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Multiclass classification of microarray data with repeated measurements: application to cancerPrediction of the diagnostic category of a tissue sample from its gene-expression profile and selection of relevant genes for class prediction have important applications in cancer research. We have developed the uncorrelated shrunken centroid (USC) and error-weighted, uncor-related shrunken centroid (EWUSC) algorithms that are applicable to microarray data with any number of classes. We show that removing highly correlated genes typically improves classification results using a small set of genes. 

Abstract

Prediction of the diagnostic category of a tissue sample from its gene-expression profile and
selection of relevant genes for class prediction have important applications in cancer research. We
have developed the uncorrelated shrunken centroid (USC) and error-weighted, uncorrelated
shrunken centroid (EWUSC) algorithms that are applicable to microarray data with any number of
classes. We show that removing highly correlated genes typically improves classification results
using a small set of genes.

Rationale
The problem of predicting the diagnostic category of a given
tissue sample is of fundamental clinical importance. Conven-
tional diagnostic methods are based on subjective evaluation
of the morphological appearance of the tissue sample, which
requires a visible phenotype and a trained pathologist to
interpret the view. In some cases the class is easily identified
by cell morphology or cell-type distribution, but in many
cases apparently similar pathologies can lead to very different
clinical outcomes. Since the advent of DNA array technology
[1-6], researchers have begun to use expression array analysis
as a quantitative phenotyping tool. The potential advantage to
using arrays for phenotyping is that they provide a simultane-
ous quantitative measure of thousands of parameters (for
example, gene-expression levels) some of which are likely to
have disease relevance. When array analysis is used predom-
inately for phenotyping, we refer to the expression pattern as
an 'expression array phenotype'. Owing to the ability to quan-
tify a large number of parameters, the use of expression array
in phenotyping promises both more accurate class prediction
and the identification of subclasses that could not be defined
by traditional methods.

There has been a recent explosion in the use of expression
array phenotyping for identification and/or classification in a
variety of diagnostic areas. Examples of diagnostic categories
(or classes) include cancer versus non-cancer [7,8], different
subtypes of tumor [9-13], and prediction of responses to var-
ious drugs or cancer prognosis [14-16]. The prediction of the
diagnostic category of a tissue sample from its expression
array phenotype given the availability of similar data from tis-
sues in identified categories is known as classification (or
supervised learning). A challenge in predicting diagnostic cat-
egories using microarray data is that the number of genes is
usually significantly greater than the number of tissue sam-
ples available, and only a subset of the genes is relevant in dis-
tinguishing different classes. Selection of relevant genes for
classification is known as feature selection. This has three
main applications: first, the classification accuracy is often
improved using a subset instead of the entire set of genes; sec-
ond, a small set of relevant genes is convenient for developing
diagnostic tests; and third, these genes may lead to biologi-
cally interesting insights that are characteristic of the classes
of interest.
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There have been many reports that address the classification
and feature-selection problems, for example [9,10,14,17].
However, many of these methods are tailored towards binary
classification in which there are only two classes [9,14]. More-
over, there has been very limited effort to develop classifica-
tion and feature-selection algorithms for microarray data
with repeated measurements or error estimates. Array data is
well known to be noisy; for example, Lee et al. [18] showed
that any single microarray output is subject to substantial
variability. This is particularly true for genes with low expres-
sion levels, which are more difficult to measure than genes
with high expression levels. As the cost of microarray experi-
ments is declining, more research laboratories are generating
microarray data with repeated measurements [9,14,19,20].
Repeated measurements not only provide improved esti-
mates of gene-expression levels but can also be used to esti-
mate the uncertainty or variability in the measurement. In
some cases the repeated measurements are biological repli-
cates (for example, independent samples), whereas in other
cases only technical replicates are available. Regardless of the
source, however, variability estimates should be taken into
account in both clustering and classification algorithms, as
variability estimates can potentially be exploited to improve
the results.

We have developed two algorithms called the uncorrelated
shrunken centroid (USC) algorithm, and the error-weighted,
uncorrelated shrunken centroid (EWUSC) algorithm. Both
USC and EWUSC are integrated feature-selection and classi-
fication algorithms that are applicable to data with any
number of classes. Our primary contribution is that both USC
and EWUSC exploit interdependence between genes to
reduce the number of selected features. In addition, EWUSC
takes advantage of variability estimates over repeated meas-
urements to down-weight noisy genes and noisy experiments
so that no ad hoc filtering step is necessary. On the other
hand, USC is applicable to microarray datasets with or with-
out repeated measurements.

Introduction to classification and feature selection
Classification is a supervised learning approach, in which the
classes (or labels) of a subset of samples are inputs to the algo-
rithm. This is in contrast to clustering, which is an unsuper-
vised approach, in which no knowledge of the samples is
assumed. A training set is a set of samples for which the
classes are known. A test set is a set of samples for which the
classes are assumed to be unknown to the algorithm, and the
goal is to predict which classes these samples belong to. The
first step in classification is to build a 'classifier' using the
given training set, and the second step is to use the classifier
to predict the classes of the test set.

In the context of gene-expression data, the samples are usu-
ally the experiments, and the classes (or labels) are usually
different types of tissue samples (for example, cancer versus
non-cancer, different tumor types, rate of disease

progression, and response to therapy). A typical microarray
dataset consists of thousands to tens of thousands of genes,
and dozens to hundreds of experiments. One challenge of
classification using microarray data is that the number of
genes is significantly greater than the number of samples. In
this situation, it is possible to find both random and biologi-
cally relevant correlations of gene behavior with sample type.
To protect against spurious results, the goal is to identify the
smallest possible subset of genes that correlate most strongly
with the known class labels. In addition, a small subset of
genes is desirable for the development of expression-based
diagnostics. The problem of selecting relevant genes (or fea-
tures) for classification is known as feature selection.

Cross validation is a well-established technique used to opti-
mize the parameters or features chosen in a classifier. In m-
fold cross-validation, the training set is randomly divided into
m disjoint subsets with roughly equal size. Each of these m
subsets is left out in turn for evaluation, and the other (m - 1)
subsets are used as inputs to the classification algorithm. In
this work, we randomly divide each class into m disjoint sub-
sets (where m is less than the size of the smallest class in the
training set), so that each class is represented in the subset fed
to the classification algorithm. The left-out subset of the
training set is used to evaluate classification accuracy because
the classes of this subset are known. The most popular form
of cross-validation is leave-one-out cross-validation
(LOOCV), in which m is equal to the number of samples in the
training set, and each sample in the training set is left out in
turn to evaluate the prediction results.

Related work
van't Veer et al. [14] recently applied a binary classification
algorithm to cDNA array data with repeated measurements,
and classified breast cancer patients into good and poor prog-
nosis groups. Their classification algorithm consists of the
following steps. The first step is filtering, in which only genes
with both small error estimates and significant regulation rel-
ative to a reference pool of samples from all patients are cho-
sen. The second step consists of identifying a set of genes
whose behaviour is highly correlated with the two sample
types (for example, upregulated in one sample type but down-
regulated in the other). These genes are rank-ordered so that
genes with the highest magnitudes of correlation with the
sample types have top ranks. In the third step, the set of rele-
vant genes is optimized by sequentially adding genes with
top-ranked correlation from the second step. Leave-one-out
cross-validation is used to evaluate and choose an optimal set
of features. van't Veer et al.'s approach takes variability esti-
mates of repeated measurements into consideration by using
error-weighted correlation in their method. However, this
method involves an ad hoc filtering step and does not gener-
alize to more than two classes.

Ramaswamy et al. [10] combined support vector machines
(SVMs), which are binary classifiers, to solve the multiclass
Genome Biology 2003, 4:R83
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classification problem. They showed that the one-versus-all
approach of combining SVM yields the minimum number of
classification errors on their Affymetrix data with 14 tumor
types. The one-versus-all combination approach builds k (the
number of classes) binary classifiers, each of which distin-
guishes one class from all the other classes. Suppose binary
classifier i predicts a discriminant value fi(x) for a given sam-
ple x in the test set. The combined multiclass classifier assigns
sample x to the class for which the corresponding binary clas-
sifier produces the highest discriminant value. In addition to
not taking variability estimates of repeated measurements
into account, this approach selects different relevant features
(genes) for each binary classifier.

Nguyen and Rocke [21,22] used partial least squares (PLS) for
feature selection, together with traditional classification algo-
rithms such as logistic discrimination and quadratic discrim-
ination to classify multiple tumor types from microarray data.
These traditional classification algorithms require the
number of samples (experiments) to be greater than the
number of variables (genes), and it is therefore essential to
reduce the dimensionality before applying these traditional
classification techniques. PLS is a dimension-reduction tech-
nique that maximizes the covariance between the classes and
a linear combination of the genes. This approach can be gen-
eralized to multiple classes, but it does not make use of varia-
bility estimates of the data. In addition, it is a multistep
process that involves a filtering step (to select genes with sig-
nificant mean differences) and then application of PLS to fur-
ther reduce the dimensionality so that the number of samples
is greater than the number of dimensions.

Dudoit et al. [23] compared the performance of different dis-
crimination methods (including nearest neighbor classifiers,
linear discriminant analysis and classification trees) for clas-
sifying multiple tumor types using gene-expression data.
None of the discrimination methods they evaluated takes
measurement variability into consideration, and their
emphasis is on discrimination methods and not feature
selection.

Yeung et al. [24] showed that clustering algorithms that take
advantage of repeated measurements (including the error-
weighted approach that down-weights noisy measurements)
yield more accurate and more stable clusters. Here, we will
focus on the supervised learning approach, instead of the
unsupervised clustering technique.

Tibshirani et al. [17] developed a 'shrunken centroid' (SC)
algorithm for classifying multiple cancer types. It is an inte-
grated approach for feature selection and classification. Fea-
tures are selected by considering one gene at a time: the
difference between the class centroid (average expression
level or ratio within a class) of a gene and the overall centroid
(average expression level or ratio over all classes) of a gene is
compared to the within-class standard deviation plus a

'shrinkage threshold' which is fixed for all genes. The intui-
tion is that genes with at least one class centroid that is signif-
icantly different from the overall centroid are selected as
relevant genes. The size of the shrinkage threshold is deter-
mined by cross-validation on the training set to minimize
classification errors.

Our contributions
Our algorithms have the following desirable characteristics.
Both EWUSC and USC exploit the interdependence of genes
to reduce the number of selected features. EWUSC takes
advantage of the variability of gene-expression data over
repeated measurements, so no ad hoc filtering step is neces-
sary. Both EWUSC and USC can be applied to data with any
number of classes. Both EWUSC and USC adopt an inte-
grated approach for both feature selection and classifica-
tion. Both algorithms make no assumption on data
distributions.

We illustrate the advantage of removing correlated genes (for
example, the USC algorithm) on the NCI 60 data [12] for
which there is no variability information. This dataset has
been extensively used in other publications for classification
algorithm development [22,23,25]. We illustrated and com-
pared our USC and EWUSC algorithms with two real data-
sets: a multiple tumor dataset from Ramaswamy et al. [10]
and a breast cancer dataset from van 't Veer et al. [14]. These
two datasets were chosen as they are publicly available in a
form from which we can calculate or obtain error estimates
for each gene-expression level or ratio. We used a subset of
the multiple tumor data [10] that consists of 7,129 genes and
11 tumor types on Affymetrix chips. There are 96 samples in
the training set, and 27 samples in the test set. For the
Affymetrix dataset we estimated the variability in the gene-
expression levels using the robust multi-array analysis (RMA)
tool [26,27] from the BioConductor project [28]. A subset of
the published data was used as we could only obtain raw data
(.cel files) for a subset. The breast cancer dataset [14] consists
of 25,000 genes with four repeated measurements on cDNA
arrays. There are 78 samples in the training set, 19 samples in
the test set, and two classes of patients: one class with good
prognosis (with more than 5 years of survival time), and
another class with poor prognosis (with less than 5 years of
survival time). For the breast cancer cDNA array data, pub-
lished p-values as calculated by Rosetta's Resolver software
were used to calculate the error estimates. In addition, we cre-
ated synthetic datasets with repeated measurements and
compared the performance of EWUSC, USC and SC at differ-
ent noise levels.

We adopted three criteria for assessing feature selection and
classification algorithms: prediction accuracy, number of rel-
evant genes and feature stability. Prediction accuracy is
defined as the percentage of correct classifications on the test
set. The number of relevant genes is the total number of genes
used to achieve optimal prediction accuracy. Feature stability
Genome Biology 2003, 4:R83
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is the level of agreement of selected genes chosen over differ-
ent cross-validation runs of the algorithm.

Using these algorithms we obtained the following general
results. Exploiting gene interdependence by removal of corre-
lated genes typically results in comparable or higher predic-
tion accuracy using fewer relevant genes. This is highly
desirable if one wishes to develop diagnostic tools from the
selected set of genes. Using error or variability estimates as
weighting factors generally yields higher feature stability and
reduces the number of relevant genes on real datasets. On the
multiple tumor data, our EWUSC algorithm achieves 16%
increase in prediction accuracy, using only 10% of the genes
as features (compared with using all the available genes in the
published result). On the breast cancer data, our EWUSC
algorithm produces the same number of classification errors
as the published result using a larger feature set. Unlike the
published algorithm for this dataset, however, the EWUSC
algorithm is applicable to datasets with more than two
classes.

Our integrated classification and feature-
selection algorithm
As our USC and EWUSC algorithms are motivated by the
shrunken centroid (SC) algorithm [17], we will briefly review
the SC algorithm, and then discuss our USC and EWUSC
algorithms. Details of these algorithms can be found later in
the paper.

The SC approach
The SC approach [17] is essentially a robust version of the
'nearest centroid' approach, in which a sample is assigned to
the class with the nearest average pattern. Features are
selected by considering each gene individually. The overall
centroid of a gene i is defined as the average expression level/
ratio of gene i over all the experiments. The class centroid of
a gene i in class k is defined to be the average expression level/
ratio of gene i over all the samples in class k. A gene is predic-
tive of the class if at least one of its class centroids signifi-
cantly differs from its overall centroid. One obvious definition
of significantly in the previous sentence is 'differs by more
than the variation (or standard deviation) within the class',
which is essentially a modified form of a t-test. The shrunken
centroid method adds an additional term (s0 described in [17]
and in the section Details of algorithms below) to the within-
class standard deviation - for example, the difference between
the in-class average and the overall average must exceed the
in-class variation by s0. A t-test like statistic, relative differ-
ence (dik), is defined to represent the difference between the
class centroid and the overall centroid divided by the variance
(in-class variation + s0) and the absolute value of dik is
reduced by the 'shrinkage threshold' ∆. ∆ is determined by
cross-validation such that the number of classification errors
is minimized on the training set.

The USC approach
Our USC algorithm adds a step to the SC algorithm to remove
redundant, correlated genes. The benefit of removing highly
correlated genes is twofold. First, it reduces the number of
relevant features (genes) needed for classification. A small
feature set is highly desirable if one wishes to use the results
of feature selection and classification to develop diagnostic
tools such as reverse transcription PCR (RT-PCR)-based tests
on a small number of the most relevant genes. Second, the
removal of redundant genes reduces the impact of over-fit-
ting, and hence, potentially improves classification accuracy.

The SC algorithm produces a set of relevant genes, S∆, for any
given shrinkage threshold ∆. As ∆ increases, the number of
relevant genes in S∆ decreases; for example, the gene list is
reduced to selected genes for which the within-class centroids
are farther away from the overall centroid and for which the
within-class variation is small. Each gene is considered inde-
pendently in the SC algorithm. Our modification exploits the
correlation between genes by removing genes that are highly
correlated within the set of relevant genes S∆. Specifically, we
compute the pairwise correlation for each pair of genes (gi, gj)
in S∆ for each ∆. If the pairwise correlation is greater than a
correlation threshold ρ0, the gene gj with the smaller relative
difference is removed from the set of relevant genes. This
results in a set of relevant genes S(∆, ρ0) for each shrinkage
threshold ∆ and each correlation threshold ρ0. These relevant
genes are used to classify new samples. The USC algorithm is
equivalent to the SC algorithm when no correlated genes are
removed (that is, ρ0 = 1). We apply this USC algorithm to the
training set using cross-validation to determine the number
of classification errors for each ∆ and each ρ0. The optimal
parameters for ∆ and ρ0 are chosen such that the number of
cross-validation classification errors is minimized on the
training set. These optimal parameters are then used to clas-
sify samples from unknown classes on the test set. Our results
show that the removal of correlated genes provides a signifi-
cant improvement over the SC algorithm in classification
results, and hence our USC algorithm is useful for datasets in
which error estimates are not available.

The EWUSC approach
Our EWUSC algorithm is based on the USC algorithm with a
key modification: we take advantage of error estimates or var-
iability over repeated measurements. We define an error-
weighted overall centroid, error-weighted class centroid,
error-weighted relative difference, error-weighted shrunken
class centroid, and error-weighted discriminant score in
order to down-weight both noisy genes and noisy experi-
ments. In addition, we adopt the error-weighted correlation
in the removal of highly correlated genes to select relevant
genes. Thus the EWUSC algorithm is identical to the USC
algorithm except for error-weighted definitions to down-
weight noisy genes and noisy experiments in our calculations.
When all genes and all experiments have the same variability
estimates, the EWUSC algorithm is equivalent to the USC
Genome Biology 2003, 4:R83
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algorithm. As our results show, this error-weighted approach
typically reduces the number of relevant genes and improves
feature stability, and thus the EWUSC is usually the method
of choice when error or variability estimates are available. A
detailed description of the EWUSC algorithm is given later in
the paper.

Datasets used
National Cancer Institute NCI 60 data
In the NCI 60 data [12], cDNA microarrays were used to study
the expression of approximately 60 cell lines derived from
tumors with different sites of origin (see Table 1). We used the
same pre-processed dataset as in Dudoit et al. [23], which
consists of log expression ratios of 5,244 genes over 61 exper-
iments. Two prostate and one unknown cell lines from the
original data [12] were excluded in their analysis because of
their small class sizes. Only one leukemia and one breast can-
cer cell line were repeated three times, and hence there are no
repeated measurements or variability estimates available for
all 61 samples. These repeated experiments of the leukemia
and breast cancer cell lines are treated as individual samples.
In addition, no additional test set is available for this data. To
compare our results with those of Dudoit et al. [23], we
adopted their 2:1 scheme in which one third of the samples
are reserved as a test set.

Specifically, we randomly divided each class in the original
data (61 experiments) into roughly three parts such that the
training set consists of a total of 43 experiments and the test
set consists of a total of 18 experiments. Table 2 gives the class
sizes of the training and test sets. The optimal parameters are
determined using cross-validation on the training set with 43
samples, and these optimal parameters are used to classify
the 18 samples in the test set. We repeated this random parti-
tion of the original data into three parts multiple times.

Multiple tumor data
The multiple tumor dataset [10] consists of a large number of
tumor samples spanning 14 different tumor types hybridized
to Affymetrix chips. On the Affymetrix platform, each target
gene is represented by 11-20 short oligo probes of approxi-
mately 25 base-pairs (bp). Our goal is to take advantage of the
variability over different oligos for the same genes using our
EWUSC algorithm. We pre-processed the raw multiple tumor
data with the log scale robust multi-array analysis (RMA)
measure [27] implemented in the BioConductor project. The
RMA measure is a summary statistic for the expression levels
over all the different oligos for the same gene. The standard
error of the RMA measure is a variability estimate of the
expression level over the different oligos representing the
same target gene. In order to obtain the RMA measures and
their associated standard errors on the multiple tumor data,
the raw data (.cel files) are necessary. Because we have access
to only a subset of the raw multiple tumor data, we used a sub-
set of the original data in our study. The subset of multiple
tumor data we used consists of 7,129 genes, 96 samples in the
training set, and 27 samples in the test set. These samples
span 11 different tumor types (Table 3). The smallest class size
is four on the training set, and hence, four-fold cross-valida-
tion (m = 4) is used on this data.

Breast cancer data
The breast cancer data [14] consists of primary breast tumor
samples hybridized to cDNA arrays containing approximately
25,000 genes. Two hybridizations were carried out for each
sample using a dye-reversal technique. Hence, there are four
repeated measurements for each gene and each sample. The
p-values of log expression ratios are also available. These p-
values are results of the four repeated measurements and an
error model based on extensive control experiments [29]. A
p-value close to 1 represents low confidence that an
expression ratio is significantly different from 1, while a

Table 1

Tumor types and class sizes of the NCI 60 dataset

Origin of cell lines Class size (total 61 samples)

Breast 9

Central nervous system 5

Colon 7

Leukaemia 8

Melanoma 8

Non-small-cell-lung-carcinoma 9

Ovarian 6

Renal 9

Tumor types and class sizes of the original full data with a total of 61 
experiments.

Table 2

Tumor types and class sizes of the randomly partitioned training 
and test sets of the NCI 60 dataset

Origin of cell lines Training set 
(total 43)

Test set
(total 18)

Breast 6 3

Central nervous system 4 1

Colon 5 2

Leukaemia 6 2

Melanoma 6 2

Non-small-cell-lung-carcinoma 6 3

Ovarian 4 2

Renal 6 3

As no additional test set is available for the NCI 60 data, we randomly 
divided each class of these 61 samples into roughly three parts and 
reserved one third of the samples as a test set.
Genome Biology 2003, 4:R83
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p-value close to 0 represents high confidence that an expres-
sion ratio is significantly different from 1. We converted these
p-values into error estimates of log ratios, which are used in
our EWUSC algorithm.

The breast cancer dataset consists of approximately 25,000
genes, 78 samples in the training set, and 19 samples in the
test set. van't Veer et al. [14] divided these samples into the
good and poor prognosis groups, which have greater than 5
and less than 5 years of survival time respectively. Hence,
there are two classes in this dataset (see Table 4). We per-
formed 10-fold cross-validation (m = 10) on the breast cancer
data.

Synthetic data
We also created synthetic datasets to compare the perform-
ance of our algorithms. Our approach is to start with 'pat-
terned genes' which have a different expression pattern in
each class, and are therefore relevant in classifying unknown
samples. The next step is to introduce noise (variation in both
the class and non-class values) to these patterned genes in
order to reflect 'real-life' data. Finally, 'non-patterned genes',
which are irrelevant in classifying samples, are added to these
synthetic datasets. Even with this simple synthetic data-

generation approach, generating sensible synthetic data
turned out to be a nontrivial task. There are two parameters
that control the noise levels in the synthetic datasets, the bio-
logical noise level (α) and the technical noise level (λ). The
biological noise level (α) controls the level of biological noise
within each class (and hence, the signal-to-noise ratio) such
that the classes are less separable with a higher α. The techni-
cal noise level (λ) controls the noise level over repeated meas-
urements such that a high λ indicates relatively noisy
repeated measurements. The primary difficulty in generating
synthetic data is setting the parameters of α and λ, and the
proportion of the patterned genes. As it is not obvious how to
set these parameters to reflect 'real-life' data, we experi-
mented with different parameter settings, such as different
biological noise levels: low (α = 0.1 with signal-to-noise ratio
approximately 20), medium (α = 1 with signal-to-noise ratio
approximately 2), or high (α = 2 with signal-to-noise ratio
approximately 1); and low (λ = 1) or high (λ = 5 or 10) techni-
cal noise. We also experimented with different proportions of
patterned genes, and concluded that this parameter does not
have any significant impact on the results.

Another issue in generating 'realistic' synthetic data involves
the generation of non-patterned genes that are irrelevant in
distinguishing the classes. We addressed this issue by random
sampling with replacement from a real dataset (that is, the
breast cancer dataset [14]). Specifically, for each non-pat-
terned gene, we randomly sample a gene g from the breast
cancer data, and then randomly sample from the experiments
of gene g in the breast cancer data such that these non-pat-
terned genes would not show any class-specific expression
patterns but would show realistic variations in expression lev-
els over all classes.

In particular, our synthetic training sets consist of 1,000
genes, 80 samples, and 4 classes such that there are 20 sam-
ples in each class. Our synthetic test sets consist of 1,000
genes and 40 samples with 10 samples in each class. We gen-
erated 64 patterned genes which have a different expression
pattern in each class, for example, genes that are upregulated
(or downregulated) in only m of the four classes, where m = 1,
2, 3. In addition, there are five duplicates of each of these 64
patterned genes such that there are a total of 320 patterned
genes and (1,000 - 320 = 680) non-patterned genes. Ideally,
the perfect classification algorithm would select only one of
these five copies of the patterned genes. We also investigated
the effect of the number of repeated measurements by gener-
ating synthetic datasets with 1, 4 or 20 repeated measure-
ments. These synthetic datasets are available from our
supplementary website [30].

Assessment criteria
Prediction accuracy
As the class information for the test sets is available, we define
prediction accuracy as the percentage of correct

Table 3

Tumor types and class sizes for the training set and test set of the 
subset of multiple tumor data used in this study

Tumor type Training set (total 96) Test set (total 27)

Breast 7 0

Lung 4 2

Colorectal 7 3

Lymphoma 14 5

Melanoma 5 0

Uterus 7 2

Leukemia 23 6

Renal 5 3

Pancreas 7 0

Mesotheolima 8 3

CNS 9 3

Table 4

Prognosis groups and class sizes of the training set and test set of 
the breast cancer data

Prognosis group Training set
(total 78)

Test set
(total 19)

Good (> 5 years of survival time) 44 7

Poor (≤5 years of survival time) 34 12
Genome Biology 2003, 4:R83
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classifications on the test set. The class information on a test
set is used only to evaluate the performance of classification
and feature-selection algorithms, and is unknown to the algo-
rithms.

Number of relevant features
One of the goals of classification is to select a minimal set of
relevant genes (or features) that can be used in future diagno-
sis or classification of tissue samples. We judge each method
by the total number of relevant features required for optimal
classification accuracy. A small set of relevant genes is desir-
able because it is more cost-effective in the development of
diagnostic tools based on the results of expression analysis.
For example, the cost of an RT-PCR test to classify patient
samples is directly proportional to the number of genes which
must be tested to make the diagnosis. As shown below, both
the USC and EWUSC methods usually result in a significant
reduction in the numbers of selected genes for classification.
We feel this represents a major advance in classification
algorithms.

Feature stability
Because relevant genes are derived from the training set and
the choice of the training set is often arbitrary, a set of rele-
vant genes that is insensitive to the training sets used would
be desirable. Hence, we define feature stability as the level of
agreement between the set of relevant genes chosen in each
fold of the cross-validation data with the set of relevant genes
chosen using the full training set. Specifically, for each fold of
the cross-validation data and for each set of parameters (∆
and ρ0), we compute the Jaccard index [31] which measures
the level of agreement between the set of relevant genes cho-
sen in this fold and the set chosen using the full training set.
The Jaccard index lies between 0 and 1. A high Jaccard index
(close to 1) implies high level of agreement, and hence, high
feature stability (a mathematical definition of the Jaccard
index can be found in the section Details of algorithms,
below). We define feature stability of one cross-validation run
for a given set of parameters (∆ and ρ0) as the average Jaccard
index over all m folds of cross-validation. In our experiments,
we usually have five random runs of cross-validation; hence
we adopt the average Jaccard index over these five random
runs of cross-validation as our measure of overall feature sta-
bility for given parameters (∆ and ρ0).

Results on the NCI 60 data
As variability estimates are not available on the NCI 60 data,
we compared the prediction accuracy from USC and SC (Fig-
ure 1; and Figure S14 of [30]). We showed that USC generally
produces higher prediction accuracy than SC using the same
number of relevant genes (Figure 1). In particular, USC
requires 44% of the available genes (2,315 out of 5,244 genes)
to achieve a prediction accuracy of 72%, whereas SC requires
77% of genes (3,998 out of 5,244 genes) to achieve the same
prediction accuracy. Our results show that the removal of

highly correlated genes reduces the number of selected fea-
tures while achieving comparable error rates.

Like Dudoit et al. [23] we observed high error rates on this
dataset (around 40-60% using 10-200 relevant genes). USC
produces comparable error rates to the results reported in
Dudoit et al. [23] using roughly the same number of relevant
genes. However, our USC algorithm allows the optimal
parameters (which indirectly control the number of selected
genes) to be determined. In this case, the optimal parameters
produce an error rate of approximately 28% on the cross-val-
idation data. We repeated the random partition of the full
dataset with 61 samples into a training set with 43 samples
and a test set with 18 samples multiple times, and obtained
similar results on different random partitions of the original
dataset.

Results on the multiple tumor data
Figure 2 shows the results of applying EWUSC to the training
set, four-fold cross-validation data, and test set of the multi-
ple tumor data over a range of shrinkage thresholds (∆) and
correlation thresholds (ρ0). In Figure 2a,c the percentage of
classification errors is plotted against ∆ on the training and
test sets respectively. In Figure 2b, the average percentage of
errors is plotted against ∆ over five random runs of cross-val-
idation. The optimal parameters (∆ and ρ0) are determined
from the cross-validation results. Figure 2a-c shows that pre-
diction accuracy is increased (lower percentage of errors)
when ρ0 < 1 over most values of ∆ (especially 2 ≤ ∆ ≤ 7) on the
training set, cross-validation data and test set. This shows
that removing highly correlated genes increases prediction

Comparison of prediction accuracy of USC and SC on the NCI 60 dataFigure 1
Comparison of prediction accuracy of USC and SC on the NCI 60 data. 
The percentage of prediction accuracy is plotted against the number of 
relevant genes using the USC algorithm at ρ0 = 0.6 and the SC algorithm 
(USC at ρ0 = 1.0). The horizontal axis is shown on a log scale. Because no 
independent test set is available for this data, we randomly divided the 
samples in each class into roughly three parts multiple times, such that a 
third of the samples are reserved as a test set. Thus the training set 
consists of 43 samples and the test set of 18 samples. The graph 
represents typical results over these multiple random runs.
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Prediction accuracy on the multiple tumor data using the EWUSC algorithm over the range of ∆ from 0 to 20Figure 2
Prediction accuracy on the multiple tumor data using the EWUSC algorithm over the range of ∆ from 0 to 20. The percentage of classification errors is 
plotted against ∆ on (a) the full training set (96 samples) and (c) the test set (27 samples). In (b) the average percentage of errors is plotted against ∆ on 
the cross-validation data over five random runs of fourfold cross-validation. In (d), the number of relevant genes is plotted against ∆. Different colors are 
used to specify different correlation thresholds (ρ0 = 0.6, 0.7, 0.8, 0.9 or 1). Results of ρ0 < 0.6 are shown in Figure S1 on [30]. Optimal parameters are 
inferred from the cross-validation data in (b).
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accuracy. In addition, Figure 2d shows that the number of rel-
evant genes is drastically reduced when genes with correla-
tion threshold (ρ0) above 0.9 are removed. From Figure 2b,
the average cross-validation error rate gradually reduces
when the correlation threshold ρ0 is decreased from 1 to 0.9
to 0.8, but the average error rate increases when ρ0 < 0.8.
(This observation also holds for ρ0 < 0.6, which are not shown
in Figure 2 for clarity.) Therefore, the optimal ρ0 is estimated
to be 0.8.

EWUSC produces the minimum average number of cross-val-
idation errors at ∆ = 0 and ρ0 = 0.9 using 1,626 relevant genes,
which achieves 78% prediction accuracy. However, ∆ = 0 is an
unsatisfactory shrinkage threshold because we would prefer
relevant genes to have class centroids significantly different
from their overall centroids. Moreover, the average error rate
starts to increase almost linearly when ∆ is greater than 6 on
the cross-validation data. This 'bend' is more obvious Figure
S1(e) on [30], which shows the error rate for each of the five
random runs of fourfold cross-validation for ∆ = 0 to 14. The
optimal ∆ is estimated to be 5.6. When ∆ = 5.6 and ρ0 = 0.8,
the prediction accuracy is 93% and the number of relevant
genes is 680 (out of a total of 7,129 genes).

We also applied the USC and SC algorithms to the multiple
tumor data and obtained similar results, except that the error
rates are generally higher. Similarly, USC produces the mini-
mum average number of cross-validation errors at ∆ = 0 and
ρ0 = 0.9 using 1634 relevant genes, which achieves 74% pre-
diction accuracy. SC produces the minimum average number
of cross-validation errors at ∆ = 0.4 using all 7,129 genes. On
the other hand, the optimal parameters (∆, ρ0) can be esti-
mated by visual observation of 'bends' in the cross-validation
curves. In particular, when ∆ = 5.6 and ρ0 = 0.8, the predic-
tion accuracy is 85% and the number of relevant genes is 735
using the USC algorithm (see Figure S2 on [30] for detailed
results).

We also compared feature stability of the EWUSC and USC
algorithms at correlation threshold (ρ0) = 0.8 with the SC
algorithm [17] (which is equivalent to USC at ρ0 = 1) over dif-
ferent numbers of relevant genes (Figure 3), and showed that
EWUSC produces higher feature stability (higher average
Jaccard index) than the USC and SC algorithms. The rela-
tively high feature stability is due to relatively high numbers
of common features selected in different runs of cross-valida-
tion (see Figure S5 on [30]). We also showed that EWUSC
almost always selects relatively more stable sets of relevant
genes than USC (even over other correlation thresholds that
are not shown). Hence, our results demonstrate that incorpo-
rating variability estimates over repeated measurements
yields higher feature stability.

Comparison with published results
Ramaswamy et al. [10] reported 78% classification accuracy
on the multiple tumor data using SVMs combined using the

one-versus-all approach. In contrast, our EWUSC algorithm
achieves a classification accuracy of 93% on the test set of the
multiple tumor data. As we used a subset of the original
multiple tumor data and pre-processed the raw data using the
RMA measures [27], we evaluated the performance of SVM
combined with the one-versus-all method on the identical
pre-processed subset of multiple tumor data used in our
experiments with the EWUSC and the USC algorithms. In our
comparison study, we used the signal to noise (S2N)
measures [9] to select relevant features for each binary SVM
classifier. To produce directly comparable results, we used
the exact same five splits of the training set into cross-valida-
tion data.

Figure 4 compares the prediction accuracy on the test set of
the multiple tumor data using the EWUSC and USC algo-
rithms at the estimated optimal correlation threshold (ρ0 =
0.8), the SC algorithm [17] and SVM (with S2N for feature
selection). There are a few observations from Figure 4. First,
USC produces higher prediction accuracy than SC using the
same number of relevant genes. As SC is equivalent to USC at
ρ0 = 1, our results show that removing highly correlated genes
reduces the number of relevant genes and improves predic-
tion accuracy. Second, EWUSC generally produces higher
prediction accuracy than USC using the same number of rel-
evant genes, except when both the number of relevant genes
and prediction accuracy is low. This shows that we can poten-
tially improve prediction accuracy by taking advantage of
error estimates in the data.

Comparison of feature stability of EWUSC, USC and SC on the multiple tumor dataFigure 3
Comparison of feature stability of EWUSC, USC and SC on the multiple 
tumor data. The average Jaccard index is plotted against the number of 
relevant genes over five random runs of fourfold cross-validation using 
EWUSC and USC at ρ0 = 0.8 and SC. A high average Jaccard index 
indicates high feature stability. The EWUSC algorithm selects the most 
stable features. Note that the horizontal axis is shown on a log scale.
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Third, our SVM results (on a subset of the multiple tumor
data pre-processed with RMA measures) are generally much
better than the published result of 78% [10] (on the full
dataset pre-processed with MAS 4). Fourth, SVM with S2N as
our feature-selection method produces high prediction accu-
racy at the expense of using a lot of relevant genes. For exam-
ple, SVM requires a total of 1,699 genes over all the binary
classifiers to achieve 93% prediction accuracy, whereas our
EWUSC algorithm requires only 610 relevant genes to
achieve the same prediction accuracy. If we are willing to
trade off prediction accuracy with the number of relevant
genes, EWUSC achieves 89% prediction accuracy with only
89 relevant genes.

Results on the breast cancer data
We applied the EWUSC, USC and SC algorithms to the breast
cancer data, and compared the prediction accuracy of the
three algorithms at their optimal correlation thresholds (ρ0 =
0.7 or 0.6), and the SC algorithm (USC at ρ0 = 1). The results
are shown in Figure 5. In general, EWUSC produces higher
prediction accuracy than USC and SC when the number of
relevant genes is less than 1,000 (which is the range of
interest). In particular, EWUSC produces fewer classification
errors on the test set at its optimal parameters (two errors at
∆ = 0.8 and ρ0 = 0.7) than USC at its optimal parameters (four
errors at ∆ = 1.15 and ρ0 = 0.6).

Moreover, EWUSC generally selects relevant genes with rela-
tively small error bars (or low p-values). For example, there
are two genes with p-values equal to 1 across all 78 samples in
the training set. In other words, we have very low confidence
that the expression ratios of these two genes are changed in

any of the 78 samples of the training set. It is undesirable to
classify new samples using these genes that do not show any
expression patterns. With EWUSC (which takes error esti-
mates into consideration), these two genes are eliminated for
all ∆ > 0. On the contrary, one of these two genes is selected
as a relevant gene by USC for ∆ = 0, 0.05, ..., 0.7 at ρ0 = 1.

The detailed results of applying the EWUSC and USC algo-
rithms to the breast cancer data are shown in Figures S8 and
S9 on [30]. Surprisingly, removing highly correlated genes
does not produce any considerable improvement in predic-
tion accuracy and does not drastically reduce the number of
relevant genes. This is probably due to the fact that the
numbers of classification errors on the cross-validation data
are not well correlated with those on the test set (see [30]).
Because the test set is an additional independent dataset,
there might be some heterogeneity between the training and
test sets. Nevertheless, USC achieves comparable prediction
accuracy to SC using relatively fewer selected genes (under
100 genes) over different correlation thresholds ρ0.

We compared the feature stability of EWUSC, USC and SC at
their optimal correlation thresholds ρ0 in Figure 6. We
showed that EWUSC and SC produce relatively stable rele-
vant features than USC. The detailed comparison of feature
stability in terms of the average numbers of true/false posi-
tives/negatives are shown in Figures S12 and S13 on [30]. The
relatively high feature stability of SC is due to its relatively
high true-positive rate (common genes chosen in both ran-
dom cross-validation and using the entire training set), and
its relatively low false-negative rate (genes chosen using the
entire training set but not in the cross-validation data). How-
ever Figure S12 in [30] shows that this effect is drastic at high
numbers of relevant genes and is relatively less significant at

Comparison of prediction accuracy of EWUSC, USC, SVM and SC algorithms on the multiple tumor dataFigure 4
Comparison of prediction accuracy of EWUSC, USC, SVM and SC 
algorithms on the multiple tumor data. The horizontal axis shows the total 
number of distinct genes selected over all binary SVM classifiers on a log 
scale. Some results are not available on the full range of the total number 
of genes. For example, the maximum numbers of selected genes for 
EWUSC and USC are roughly 1,000. The reported prediction accuracy is 
78% [10] using all 16,000 available genes on the full data. The EWUSC 
algorithm achieves 89% prediction accuracy with only 89 genes. With 680 
genes, EWUSC produces 93% prediction accuracy.
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our optimal parameters with approximately 100 to 300 rele-
vant genes.

Results on the synthetic data
We compared the performance of EWUSC, USC and SC on
synthetic datasets with different numbers of repeated
measurements, different biological and technical noise levels.
As the biological noise levels of typical real microarray data-
sets are not known, we generated synthetic datasets with four
repeated measurements at different biological noise levels (α
= 0.1, 1 or 2) and some typical results are shown in Table 5a.
Our complete results are shown in Tables S1, S2 and S3 on
[30]. In most cases, USC achieves better or comparable pre-
diction accuracy (lower number of errors on the test set) than
SC using fewer relevant genes. There are a few exceptions to
this observation (see [30]). The optimal parameters (∆, ρ0)
are determined from the minimum average number of cross-
validation errors. In some cases, there are very small differ-
ences between the average numbers of cross-validation errors
of two sets of parameters, and the set of parameters that pro-
duces a slightly higher average cross-validation error rate
yields fewer relevant genes. Therefore, this 'exception' is due
to the fact that the optimal parameters are not derived from
the random cross-validation data. At low biological noise
level (α), the inference of optimal parameters is obvious and
USC always yields fewer relevant genes than SC (see Table S2
on [30]). This observation demonstrates the power of remov-
ing highly correlated genes in the USC algorithm. Our results
also showed that EWUSC consistently achieves the same pre-
diction accuracy using fewer relevant genes at low biological
noise (α = 0.1, with signal-to-noise ratio approximately 20) at
different technical noise levels (Table 5a). However, as α is

increased, the performance of EWUSC compared to USC
deteriorates. For example, EWUSC selects more relevant
genes than USC at low technical noise level but it selects fewer
relevant genes than USC at α = 1 (with signal-to-noise ratio
approximately 2). The relative performance of EWUSC is
even less favorable at high biological noise level (α = 2 with
signal-to-noise ratio roughly 1). The results in Table 5a sug-
gest that EWUSC is the method of choice when the classes are
relatively separable (at low biological noise and high signal-
to-noise ratio), but USC would be the method of choice at
high biological noise.

In general, the performance of EWUSC increases as the
number of repeated measurements increases. In particular,
we studied the effect of the number of repeated
measurements on the relative performance of EWUSC, USC
and SC at high biological noise (α = 2). The prediction
accuracy results using 1, 8 or 20 repeated measurements at
high biological noise (α = 2) are shown in Table 5b. The
results at α = 2 with four repeated measurements are shown
in Table 5a. USC typically outperforms SC by selecting fewer
relevant genes over different numbers of repeated measure-
ments. In addition, we showed that EWUSC usually selects
fewer relevant genes than USC at high biological noise when
there are 20 repeated measurements. However, when the bio-
logical noise level is high (with signal-to-noise ratio approxi-
mately 1) and the number of repeated measurements is low (1,
4 or 8), USC usually selects fewer relevant genes than
EWUSC.

Table 5a,b shows that EWUSC produces lower prediction
accuracy than USC at high biological noise when there are few
repeated measurements. However, the levels of biological
noise on real microarray datasets are not known. In practice,
we recommend users of our algorithms to compare the
average numbers of errors on the cross-validation data and
the numbers of relevant genes from the EWUSC and USC
algorithms, and then select the algorithm that produces lower
average cross-validation errors using fewer relevant genes. In
most cases, the prediction accuracy on the test set shows the
same trend as the average number of cross-validation errors.

It is interesting that prediction accuracy is not necessarily
reduced and the number of relevant genes is not necessarily
increased at higher technical noise levels. However, predic-
tion accuracy is generally reduced and the number of relevant
genes is typically increased at higher biological noise levels
(see Additional data files Tables S1, S2 and S3 at [30]). All
three algorithms (EWUSC, USC and SC) produce comparable
feature stability at different noise levels when the number of
relevant genes is below 300 (see Figures S20, S21 at [30]).

Summary of results on real data
Table 6 summarizes our prediction accuracy results using the
EWUSC, USC and SC algorithms on the NCI 60 data, multiple

Comparison of feature stability of EWUSC, USC and SC on the breast cancer dataFigure 6
Comparison of feature stability of EWUSC, USC and SC on the breast 
cancer data. The average Jaccard index is plotted against the number of 
relevant genes over five random runs of 10-fold cross-validation using the 
EWUSC algorithm at ρ0 = 0.7, the USC algorithm at ρ0 = 0.6 and the SC 
algorithm (USC at ρ0 = 1). The EWUSC algorithm produces relatively 
more stable features when the number of relevant genes is small.
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Table 5

Comparison of classification accuracy results from EWUSC, USC and SC on synthetic datasets at optimal parameters

α Number of
measurements

λ EWUSC USC SC

(a) Different noise levels with four 
repeated measurements

0.1 4 Low 100% 100% 100% Average % CV prediction accuracy

100% 100% 100% % prediction accuracy

10 24 72 Number of genes

(18, 0.8) (17, 0.7) (17.5, 1) (∆, ρ)

0.1 4 High 100% 100% 100% Average % CV prediction accuracy

100% 100% 100% % prediction accuracy

8 16 22 Number of genes

(12.5, 0.9) (12.5, 0.9) (12.5, 1) (∆, ρ)

1 4 Low 100% 100% 100% Average % CV prediction accuracy

100% 100% 100% % prediction accuracy

144 119 124 Number of genes

(2.8, 0.5) (3.1, 0.6) (3.1, 1) (∆, ρ)

1 4 High 100% 100% 100% Average % CV prediction accuracy

100% 100% 100% % prediction accuracy

89 120 122 Number of genes

(1.9, 0.5) (2.6, 0.6) (2.6, 1) (∆, ρ)

2 4 Low 96.8% 99.0% 98.8% Average % CV prediction accuracy

97.5% 100.0% 100.0% % prediction accuracy

270 326 326 Number of genes

(1.1, 0.5) (1, 0.4) (1.2, 1) (∆, ρ)

2 4 High 93.3% 98.8% 99.0% Average % CV prediction accuracy

92.5% 97.5% 97.5% % prediction accuracy

186 159 159 Number of genes

(1, 0.7) (1.5, 0.5) (1.5, 1) (∆, ρ)

(b) Different numbers of repeated 
measurements at high biological noise 
levels

2 1 Low NA 99.5% 99.5% Average % CV prediction accuracy

NA 100.0% 100.0% % prediction accuracy

NA 285 304 Number of genes

NA (1.2, 0.5) (1.2, 1) (∆, ρ)

2 1 High NA 96.5% 95.5% Average % CV prediction accuracy

NA 92.5% 92.5% % prediction accuracy

NA 258 282 Number of genes

NA (1.2, 0.5) (1.2, 1) (∆, ρ)

2 8 Low 99.8% 100.0% 100.0% Average % CV prediction accuracy

100.0% 100.0% 100.0% % prediction accuracy

246 220 221 Number of genes

(1.3, 0.5) (1.4, 0.5) (1.4, 1) (∆, ρ)

2 8 High 98.3% 99.0% 99.0% Average % CV prediction accuracy

97.5% 100.0% 100.0% % prediction accuracy

171 242 245 Number of genes

(1, 0.4) (1.3, 0.5) (1.3, 1) (∆, ρ)

2 20 Low 99.8% 100.0% 100.0% Average % CV prediction accuracy

100.0% 100.0% 100.0% % prediction accuracy

226 296 325 Number of genes

(1.3, 0.5) (1.2, 0.6) (1.2, 1) (∆, ρ)

2 20 High 99.8% 100.0% 100.0% Average % CV prediction accuracy
Genome Biology 2003, 4:R83
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tumor data and breast cancer data at optimal parameters. In
general, we showed that using variability over repeated meas-
urements to down-weight noisy genes/experiments and the
removal of highly correlated genes usually reduce the number
of relevant genes necessary for accurate class predictions. In
addition, using variability of repeated measurements to
down-weight noisy genes/experiments generally increases
feature stability. Hence, our EWUSC and USC algorithms
represent advances over the published SC algorithm [17].

On the NCI 60 data, USC generally produces higher predic-
tion accuracy than SC using the same number of relevant
genes. This result shows that the removal of highly correlated
genes reduces the number of genes necessary for class
prediction while achieving comparable or higher prediction
accuracy.

On the multiple tumor data, EWUSC has the following advan-
tages over other methods: EWUSC produces higher predic-
tion accuracy and selects fewer relevant genes than all other
approaches. In particular, EWUSC achieves 93% of predic-
tion accuracy using less than 10% of the genes compared to
78% of prediction accuracy using all the available genes in the
published results [10]. Each of the binary SVM classifiers
chooses a different subset of relevant genes while our EWUSC
algorithm uses only one set of relevant genes for all classes.

van't Veer et al. [14] reported two classification errors using
70 relevant genes on the test set of the breast cancer data (out
of a total of 19 samples). Our EWUSC produces the same
number of errors on the test set with 271 relevant genes. How-
ever, our EWUSC algorithm has the following advantages
over the prognostic classifier used in [14]. No ad hoc filtering
step is necessary. The EWUSC algorithm automatically

avoids choosing noisy genes. The EWUSC algorithm can be
applied to data with any number of classes. This is in contrast
to the prognostic classifier, which is not applicable to the mul-
tiple tumor data (which consists of 11 classes) or the NCI 60
data (which consists of 8 classes).

Comparison of USC, EWUSC and SC 
algorithms
The key characteristics of EWUSC, USC and SC are summa-
rized in Table 7. We illustrated the EWUSC and USC algo-
rithm on both real and synthetic datasets. Our results on real
data are summarized in Table 6. We compared the
performance of USC with SC, and showed that USC typically
achieves comparable prediction accuracy using a smaller set
of relevant genes on both real and synthetic datasets. We
showed that the step of removing highly correlated genes in
USC is effective in reducing the number of relevant genes
without sacrificing prediction accuracy, and hence, USC is an
improvement over SC.

We also compared the performance of EWUSC (which down-
weights noisy genes and noisy experiments) with USC on both
real and synthetic datasets. On real microarray datasets (mul-
tiple tumor data and breast cancer data), we showed that
EWUSC usually achieves higher or comparable feature
stability using a smaller set of relevant genes, and EWUSC
avoids choosing noisy relevant genes for classification of sam-
ples. Hence, we showed that using variability over repeated
measurements improves classification and feature-selection
results. Moreover, we compared EWUSC with other existing
classification and feature-selection algorithms, and showed
that EWUSC produces better or at least comparable results
than previously reported results on real datasets (see Table

100.0% 100.0% 100.0% % prediction accuracy

221 252 252 Number of genes

(0.9, 0.6) (1.3, 0.5) (1.3, 1) (∆, ρ)

Synthetic datasets were generated at different levels of biological noise (α) and technical noise (λ). The average percentage of cross validation (% CV) 
accuracy, the percentage of prediction accuracy on the test set, the number of relevant genes at the optimal parameters (∆, ρ0) are shown. For each 
synthetic dataset, the algorithm with the maximum percentage of average cross validation accuracy, maximum prediction accuracy, or the minimum 
number of relevant genes is shown in bold. (a) Typical classification accuracy results using synthetic datasets with four repeated measurements at 
different biological noise levels (α = 0.1, 1 or 2) and difference technical noise levels (λ = 1, 5 or 10). When the biological noise level is low (α = 0.1), 
EWUSC consistently achieves the same prediction accuracy using fewer relevant genes at various technical noise levels. However, at medium 
biological noise level (α = 1), EWUSC typically outperforms USC and SC at high technical noise level and not at low technical noise level. When the 
biological noise level is high (α = 2), EWUSC is often not the method of choice. (b) Typical classification accuracy results using synthetic datasets at 
high biological noise level (α = 2) with 1, 8, or 20 repeated measurements at different technical noise levels. When there is no repeated 
measurement (the number of repeated measurements = 1), there are no variability estimates over repeated measurements and hence, EWUSC is 
reduced to USC. The results with four repeated measurement at α = 2 are shown in (a). Our results over multiple synthetic datasets showed that 
EWUSC only outperforms USC with a large number of repeated measurements (20) at high biological noise (α = 2). We also showed that USC 
typically outperforms SC by choosing a smaller number of relevant genes in most scenarios (over different biological and technical noise levels, and 
different numbers of repeated measurements).

Table 5 (Continued)

Comparison of classification accuracy results from EWUSC, USC and SC on synthetic datasets at optimal parameters
Genome Biology 2003, 4:R83
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6). On the other hand, our results on synthetic datasets
showed that EWUSC is usually the method of choice when the
classes are well separated (that is, when biological noise is low
or signal-to-noise ratio is high).

Our main contribution is that we use cross-validation to select
a correlation threshold (ρ0) for the removal of highly corre-
lated genes. This idea is adopted in both USC and EWUSC,
which in turn take advantage of the interdependence of genes
without sacrificing prediction accuracy. Our second major
contribution is that we adopted the error-weighted method in
our integrated feature-selection and classification algorithm,
EWUSC. To the best of our knowledge, EWUSC is the only
classification algorithm applicable to microarray data with
any number of classes that takes advantage of variability in
repeated measurements.

There are many directions for future work. The error-
weighted idea can be applied to other distance-based classifi-
cation algorithms, for example, the k-nearest neighbour,
which was shown to achieve high prediction accuracy [23].

Our next step is to compare the performance of the EWUSC
and USC algorithms with a wide range of other classification
and feature selection algorithms. One problem in the litera-
ture is that researchers often use different pre-processed sub-
sets of published array data, which makes direct comparisons
of published results difficult. Therefore, there is a need to
conduct a large-scale evaluation study of various classifica-
tion and feature selection algorithms on microarray data.

Details of algorithms
The SC algorithm of Tibshirani et al. [17]
Let xij be the expression level for gene i = 1, 2, ..., p and sam-
ples j = 1, 2, ..., n. Suppose there are a total of K classes, and
let Ck be the set of all nk samples in class k. The overall cen-
troid of gene i is, 

,

and the class centroid of class k and gene i is,

Table 6

Summary of prediction accuracy results

Data Parameters EWUSC USC SC Published results

NCI 60 data* ρ0 NA 0.6 1.0 NA

∆ NA 1.0 1.0 NA

Number of relevant genes NA 2,315 3998 200

Prediction accuracy NA 72% 72% ~40-60% [23]

Multiple tumor data (estimated optimal parameters)† ρ0 0.8 0.8 1.0 NA

∆ 5.6 5.6 8.8 NA

Number of relevant genes 680 735 3902 All genes

Prediction accuracy 93% 85% 78% 78% [10]

Multiple tumor data (global optimal parameters)‡ ρ0 0.9 0.9 1.0 NA

∆ 0 0 0.4 NA

Number of relevant genes 1626 1634 7129 All genes

Prediction accuracy 78% 74% 74% 78% [10]

Breast cancer data ρ0 0.7 0.6 1.0 NA

∆ 0.80 1.15 1.1 NA

Number of relevant genes 271 82 187 70

Prediction accuracy 89% 79% 84% 89% [14]

The optimal parameters (ρ0 and ∆), number of relevant genes chosen, and prediction accuracy for the NCI 60 data, multiple tumor data and breast 
cancer data are summarized here. Both EWUSC (error-weighted, uncorrelated shrunken centroid) and USC (uncorrelated shrunken centroid) were 
motivated by SC (shrunken centroid) [17]. Both EWUSC and USC take advantage of interdependence between genes by removing highly correlated 
relevant genes. EWUSC makes use of error estimates or variability over repeated measurements. SC [17] is equivalent to USC at ρ0 = 1. The 
optimal parameters (∆, ρ0) for EWUSC are estimated from the cross-validation results of EWUSC, while the optimal parameters (∆, ρ0) for USC are 
independently estimated from the cross-validation results of USC. Entries with the minimum number of selected genes or highest prediction 
accuracy across all methods are highlighted in boldface type. *Since no repeated measurements or error estimates are available, EWUSC is not 
applicable to the NCI 60 data. In addition, there is no separate test set available for the NCI 60 data, typical results of random partitions of the 
original 61 samples into training and test sets are shown. †The prediction accuracy and number of relevant genes are produced using optimal 
parameters (∆, ρ0) estimated by visual observation of 'bends' in the random cross-validation curves. ‡The prediction accuracy and number of 
relevant genes are produced using global optimal parameters, that is (∆, ρ0) that produces the minimum average numbers of cross-validation errors 
over all ∆ and all ρ0.

x x ni ij
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n
=

=
∑
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/
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.

The relative difference, dik, is the difference in class centroid
( ) and overall centroid ( ), standardized by the within-
class standard deviation of gene i (si); that is,

,

where

, ,

and s0 is the median value of the sis over all genes i. The rela-
tive difference dik is similar to a t-statistic, comparing the
class centroid to the overall centroid. The shrunken relative
difference d'ik reduces dik by an amount ∆ if |dik| > ∆, other-
wise, sets d'ik to zero; that is,

.

Hence, d'ik gets rid of genes with class centroids not signifi-
cantly different from the overall centroids. The amount of
shrinkage ∆ is determined by m-fold cross-validation such
that the number of cross-validation classification errors is
minimized. Genes with at least one positive shrunken relative
difference d'ik (over all classes k) are selected as relevant fea-
tures. The shrunken class centroid ( ) is defined as

. The discriminant score for a new
sample x* and class k is defined as 

,

where πk = nk/n. The first term in the discriminant score rep-
resents the standardized squared distance of x* to the
shrunken class centroid, and the second term represents a
correction for the class prior probability. Sample x* is
assigned to the class k with the minimum discriminant score.

Our EWUSC algorithm
Mathematical definitions
The EWUSC algorithm is a modification of the SC algorithm
with two key differences: noisy measurements are down-
weighted and redundant genes (features) are removed. Let σij

be the variability estimate of gene i and sample j over repeated
measurements, where i = 1, 2, ..., p and j = 1, 2, ..., n. The
weighted overall centroid for gene i is defined as 

,

and the weighted class centroid for gene i and class k is 

.

Noisy measurements with a large variability estimate σij are
down-weighted in the weighted overall and class centroids.
The weighted relative difference is similarly defined as 

,

where the weighted within-class standard deviation, 

,

average variability estimate for class k,

,

the scaling factor 

,

 is the median of all s over all genes i, and ωi is the median
variability estimate for gene i across all n experiments. When

Table 7

Summary of EWUSC, USC and SC

Desirable features EWUSC USC SC

Make use of variability over repeated 
measurements

+

Applicable to data with any number of classes + + +

Exploit dependence relationships between 
genes

+ +

Integrated approach for both feature selection 
and classification

+ + +

No assumption on data distributions + + +

x x nik ij
j C

k
k

=
∈
∑ /

xik xi

d
x x

m s sik
ik i

k i
=

−
+( )0

m n nk k= +1 1/ / s
n K

x xi ij ik
j Ck k

2 21=
−

−( )
∈
∑∑

′ =
( ) −( ) >

d
sign d d if d

otherwise
ik

ik ik ik{
| | | |∆ ∆

0 

′xik

′ = + +( ) ′x x m s s dik i k i ik0

δ πk

i ik

i

k
i

p

x
x x

s s
( ) og*

*

l=
− ′( )
+( )

−
=
∑

2

0
2

1

2

x
x

i
ij

ijj

n

ijj

n
=

= =
∑ ∑σ σ

/
1 1

1

x
x

ik
ij

ijj C ijj Ck k

=
∈ ∈
∑ ∑σ σ

/
1

d
x x

m s sij
ik i

k i i
=

−
+ +( )0 ω

s

x x

i

ij ik

ijj Ck

ij ikk

K

j

n
k2

2

2 2
11

1 1
=

−

−

∈

==

∑∑

∑∑

( )

^

σ

σ σ

^ /σ σik ij k
j C

n
k

=
∈
∑

mk
ijj C

ijj C

ijj

n

ijj

n
k

k

2
2

2

2
1

2

1

1

1

1

1
= +∈

∈

=

=

∑

∑

∑

∑

σ

σ

σ

σ
( ) ( )

s0 si
Genome Biology 2003, 4:R83



R83.16 Genome Biology 2003,     Volume 4, Issue 12, Article R83       Yeung and Bumgarner http://genomebiology.com/2003/4/12/R83
the variability estimates are equal for all samples; that is, σij =
σi for j = 1, 2, ..., n, the above definitions for , ,  and 
can be simplified to the corresponding formulae from the SC
algorithm. The intuition behind these error-weighted defini-
tions is that noisy samples with large variability estimates σij

are down-weighted. The median variability for gene i (ωi) in
the denominator of the weighted relative difference ( )
down-weights noisy genes such that genes with large variabil-
itiy over all samples are less likely to be selected as relevant
genes. The definition of weighted shrunken relative differ-
ence  is very similar to that of d'ik; that is,

,

where the amount of shrinkage ∆ is determined by cross-val-
idation. Similarly, the weighted shrunken centroid is defined
as , and the weighted discrimi-
nant score for a new sample x* with variability estimate σI*
and class k is

.

Error-weighted correlation
Hughes et al. [29] defined error-weighted correlation that
weighs expression values with error estimates such that
expression values with relatively high errors are down-
weighted. Let σge be the error estimate of the expression level
of gene g under experiment e, where g = 1, ..., p and e = 1, ...,
n. The error-weighted correlation between a pair of genes i
and j is defined as

where

is the weighted average expression level of gene i.

Algorithm outline for EWUSC
Inputs to the algorithm: training set (with known classes)
and test set

For each gene i and each class k,

Compute , ,  and  using the training set.

For each ∆,

Compute  for each gene i and class k.

For each gene i, denote the maximum shrunken relative dif-
ference over all K classes by .

Let S∆ be the set of genes with at least one positive shrunken
relative difference over all the K classes; that is, S∆ = {g:βg >
0}.

Sort the genes g in S∆ in descending order of βg. Denote this
sorted set by G = {g1, g2, ..., gt}.

For ρ0 = 1, 0.9, 0.8, ..., 0.1, 0,

Consider all pairs of genes (gi, gj) in G such that i < j (that is,
βgi > βgj).

Compute the error-weighted correlation ρ between (gi, gj).
If ρ ≥ ρ0, remove gene gj from S∆.

Let S(∆, ρ0) be the set of genes left in S∆ after removing the
highly correlated genes.

Apply the discriminant score to predict the classes of sam-
ples in the test set using the relevant genes in S(∆, ρ0).

Output of the algorithm: a predicted class for each sample
in the test set for each ∆ and each ρ0.

The above algorithm is applied to the m-fold cross-validation
data to determine the optimal parameters ∆ and ρ0 that min-
imize the number of classification errors on the training set.
The optimal parameters are then used to predict classes on
the unknown samples on the test set.

The Jaccard index as a measure of feature stability
We define feature stability as the average level of agreement
between the set of relevant genes chosen in a fold of the cross-
validation data and the set of relevant genes chosen using the
full training set over all m folds of the cross-validation data.
Let S(∆, ρ0) be the set of relevant genes chosen using the
entire training set, and let S(m, ∆, ρ0) be the set of relevant
genes chosen in the mth fold of the cross-validation data with
parameters ∆ and ρ0. We define the number of true positives
(TP) as the number of relevant genes chosen in both S(∆, ρ0)
and S(m, ∆, ρ0). Similarly, we define the number of false pos-
itives (FP) as the number of relevant genes chosen in S(m, ∆,
ρ0) but not in S(∆, ρ0), and the number of false negatives (FN)
as the number of relevant genes chosen in S(∆, ρ0) but not in
S(m, ∆, ρ0). The Jaccard index, J(m, ∆, ρ0), is defined as TP/
(TP + FP + FN). Intuitively, the level of agreement is high
when there are many true positives, and relatively few false
positives and false negatives. Hence, a high Jaccard index
indicates a high level of agreement. Feature stability is the
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average Jaccard index over all m folds; that is, J(∆, ρ0) = aver-
age of J(m, ∆, ρ0) over all m folds.

Support vector machines (SVMs)
The basic idea behind SVM [33] is that it maps data points to
a high-dimensional space such that the data points are line-
arly separable. However, SVM avoids computations in high-
dimensional space by the use of kernel functions, which
allows computations in the input space. There are many dif-
ferent types of kernel functions, with different effects. Brown
et al. [34] showed that the radial kernel functions work very
well in classifying genes on array data.

We augmented the SVM implementation by Noble et al. [35]
to incorporate the signal to noise (S2N) measure for feature
selection. The S2N measure is defined as the difference of the
means in the two classes divided by the sum of the standard
deviations of the two classes. Because we adopt the one-ver-
sus-all approach [10,36] to combine the binary SVM classifi-
ers, each binary classifier distinguishes samples of a given
class from samples from all the other classes. The multiple
tumor dataset consists of 11 classes (see Table 3 for details),
and so there is a total of 11 binary SVM classifiers for this data.
We applied the S2N measure to select a given number of rel-
evant genes on the four-fold cross-validation data using a
binary SVM classifier (with a radial kernel function). We then
combined the results from each of the 11 SVMs by assigning
the sample to the class of the classifier with the maximum dis-
criminant value. This process is repeated for each of the five
random fourfold splits of the training set. The results on the
cross-validation data are shown in Figure S7(a) on [30], in
which the average number of classification errors is plotted
against the number of relevant genes chosen. The next step is
to apply this process to the entire training set, and use the
selected genes to classify the samples on the test set. The
results on the test set are shown in Figure S7(b) on [30], in
which the number of classification errors on the test set is
plotted against the number of relevant genes chosen.

Details of dataset analysis
Multiple tumor data
In order to process the multiple tumor data [10] with the
RMA measure implemented in the Bioconductor project, we
need the raw data (.cel files) which contain the expression
level for each oligo (probe cell). The original multiple tumor
data consists of 14 tumor types which were hybridized to both
the Affymetrix Hu6800 and Hu35K chips. However, only a
subset of the original '.cel' files (mostly data from the Hu6800
chips) is available. Hence, the subset of the multiple tumor
data we used consists of all the 7,129 genes on the Hu6800
chips and 11 tumor types, with 96 samples in the training set
and 27 samples in the test set. Table 3 shows the tumor types
and class sizes for both the training and test sets.

Error model in the breast cancer data
The log ratios and their associated p-values are available from
the breast cancer data. The p-values are confidence measures
that expression ratios are significantly different from 1. Using
the error model documented in the 'Error Model' supplement
of Hughes et al. [29], we converted the p-values into error
estimates. Assuming the distribution of error magnitudes can
be approximated by the normal distribution, significance val-
ues (or p-values) can be derived from the Gaussian error
function of the ratio of an observed log expression ratio to its
error estimate [29]. The p-value (p) for an observed log ratio
(r) is related to the error estimate of the observed log ratio (s)
by p = 2 * (1 - Erf(|X|) where X represents the ratio of an
observed log expression ratio (r) to its error estimate (σ) and
Erf is the Gaussian error function. Hence, the error estimates
of the log expression ratios can be derived from the p-values.
However, when a p-value is equal to 1, the error estimate is
arbitrarily large. Hence, we ignored the corresponding
expression ratio in our EWUSC algorithm when its p-value is
equal to 1.

Synthetic data
The synthetic training sets consist of 1,000 genes, 80 sam-
ples, and four classes such that there are 20 samples in each
class, and the synthetic test sets consist of 1,000 genes and 40
samples with 10 samples in each class. Two parameters con-
trol the noise levels in the synthetic datasets - the biological
noise level (α) and the technical noise level (λ). Let P be the
matrix of patterns with 64 rows and 4 columns such that each
entry P [i,j] is the ith pattern of class j (i = 1,2,..., 64, j =
1,2,3,4). Table 8 shows the pattern matrix P used to generate
synthetic datasets in our study. Let X(i, j) be the true
expression value of gene i under experiment j before technical
noise is added. Let Y(i, j, r) be the rth measured expression
value of gene i under experiment j, where i = 1, 2, ..., p, j = 1,2,
..., n, r = 1,2,..., R. Suppose gene i is generated from the mth
patterned gene that belongs to class k. X(i, j) is generated
from the random normal distribution with mean P [m,k] and
standard deviation α. Technical noise is randomly sampled
from a real dataset. Four hybridizations were repeated on the
yeast galactose data [32], and the standard deviation of each
gene under each experiment is adopted as our estimated tech-
nical noise. Let ε be the randomly sampled technical noise
(standard deviation over four repeated measurements) from
the yeast galactose data [32]. Y(i,j,r) is generated from the
random normal distribution with mean X(i,j) and standard
deviation ελ. Hence, a high technical noise level λ indicates
noisy repeated measurements. Moreover, there are five dupli-
cates of each of these 64 patterned genes so that there is a
total of 320 patterned genes. Each of these five duplicated
patterned genes is generated using the same row in the pat-
tern matrix P.

For non-patterned genes, we randomly sample from the
breast cancer data such that these non-patterned genes do
not exhibit any class-specific expression patterns.
Genome Biology 2003, 4:R83
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Specifically, let q be a non-patterned gene. Suppose we ran-
domly sample a gene g and experiment e from the breast can-
cer data such that E[g,e] is the expression ratio of gene g and
experiment e and s[g,e] is the error estimate of gene g and
experiment e in the breast cancer data. Y(q,j) is generated
from a random normal distribution with mean E[g,e] and
standard deviation s[g,e] for sample j in the synthetic training
or test set. Note that all expression values of the non-pat-
terned gene q are sampled from the same gene g (which is
chosen randomly) from the breast cancer data. As experiment
e is independently sampled for each sample j, any class spe-
cific expression pattern in the original breast cancer data
would be destroyed.

Both the synthetic training and test sets are generated using
the same model described above. In our experiments, we set
p = 1000, α = 0.1, 1 or 2, and λ = 1 (low technical noise) or 10

(high technical noise) with R = 1 or 4 or 20 repeated measure-
ments. We also experimented with synthetic datasets with a
higher fraction of non-patterned genes and showed that these
larger datasets produce similar results (data not shown).
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Table 8

Pattern matrix for synthetic data

Class 1 Class 2 Class 3 Class 4

1 0 0 0

-1 0 0 0

0 1 0 0

0 -1 0 0

0 0 1 0

0 0 -1 0

0 0 0 1

0 0 0 -1

1 1 0 0

-1 -1 0 0

1 -1 0 0

-1 1 0 0

1 0 1 0

-1 0 -1 0

1 0 -1 0

-1 0 1 0

1 0 0 1

-1 0 0 -1

1 0 0 -1

-1 0 0 1

0 1 1 0

0 -1 -1 0

0 1 -1 0

0 -1 1 0

0 1 0 1

Each row represents a pattern, and each column represents a class 
such that entry P(i, j) is the ith pattern of class j. An entry of 1 means 
upregulated while an entry of -1 means downregulated. For example, 
the first row indicates that a patterned gene is upregulated in class 1 
compared to all the other three classes.
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