH4-
12

ZH4-
22

ZHX-1
6

ZHX-1
7

ZHX-0
3

ZHX-0
8

ZHX-1
3

ZHX-1
5

ZHX-1
0

ZHX-0
2

ZHX-1
2

ZHX-0
7

ZHX-1
1

ZHX-0
5

ZHX-0
6

ZHX-2
2

ZHX-2
3

ZH5-
02

a

ZH5-
13

ZH5-
03

a

ZH5-
12

ZH5-
11

ZH5-
06

ZH5-
18

ZH5-
17

ZH5-
01

ZH5-
16

ZH5-
05

ZH5-
15

ZH5-
04

ZH5-
14

ZH5-
22

ZH5-
09

ZH5-
21

ZH5-
08

ZH5-
20

(a)

(b)

EP2L

FRT2L

EP2R

FRT2R

FRT40A,w+, cl

2L
01

7

2L
03

0

2L
03

8

2L
05

1

2L
05

7

2L
06

9

2L
07

5

2L
08

8

2L
09

0

2L
09

3

2L
11

9

2L
14

3

5 2017.512.5 15107.52.5

EP0511 FRT40A

EP2R

FRT2R

FRT2L

EP2L

FRT42D,w+, cl

2.5 12.5107.55 2017.515

FRT42D EP0755

2R
01

7

2R
11

8

2R
10

9

2R
06

0

2R
08

3

2R
06

8

2R
05

1

2R
03

9

2R
09

6

2R
13

0

2R
13

9

2R
12

4

EP3L

FRT3L

EP3R

FRT3R

FRT80A,w+, cl

3L
02

1

3L
03

1

3L
12

7

3L
04

1

3L
05

8

3L
06

4

3L
07

6

3L
08

3

3L
08

6

3L
10

5

3L
14

8

3L
09

4

EP3104 FRT80A

5 22.52017.512.5 15107.52.5

EP3R

FRT3R

FRT3L

EP3L

FRT82,w+, cl

EP0381FRT82B

3R
06

1

3R
19

2

3R
18

6

3R
16

0

3R
15

1

3R
09

2

3R
12

2

3R
07

4

3R
16

9

3R
22

1

3R
22

4

3R
20

4

2522.52017.52.5 12.5107.55 15 27.5

II

III

IV

X

V

LG

CEN

CEN

2L 2R

3L 3R

yw(WG) yw(WG)

yw(GT1) yw(GT1)

yw(WG)

yw(GT1) yw(GT1)

yw(WG)

EP FRT Novel alleles No amplification

Mb

Mb

ZH1-
18

a

ZH1-
27

ZH1-
34

ZH2-
25

ZH2-
27

ZH2-
28

ZH3-
17

a

ZH3-
25

ZH3-
26

ZH3-
28

ZH3-
32

ZH3-
35

ZH5-
23

ZHX-2
4

ZHX-2
1a

Assays used for 
chromosomal linkage
(tier 1)
Genome Biology 2005, 6:R19



R19.6 Genome Biology 2005,     Volume 6, Issue 2, Article R19       Zipperlen et al. http://genomebiology.com/2005/6/2/R19
this way, we could narrow down the three mutations to the
correct chromosomal subregions (Additional data files 3-5).
We used the same strategy to map the zh41 mutation that was
identified in a forward genetic screen for mutants exhibiting
a loss of egl-17::gfp expression in the vulval cell linage ([32]
and I. Rimann and A. Hajnal, unpublished work). Analysis
with Tier 1 established linkage to chromosome 1 (Figure 3b),
and Tier 2 narrowed down the candidate region to an interval
of 2.2 Mbp containing 498 genes (Figure 3c). The phenotype
of zh41 animals is similar to the phenotype caused by loss-of-
function mutations in lin-11, which maps to the same interval
in the center of chromosome I [33]. Like lin-11 mutants, zh41
animals exhibit a penetrant protruding vulva (Pvl) pheno-
type, and staining of the adherens junctions with the MH27
antibody showed defects in the formation of the vulval torroid
rings (Figure 3d) [33]. Subsequent sequencing of the lin-11
locus in zh41 animals revealed a point mutation that results in
a change of leucine 274 to phenylalanine. Furthermore, zh41
failed to complement lin-11(n389), indicating that the zh41
mutation in the lin-11 open reading frame (ORF) is responsi-
ble for the vulval phenotype.

In cases where a mutation maps to an interval that contains
no obvious candidate gene, we first screen for additional
informative recombinants by FLP analysis and then refine the
map position by extracting more FLPs from our set of non-
validated InDels (Additional data files 12-17) and by
genotyping existing SNPs in the candidate interval [3]. In
many cases, this resolution is sufficient to identify the
affected gene through RNA interference (RNAi) analysis of
the genes in the corresponding interval [34]. (See Additional
data file 6 for a detailed flowchart of the mapping process).

In summary, FLP mapping in C. elegans allows us to rapidly
map a mutation down to a small region containing, on aver-
age, 200 candidate genes by crossing a mutant strain to
CB4856 and analyzing 48 F2 animals with 300 to 500 PCR
reactions.

Genotyping Drosophila strains with FLP assays
In contrast to the well defined genetic backgrounds used for
C. elegans, zebrafish (Danio rerio) or Arabidopsis genetics,
Drosophila strains are very heterogeneous and of ill-defined
origin [2,9,11]. In this respect, gene mapping in Drosophila
resembles human genetics in that standard inbred lines do
not exist and the genotypes of the parental lines have to be
determined first. As genome-wide polymorphism databases
for reference strains are available [2,11], a line of interest can
be crossed with two reference strains, such as EP and FRT
(see below). Owing to the codominant character of sequence
polymorphisms, at least one of the two respective crosses will
distinguish between the mutant and the mapping chromo-
somes. To further facilitate mapping with our set of FLP
assays, we genotyped several common laboratory lines such
as two 'wild-type' yw strains for the whole set, four FRT-
Minute or FRT-cell-lethal strains at the relevant autosomal

arms [35], as well as the FRT and EP reference strains at both
relevant autosomal arms (Figure 2b). Surprisingly, the FRT
and EP lines are largely not of FRT or EP genotype on the
chromosome arm for which they have not been calibrated.
Overall, we found novel alleles for 18 of the 48 assays, and in
an extreme case, we even observed five different alleles in five
examined strains (2R017, Figure 2b). This result further high-
lights the heterogeneity of Drosophila strains (see Additional
data file 1 for further details on FLP calibration and fly
genetics).

FLP mapping in Drosophila
In a genetic screen devised to isolate genes that regulate
growth and are situated on chromosome 2R, we found a com-
plementation group characterized by a mild overgrowth phe-
notype (Figure 4b (2), and C. Rottig and E.H., unpublished
work). From a cross between allele VI.29 and EP0755 we
recovered three types of recombinant chromosomes:
recombinants with a crossover proximal or distal to the muta-
tion, respectively, and double-crossovers (Figure 4a, see also
Additional data file 1 for further details on the crossing
scheme). The mutation could be placed 16.9 cM proximal to
EP0755 and 38.7 cM distal to FRT42D. The FLPs in the
recombinant flies were directly analyzed without backcross-
ing the recombinant chromosome into a parental strain back-
ground. DNA was prepared from recombinants by a novel
high-throughput protocol (see Materials and methods). We
genotyped 34 distal crossover events, 40 proximal crossovers,
and eight double-crossovers. This analysis placed the muta-
tion between markers 2R096 and 2R109 (Figure 4c). This
interval includes the tumor suppressor hippo [36], and subse-
quent complementation analysis confirmed VI.29 as a weak
hippo allele (data not shown). Furthermore, data from this
and other FLP mappings in this region allowed us to further
refine the genetic map (Additional data file 11). This kind of
experimental data is helpful to space new FLP assays more
evenly on the genetic map should the available map turn out
to be inexact.

If the resolution of the validated FLP map is too low to iden-
tify a candidate gene, we further refine the map position by
several approaches. First, we design novel FLP-assays in the
region of interest and genotype the most informative recom-
binants from the first round of FLP mapping (Additional data
file 18). Second, we genotype recombinants with SNPs avail-
able in the region of interest and resolve them by RFLP,
sequencing or DHPLC [2,9]. Third, we perform complemen-
tation analysis with recently established Drosophila lines
with molecularly defined deletions [37,38]. (See Additional
data file 7 for a detailed flowchart illustrating the mapping
process.)

Conclusions
We have developed an automated method to detect most nat-
urally occurring InDel polymorphisms at single base-pair res-
Genome Biology 2005, 6:R19
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olution. Since a significant fraction of polymorphisms are
caused by InDels of only a few base pairs (for example, 8% to
20% in humans [22]) the resolution of the medium-density
FLP maps can be greatly increased where necessary, for
example during the positional cloning of genes. We are there-
fore continually designing new FLP assays according to our
specific needs using the predicted FLPs (Additional data files
12-18). The full automation of the genotyping has three main
advantages when compared to manual methods. First, the
error rate (the number of wrongly assigned genotypes) is
extremely low, as it was not measurable in 432 assays. Sec-
ond, genotyping can be done very rapidly and at a high-
throughput with little manpower. The automatic allele-call-
ing, in particular, saves much time. As the identification of

informative recombinants is usually the rate-limiting step,
FLP mapping is very helpful in extracting the few relevant
recombinants from a large number of samples. Third, thanks
to the standardized conditions, the low error rate and the
absence of a secondary assay, FLP mapping is considerably
cheaper than the previously published 'manual' mapping
methods [2,3]. Unlike other high-throughput methods like
TaqMan, Pyrosequencing, DHPLC, fluorescence polarization
or primer-extension assays, FLP mapping does not require
any investment in specialized equipment. It can be done in
any molecular biology lab with access to a sequencing facility
equipped with a capillary- or gel-based system, which usually
includes the genotyping software. PCR costs are marginally

FLP mapping in C. elegansFigure 3
FLP mapping in C. elegans. (a) Crossing scheme used to map mutations generated in the N2 Bristol background. The different classes of recombinants 
recovered in the F2 generation are shown. (b) Analysis of the zh41 mutation with Tier 1 assays establishes linkage to chromosome I. (c) Analysis with Tier 
2 places zh41 between assays ZH1-01 and ZH1-15. ND, no data as a result of PCR reaction failure. (d) Ventral views of the vulva in wild-type and zh41 L4 
larvae stained with the adherens junction antibody MH27 [44]. In the wild type, the vulval cells have fused to generate the torroids that appear as 
concentric rings. zh41 mutants exhibit the same fusion defects observed in other lin-11 alleles [33].

Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Hawaii Hawaii Hawaii Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Hawaii Hawaii Hawaii Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Hawaii
Hawaii Hawaii Hawaii Hawaii Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Hawaii Hawaii
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Hawaii Hawaii
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Hawaii
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Hawaii Hawaii Hawaii Hawaii
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Hawaii Hawaii Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Hawaii

Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol

Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Hawaii
Bristol Bristol Bristol Bristol Bristol Bristol Hawaii Hawaii
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Hawaii Hawaii
Hawaii Hawaii Hawaii Hawaii Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol

Bristol Bristol Bristol Bristol
Hawaii Bristol Bristol Bristol

Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Hawaii
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Hawaii Hawaii Hawaii Hawaii
Hawaii Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Hawaii Hawaii Hawaii
Hawaii Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Hawaii Hawaii
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Hawaii Hawaii
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Hawaii Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Hawaii
Hawaii Hawaii Hawaii Hawaii Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Hawaii Hawaii Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol
Hawaii Hawaii Hawaii Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Hawaii Bristol Bristol Bristol Bristol Bristol Bristol Bristol

Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Hawaii

Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol
Bristol Bristol Bristol Bristol Bristol Bristol Bristol Bristol

ND

ND

ND

ND ND

ND ND

ND

ND

ND

P0

F1

F2

CB4856 (Hawaii)

m*

m*
x

m*

Isolation of wild-type cross-progeny

Isolation of mutant self-progeny

N2 (Bristol)

(a)

m*

m*

Crossover to right
of mutation

Crossover to left
of mutation

m*

m*

m*

m*

Crossovers to 
right and left of 

mutation

wild-type

zh41

(d)(b)

(c)

0%

20%

40%

60%

80%

100%

1 2 3 4 5 X

Chromosome

%
 B

ri
st

o
l

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Ly
sa

te

Z
H

1-
10

a

Z
H

1-
07

Z
H

1-
03

Z
H

1-
01

Z
H

1-
15

Z
H

1-
05

Z
H

1-
08

Z
H

1-
06

Tier2 zh41 subchromosomal region

      Tier1  zh41 chromosomal linkage

R
ec

o
m

b
in

an
at

s
In

fo
rm

at
iv

e 
Genome Biology 2005, 6:R19



R19.8 Genome Biology 2005,     Volume 6, Issue 2, Article R19       Zipperlen et al. http://genomebiology.com/2005/6/2/R19
Figure 4 (see legend on next page)
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higher because of the use of fluorescently labeled primers, but
there are no added expenses for secondary enzymatic assays.

It seems likely that in most organisms the frequency of poly-
morphisms caused by InDels is in the same range as found in
humans, C. elegans or Drosophila. For example, 7.3% of the
Arabidopsis sequence polymorphisms are InDels [39]. Thus,
FLP mapping can easily be adapted to any organism for which
polymorphism maps have been established, as there is no
conceptual difference between human, Arabidopsis, C. ele-
gans or Drosophila FLPs.

Materials and methods
C. elegans and Drosophila culture techniques and alleles
Culturing and crossing of C. elegans was done according to
standard procedures described in [26]. C. elegans alleles used
were: LG I: lin-11(zh41), lin-11(n389); LG II: rol-1(e91), let-
23(sy1), unc-52(e444). Drosophila strains and the genetic
screen have been described previously [9,35,40-42].

Single worm DNA extraction
Adult worms were collected in 10 µl lysis buffer (50 mM KCl,
10 mM Tris pH 8.2, 2.5 mM MgCl2, 0.45% NP-40, 0.45%
Tween-20, 100 µg/ml freshly added proteinase K) and incu-
bated for 60 min at 65°C followed by heat-inactivation of pro-
teinase K at 95°C for 10 min. Before PCR, 90 µl double-
distilled H2O (ddH2O) was added to obtain a total volume of
100 µl per lysate.

Fly DNA extraction
DNA from recombinant flies was extracted in bulk by squish-
ing flies through mechanical force in a vibration mill (Retsch
MM30) programmed to shake for 20 sec at 20 strokes per sec-
ond [43]. Single flies were placed into wells of a 96-well for-
mat deep-well plate with each well filled with 200 µl
squishing buffer (10 mM Tris-Cl pH 8.2, 1 mM EDTA, 0.2%
Triton X-100, 25 mM NaCl, 200 µg/ml freshly added protei-
nase K) and a tungsten carbide bead (Qiagen). The deep-well
plate was then sealed with a rubber mat (Eppendorf) and
clamped into the vibration mill. (Tungsten carbide beads can
be recycled: after an overnight incubation in 0.1 M HCl and
thorough washing in ddH2O the beads are virtually free of
contaminating DNA.) Debris was allowed to settle for about 5
min, and 50 µl of each supernatant were transferred into a 96-
well PCR plate. The reactions were incubated in a thermo-
cycler for 30 min at 37°C and finally for 10 min at 95°C to
heat-inactivate proteinase K. Before PCR amplification, the
crude DNA extracts were diluted 20-fold to reduce the con-

centration of proteins that might be harmful for the capillary
sequencer.

PCR and FLP fragment analysis
Diluted single-worm lysates (2 µl samples) or single fly
extracts were added to 23 µl PCR reaction mix. Final concen-
trations in the PCR reaction were: 0.4 µM forward/reverse
primer, 0.2 mM dNTPs, 2 mM MgCl2, 1x PCR reaction buffer,
0.25 U EuroTaq polymerase (Euroclone). PCR reaction setup
was done in 96-well plates using a Tecan Genesis pipetting
robot with disposable tips. PCR was carried out in two MJR
thermo-cyclers that are integrated into the robot. The current
setup allows for the sequential processing of six 96-well plates
at a time. Cycling parameters were 2 min 95°C, 20 sec 95°C,
20 sec 61°C (-0.5°C for each cycle), 45 sec 72°C (for 10 cycles)
followed by 24 cycles of 20 sec 95°C, 20 sec 56°C, 45 sec 72°C
and a 10 min 72°C final extension. Following PCR, reactions
were diluted 1:100 in water, and 2 µl diluted PCR products
were mixed with 10 µl HiDi formamide containing 0.025 µl
LIZ500 size standard (Applied Biosystems). This dilution
before analysis on the capillary sequencer is necessary to
reduce signal intensity because too strong signals
compromise data analysis. In addition, sample dilution
reduces the risk of damaging the capillaries with proteins or
lipids present in the crude lysates. The dilution was done with
standard tips using the Tecan Genesis pipetting station. Car-
ryover of fragments was prohibited by a simple wash step
with H2O. Fragments were analyzed on an ABI3730 capillary
sequencer using POP7 polymer according to standard proce-
dures. Data were analyzed using AppliedBiosystems GeneM-
apper software and raw data were treated further with
Microsoft Excel.

Additional data files
The following additional data are available with the online
version of this article. Additional data file 1 contains general
information on fly genetics.

Further C. elegans mapping results are given in Additional
data files 2,3,4 and 5. Detailed flowcharts illustrating the FLP
mapping process are shown in Additional data files 6 and 7.
Additional data file 8 contains electropherograms demon-
strating the accuracy of allele-calling. Additional data files 9
and 10 contain tables of primer and sequence data of experi-
mentally verified FLP assays in C. elegans and Drosophila,
respectively. Additional data file 11 contains a table of the
refined genetic distances for FLP assays on the right arm of
Drosophila chromosome 2. Additional non-validated FLPs

FLP mapping in DrosophilaFigure 4 (see previous page)
FLP mapping in Drosophila. (a) Crossing scheme used to map mutations generated in the FRT background and recombined with an EP line. The different 
classes of recombinants recovered in the F2 generation are shown. (b) Big head phenotypes of the hippo null allele hpo42-20 (1) and the VI.29 mutation (2). 
A wild-type control is shown in (3). (c) FLP mapping of the VI.29 mutation on chromosome 2R. Analysis of the different classes of recombinants places the 
mutation between markers 2R096 and 2R109 (dashed red line). Informative recombinants are boxed in red. ND, not determined or no data as a result of 
PCR reaction failure.
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can be found in Additional data files 12,13,14,15,16 and 17 (C.
elegans) and Additional data file 18 (Drosophila).
Additional data file 1General information on fly geneticsGeneral information on fly geneticsClick here for additional data fileAdditional data file 2Further C. elegans mapping resultsFurther C. elegans mapping resultsClick here for additional data fileAdditional data file 3Further C. elegans mapping resultsFurther C. elegans mapping resultsClick here for additional data fileAdditional data file 4Further C. elegans mapping resultsFurther C. elegans mapping resultsClick here for additional data fileAdditional data file 5Further C. elegans mapping resultsFurther C. elegans mapping resultsClick here for additional data fileAdditional data file 6Detailed flowcharts illustrating the FLP mapping processDetailed flowcharts illustrating the FLP mapping processClick here for additional data fileAdditional data file 7Detailed flowcharts illustrating the FLP mapping processDetailed flowcharts illustrating the FLP mapping processClick here for additional data fileAdditional data file 8Electropherograms demonstrating the accuracy of allele-callingElectropherograms demonstrating the accuracy of allele-callingClick here for additional data fileAdditional data file 9Tables of primer and sequence data of experimentally verified FLP assays in C. elegansTables of primer and sequence data of experimentally verified FLP assays in C. elegansClick here for additional data fileAdditional data file 10Tables of primer and sequence data of experimentally verified FLP assays in DrosophilaTables of primer and sequence data of experimentally verified FLP assays in DrosophilaClick here for additional data fileAdditional data file 11A table of the refined genetic distances for FLP assays on the right arm of Drosophila chromosome 2A table of the refined genetic distances for FLP assays on the right arm of Drosophila chromosome 2Click here for additional data fileAdditional data file 12Additional non-validated FLPs (C. elegans)Additional non-validated FLPs (C. elegans)Click here for additional data fileAdditional data file 13Additional non-validated FLPs (C. elegans)Additional non-validated FLPs (C. elegans)Click here for additional data fileAdditional data file 14Additional non-validated FLPs (C. elegans)Additional non-validated FLPs (C. elegans)Click here for additional data fileAdditional data file 15Additional non-validated FLPs (C. elegans)Additional non-validated FLPs (C. elegans)Click here for additional data fileAdditional data file 16Additional non-validated FLPs (C. elegans)Additional non-validated FLPs (C. elegans)Click here for additional data fileAdditional data file 17Additional non-validated FLPs (C. elegans)Additional non-validated FLPs (C. elegans)Click here for additional data fileAdditional data file 18Additional non-validated FLPs (Drosophila)Additional non-validated FLPs (Drosophila)Click here for additional data file
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