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Abstract

Experimental analyses of the proteins found in the mitochondria of yeast, humans and Arabidopsis
have confirmed some expectations but given some surprises and some insights into the
evolutionary origins of mitochondrial proteins. 
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With the completion of the genome sequences of yeast,

human and Arabidopsis, which contain approximately

6,000, 35,000 and 28,000 genes, respectively [1-3], the

world’s attention is now shifting to elucidation of gene func-

tion, and major proteomic studies are currently under way

on a variety of organisms [4-6]. As a step towards assem-

bling a list of the total complement of proteins in any one

cell type (its proteome), proteomic studies of subcellular

compartments and organelles have become a major focus,

because smaller and more manageable subsets of proteins

are involved. Given that compartmentation is a hallmark of

the eukaryotic cell, and because the functions of organelles

are biochemically well defined, such studies have an imme-

diate functional impact, in contrast to the relatively limited

insights that can be gained from the complete, unstructured

cell proteome. 

Mitochondria are attractive targets for subcellular pro-

teomics because they play vital roles in energy production,

anabolic and catabolic metabolism and in programmed cell

death pathways, they can be purified readily from model

organisms, and defects in mitochondrial proteins can have

dramatic effects on the functions of cells and organs. Defin-

ing mitochondrial proteomes in a number of model organ-

isms across the divisions of eukaryotes facilitates

cross-species comparisons, thus greatly aiding validation of

conclusions from each species and providing insights into

both function and evolution [5].

The recent identification of 615 proteins from the mitochon-

drial proteome of the human heart [7] represents the first

comprehensive analysis of a mitochondrial proteome and the

highest number of proteins identified to date from any sub-

cellular compartment. This is likely to change soon, as con-

certed efforts towards defining other subcellular proteomes

are currently in progress [6,8]. We now have glimpses of the

mitochondrial proteomes from the yeast Saccharomyces

cerevisiae and Arabidopsis, as well as humans (Table 1),

although these are far from complete. Various approaches

have predicted that approximately 10% of the coding capac-

ity of the nuclear genome is devoted to proteins destined for

the mitochondrion [9-11]. For yeast, predictions of the total

number of proteins in a mitochondrion, made using a combi-

nation of sequence homology and gene tagging or knockouts,

vary between 423 and 630 proteins, which is close to the

number predicted by a variety of bioinformatic analyses of

protein targeting [9-11]. Direct protein sequencing using

mass spectrometry has so far yielded only 179 mitochondrial

proteins, however, and gene-tagging and knockout analysis

have given 332 and 466 proteins, respectively [12,13]. Thus,

even in yeast, the experimentally confirmed proteome is less

than 50% complete, according to current predictions. In

plants, the experimentally determined set so far contains

only 135 mitochondrial proteins for Arabidopsis [14,15] and

136 for rice [16]; these numbers are significantly lower than

the 10% of the nuclear genome that is predicted by bioinfor-

matic approaches to encode mitochondrial proteins [3,9].



Even the 615 proteins directly identified in human mito-

chondria represent only about 25-35% of the proteins pre-

dicted to be mitochondrial by targeting analyses and by

extrapolations from yeast studies [8,9]. In reality, the true

number of mitochondrial proteins will probably lie some-

where between the current experimentally determined

numbers and the predictions.

Sorting the identified sets of proteins (either predicted or

known) by their functions reveals both expected and unex-

pected outcomes (Figure 1). Such comparisons vary slightly

depending on the lists used, but those shown here are based

on the functional analyses reported for Arabidopsis [14,15],

human [7] and yeast [17]. The yeast protein set is derived

from both genetic and mass-spectrometric data, whereas the

human and Arabidopsis sets are derived only from mass

spectrometry; this means that more low-abundance DNA-,

RNA- and protein-synthesis components have been identi-

fied in yeast than in the other two species. 

As expected, the predominant mitochondrial proteins found

are oxidative-phosphorylation complexes, enzymes of the

tricarboxylic acid cycle, components of the protein-import

and protein-synthesis machinery, and transport proteins;

these represent one third to one half of the identified sets in

each species. The large number of proteins of unknown func-

tion (10-20%) and the large number of enzymes of the

carbohydrate, amino-acid and lipid metabolism pathways

have come as more of a surprise, however. In particular,

the presence of glycolytic enzymes in purified mitochondrial

preparations, and the diverse kinds of predicted signaling

components such as kinases and receptors, were largely

unexpected, as their presence in mitochondria has not been

documented in earlier studies. These findings need further

substantiation, and this has become an area of active

research, as has the search for protein-protein associations

within the proteome [7,8,18-20]. The absence of some proteins

is also perplexing. For example, despite the presence of

many genes from the mitochondrial carrier superfamily in

all of the genomes so far examined, only a handful of carrier

proteins have been experimentally identified in mitochondria

to date [7,18].

Mitochondrial proteomes also need to be defined in terms of

their evolutionary origins. Mitochondria almost certainly

evolved from an �-proteobacterium that was engulfed by an

early eukaryotic cell and entered into symbiosis with it.

Surprisingly, conservative estimates indicate that, in yeast,

only 25-50% of mitochondrial proteins can be identified as

most closely related to �-proteobacterial proteins [21,22]. This

suggests that approaches to defining subcellular proteomes

that rely on homology to prokaryotic ‘ancestors’ are useful but

have limitations. Divergence of the mitochondrial proteomes

between different major eukaryotic lineages may mean that,

even in identical pathways, components in one organism may

have different phylogenetic origins from the equivalent com-

ponents in another [21]. A glimpse of this is seen with the

mitochondrial ribosome of Arabidopsis, which has proteins
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Table 1

Predicted and experimentally determined numbers of proteins present in mitochondria

Yeast Reference Human Reference Arabidopsis Reference

Predictions*

Total 423 [29] 734 [17] 800 [20]

584 [17] 1,500 [30]

630 [11]

Prediction percentage† 10-13% [10,11] 10% [9] 10% [9]

Extrapolated‡ 617-802 3,500 2,800

Experimental

Total 179 [13] 615 [7] 135 [14,15,18,20,31]

388 [32]

466 [12]

Experimental percentage§ 2.9% 1.76% 0.48%

6.3%

7.6%

*Predictions of the number of mitochondrial proteins are from sequence homology, targeting sequences, phylogenetic profiling or extrapolation from a set of
experimental values. †Prediction percentage: the percentage of genes in the genome predicted to encode mitochondrial proteins from targeting analyses or
phylogenetic profiles; ‡Extrapolated: the total number of mitochondrial proteins predicted from the percentage value given and the genome size of each
organism. §Experimental percentage: the percentage of the predicted proteome found in experimentally determined mitochondrial proteomes.



from three distinct genetic origins: the mitochondrion, the

plastid and the nucleus of the host eukaryotic cell [23].

It is evident that mitochondrial proteomes have undergone

expansion in function during evolution, in addition to the

loss of bacterial metabolic pathways such as glycolysis [21].

The evolutionary expansion of mitochondrial proteomes

means that proteins of eukaryotic origin are also repre-

sented in the mitochondrial proteome, complicating com-

parisons with �-proteobacterial ancestors [24]. In plants

the situation is further complicated by proteins of

cyanobacterial origin, presumably gained from chloroplasts

via gene transfer from the plastid to the nucleus and subse-

quent duplication and re-targeting to mitochondria [23]. It

has been observed that proteins derived from �-proteobacte-

ria that are found in mitochondria but encoded in the

nucleus appear to be preferentially synthesized on ribo-

somes attached to the mitochondria [25]; this may provide

an experimental avenue for investigating the different

genetic origins of mitochondrial proteins. 

From an evolutionary point of view, it is tempting to estimate

the numbers of mitochondrial proteins by comparison with

modern-day obligate intracellular parasites, such as Rick-

ettsia prowazekii, which contains 834 proteins [26]. Many

common functions found in mitochondria, such as amino-

acid biosynthetic pathways, are absent from these parasites,

however. Obligate intracellular parasites provide examples of

genome reduction, and the mitochondrial ancestor almost

certainly had a larger genome and protein-coding capability

than Rickettsia. 

Defining the complete mitochondrial proteome will require a

variety of experimental approaches, including the direct

proteomic-identification and protein-tagging strategies that

are presently underway [6]. Defining a static mitochondrial

proteome will certainly be an achievement, but this is only

the beginning. Determining how the proteome changes

under certain conditions, such as during oxidative stress

[27,28], between tissues and through development, will use

this basic set of proteins as a platform. Identifying new func-

tions and interactions of proteins, and of signal-transduction

pathways, will require knockouts, overexpression experi-

ments and analysis of the phosphorylated components of the

proteome [5]. Finally, comparative mitochondrial proteomics

between organisms will give insights into how proteins have

diverged in function through evolution and may well help

answer the still vexing question of the ancestral origins of

the eukaryotic cell.
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Figure 1
Functional classification of the proteins from the experimentally
determined proteomes of yeast, Arabidopsis and human. (Ox phos,
oxidative phosphorylation; TCA, tricarboxylic acid cycle).
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