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After the publication of this work [1], we discovered program-

ming errors in our software implementation of the proposed

error-weighted, uncorrelated shrunken centroid (EWUSC)

algorithm and the uncorrelated shrunken centroid (USC)

algorithm. We have corrected these errors, and the updated

results are summarized in the revised Table 6.

On the NCI 60 data, both Figure 1 in [1] and the revised

Figure 1 showed that USC generally produces higher predic-

tion accuracy than the ‘shrunken centroid’ algorithm (SC)

[2] using the same number of relevant genes. Using the

revised software implementation, USC requires fewer (2,116

instead of 2,315 as reported in [1]) genes to achieve 72%

accuracy. The number of genes required by SC to achieve the

same prediction accuracy remains the same (3,998).

Figure 2 shows the results of applying EWUSC to the train-

ing set, four-fold cross-validation data, and test set of the

multiple tumor data over a range of shrinkage thresholds (�)

and correlation thresholds (�0). The revised Figure 2 shows

the same general trend as Figure 2 in [1]: the percentage of

errors is reduced when �0 < 1 over most values of � on the

training set, cross-validation data and test set; Figure 2d

shows that the number of relevant genes is drastically

reduced when genes with correlation threshold above 0.9 are

removed. The values of the optimal shrinkage thresholds (�)

determined from the cross-validation results have changed

using the revised implementation. Specifically, the optimal

shrinkage threshold values (�) for both EWUSC and USC are

reduced to 4.8 and 4 respectively (see revised Table 6). The

numbers of relevant genes selected by EWUSC and USC are

reduced and the resulting prediction accuracy for both USC

and SC are also reduced in the revised results. In the case of

using the global optimal parameters when � = 0, the

EWUSC in the revised implementation selected slightly

fewer genes (1,622 instead of 1,626) at the expense of slightly

lower prediction accuracy (74% instead of 78%). Figure 4

compares the prediction accuracy on the test set of the mul-

tiple tumor data using the EWUSC and USC algorithms at

the estimated optimal correlation threshold (�0 = 0.8), the

SC algorithm and the Support Vector Machine (SVM). The

general observations previously reported in [1] still hold with

the revised Figure 4. First, USC produces higher prediction

accuracy than SC using the same number of relevant genes.

Second, EWUSC generally produces higher prediction accu-

racy than USC using the same number of relevant genes. In

fact, the performance of EWUSC is stronger than previously

reported in [1] when the number of genes is small.

Figure 5 shows the comparison of prediction accuracy of

EWUSC, USC, and SC on the breast cancer data. With the

Figure 1 
A corrected figure showing the comparison of prediction accuracy of USC
and SC on the NCI 60 data. The percentage of prediction accuracy is
plotted against the number of relevant genes using the USC algorithm at �0
= 0.6 and the SC algorithm (USC at �0 = 1.0). The horizontal axis is shown
on a log scale. Because no independent test set is available for this data, we
randomly divided the samples in each class into roughly three parts multiple
times, such that a third of the samples are reserved as a test set. Thus the
training set consists of 43 samples and the test set of 18 samples. The graph
represents typical results over these multiple random runs.
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revised implementation, the optimal correlation threshold

(�0) is changed from 0.7 in [1] to 0.6 (see revised Table 6).

The observation reported in [1] that EWUSC produces

higher prediction accuracy on the test set than USC and SC

when the number of relevant genes is small still holds. The

numbers of relevant genes selected by USC and SC are sig-

nificantly larger with the revised implementation (see

revised Table 6).

The major conclusions and observations in the original man-

uscript [1] remain valid with the revised implementation.

Our EWUSC and USC algorithms represent improvements

over the SC algorithm. In general, fewer genes are required

to produce comparable prediction accuracy. On the multiple

tumor data, our EWUSC and USC algorithms produce higher

prediction accuracy using fewer relevant genes compared to

published results. The revised software implementation is

available on our web site [3]. Note: the revised version (1.0)

of the software was placed on the web site on May 9, 2005.
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Table 6 

Summary of prediction accuracy results

Data Parameters EWUSC USC SC Published results

NCI 60 data* �0 NA 0.6 1.0 NA

� NA 0.6 0.9 NA

# relevant genes NA 2,116 (2315) 3,998 200

Prediction accuracy NA 72% 72% ~ 40-60% [4]

Multiple tumor data (estimated �0 0.8 0.8 1.0 NA
optimal parameters) †

� 4.8 (5.6) 4 (5.6) 8.8 NA

# relevant genes 241 (680) 356 (735) 3902 All genes

Prediction accuracy 93% 82% (85%) 63% (78%) 78% [5]

Multiple tumor data (global �0 0.9 0.9 1.0 NA
optimal parameters) ‡

� 0 0 0.4 NA

# relevant genes 1,622 (1626) 1634 7129 All genes

Prediction accuracy 74% (78%) 74% 59% (74%) 78% [5]

Breast cancer data �0 0.6 (0.7) 0.6 1.0 NA

� 0.80 0.55 (1.15) 0.5 (1.1) NA

# relevant genes 189 (271) 1,114 (82) 3,193 (187) 70

Prediction accuracy 84% (89%) 84% (79%) 84% 89% [6]

Results different from those previously reported are highlighted in bold. Previous results are in brackets. Results improved over previously reported
are highlighted in italic, while results worse than previously reported are underlined. The optimal parameters (� 0 and �), number of relevant genes
chosen, and prediction accuracy for the NCI 60 data, multiple tumor data and breast cancer data are summarized here. Both EWUSC (error-weighted,
uncorrelated shrunken centroid) and USC (uncorrelated shrunken centroid) were motivated by SC (shrunken centroid) [2]. Both EWUSC and USC
take advantage of interdependence between genes by removing highly correlated relevant genes. EWUSC makes use of error estimates or variability
over repeated measurements. SC [2] is equivalent to USC at � 0 = 1. The optimal parameters (�, � 0) for EWUSC are estimated from the cross-
validation results of EWUSC, while the optimal parameters (�, � 0) for USC are independently estimated from the cross-validation results of USC.
*Since no repeated measurements or error estimates are available, EWUSC is not applicable to the NCI 60 data. In addition, there is no separate test
set available for the NCI 60 data, typical results of random partitions of the original 61 samples into training and test sets are shown. †The prediction
accuracy and number of relevant genes are produced using optimal parameters (�, � 0) estimated by visual observation of ‘bends’ in the random cross-
validation curves. ‡The prediction accuracy and number of relevant genes are produced using global optimal parameters, that is (�, � 0) that produces
the minimum average numbers of cross-validation errors over all � and all � 0.

(Continues on the next page)
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Figure 2 
A corrected figure showing the prediction accuracy on the multiple tumor data using the EWUSC algorithm over the range of � from 0 to 20. The
percentage of classification errors is plotted against � on (a) the full training set (96 samples) and (c) the test set (27 samples). In (b) the average
percentage of errors is plotted against � on the cross-validation data over five random runs of fourfold cross-validation. In (d), the number of relevant
genes is plotted against �. Different colors are used to specify different correlation thresholds (� 0 = 0.6, 0.7, 0.8, 0.9 or 1). Optimal parameters are
inferred from the cross-validation data in (b).
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Figure 5
A corrected figure showing the comparison of prediction accuracy of
EWUSC, USC and SC on the breast cancer data. The percentage of
prediction accuracy is plotted against the number of relevant genes using
the EWUSC algorithm at �0 = 0.6, the USC algorithm at �0 = 0.6 and the
SC algorithm (USC at �0 = 1.0). Note that the horizontal axis is shown on
a log scale.

10
1

10
2

10
3

10
4

50

55

60

65

70

75

80

85

90

Total number of genes (log scale)

P
re

di
ct

io
n 

ac
cu

ra
cy

 (
%

)

Test data

EWUSC (ρ
0
 = 0.6)

USC (ρ
0
 = 0.6)

shrunken centroid

Figure 4 
A corrected figure showing the comparison of prediction accuracy of
EWUSC (�0 = 0.8), USC (�0 = 0.8), SVM and SC algorithms on the
multiple tumor data. The horizontal axis shows the total number of
distinct genes selected over all binary SVM classifiers on a log scale. Some
results are not available on the full range of the total number of genes.
For example, the maximum numbers of selected genes for EWUSC and
USC are roughly 1,000. The reported prediction accuracy is 78% [5] using
all 16,000 available genes on the full data. The EWUSC algorithm achieves
85% prediction accuracy with only 77 genes. With 241 genes, EWUSC
produces 93% prediction accuracy.
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