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Protein family review
The retinoblastoma family: twins or distant cousins?
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Summary

The destiny of a cell - whether it undergoes division, differentiation or death - results from an
intricate balance of many regulators, including oncoproteins, tumor-suppressor proteins and cell-
cycle-associated proteins. One of the better-studied tumor suppressors is the retinoblastoma
protein, known as pRb or pl05. Two recently identified proteins, pRb2/p130 and p107, show
structural and functional similarities to pRb, and these proteins and their orthologs make up the
retinoblastoma (Rb) family. Members of the family have been found in animals and plants, and a
related protein is known in the alga Chlamydomonas. Members of the Rb family are bound and
inactivated by viral proteins and, in turn, bind cellular transcription factors and repress their
function, and can also form complexes with cyclins and cyclin-dependent kinases and with histone
deacetylases. They are found in the nucleus and their subnuclear localization depends on binding
to the nuclear matrix. Members of the family form part of a signal-transduction pathway called
the Rb pathway, which is important in cell-cycle regulation and have roles in growth suppression,

differentiation and apoptosis in different organisms and cell types.

Gene organization and evolutionary history
Gene structure and chromosomal localization

The three human genes encoding members of the retinoblas-
toma (Rb) family share some features that are similar to
other housekeeping genes, including a lack of the canonical
TATA or CAAT boxes found in the promoters of most differ-
entially expressed genes, the presence of a GC-rich zone
immediately surrounding the main transcription-initiation
site, the presence of multiple consensus sequences for
binding the Sp1 transcription factor, and the presence of
multiple transcription start sites [1-3].

The human RB gene (which encodes a protein of 105 kDa
and is also called p105) was first identified when both famil-
ial and sporadic retinoblastoma, a form of malignant tumor
of the retina, were found to be associated with deletions at
13q14 [4-6]. The RB transcript is encoded by 27 exons

dispersed over about 200 kilobases (kb) of genomic DNA;
the exons range from 31 to 1,889 base pairs (bp) in length
and the introns range from 80 bp to 60 kb.

The human p107 gene (which encodes a protein of 107 kDa
and is also known as RBLi1) is located at chromosome
20q11.2, a region of special interest because of its association
with some myeloid disorders. The arrangement of the p10o7
gene is similar to that of the other members of the Rb family.
It is composed of 22 exons that vary in length from 50 to 840
bp, spanning approximately 100 kb of genomic DNA.

The human Rb2 gene (which encodes a protein of 130 kDa
and is also called RBL2) maps to chromosome 16q12.2. The
Rb2 messenger RNA is 4.6 kb in length; the gene consists of
22 exons and spans over 50 kb of genomic DNA, and the 21
introns vary in size from 82 bp to almost 9 kb.
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The three Rb-family proteins are also known as ‘pocket pro-
teins’, after their conserved pocket region, which is composed
of two conserved domains (A and B) separated by a spacer
(Figure 1). The pocket is important for the binding of other
proteins (see below). The exons encoding domain A of the RB
gene (exons 11-17), domain B (20-23), and the spacer region
between domains A and B (18 and 19) are very similar in all
members of the family. Interestingly, amino-acid residues that
are identical between p107 and pRb2 are also found in the
same exonic positions. This feature is not shared with RB, sug-
gesting a closer evolutionary relationship between the p1o7
and Rb2 genes [7]. Additionally, the spacer regions of Rb2 and
p107 show higher similarity to each other than to RB [8].

Evolutionary history

The Rb-family proteins are fairly well conserved over a range
of species. The arrangement of helices in domain A of pRb
strongly resembles the cyclin-box folds found in cyclin A and
the transcription factor TFIIB [9]; the Rb-family proteins
may therefore have arisen in evolution by a tandem duplica-
tion of this fold. A phylogenetic tree of pRb protein
sequences is shown in Figure 2.

Mammals

Homologs of the three human Rb-family proteins have also
been found in mice. The mouse pRb2 protein has a 43-
amino-acid deletion in the pocket domain compared with
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Comparison of the genomic structure of human retinoblastoma genes and of the functional domains in different Rb-related proteins. Boxes indicate
exons of the human RB gene; hatched boxes indicate exons encoding domains A and B. Adapted from [7].
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Phylogenetic tree illustrating the diversity of pRb in eight representatives of different phyla and kingdoms. Numbers are branch lengths, which correspond
to the estimated evolutionary distance between protein sequences. The tree was constructed using ClustalWV.

the human homolog and other members of the family. This
region (starting at residue 211 in human pRb2 [10,11]) is
highly conserved in human pRb2 and p107, showing 70%
identity over the 43 amino acids, but human pRb2 and pRb
are only 50% identical over 21 amino acids of the region [12].
The corresponding region in mouse p107 binds and
represses the transcription factor Sp1, but the significance of
this deletion in mouse pRb2 remains unclear [13]. In both
humans and mice, pRb2 shows a higher identity in amino-
acid sequence to p107 than to pRb. Regions conserved
between pRb2 and pRb are limited to the A and B domains
of the pocket region, but conserved regions between pRb2
and p107 appear throughout the entire length of the protein,
especially in the amino-terminal region, suggesting that the
amino-terminal region could be very important for their
functions [12]. Domains A and B and the carboxy-terminal
region are highly conserved between the human and mouse
p107 proteins. Domains A and B exhibited 90.6% and 89.4%
identity respectively, and the carboxy-terminal region
showed 91.5% similarity. With the exception of the 100%
identity found in the string of amino acids stretching from
position 782 to 889 in the B domain of human and mouse
p10o7, the highest level of homology (94%) was found in the
amino-terminal domain [14].

Rat pRb2 is almost 90% identical in amino-acid sequence to
human pRb2 [15,16]. The 4.87 kb ¢cDNA contains an 1,135
amino-acid open reading frame with high homologies to the

human and mouse Rb2 and a partial homology to Rb. Rat
pRb2 and rat pRb are conserved only in the pocket region
and are only 32% identical in this region [16]._

Other vertebrates

Comparison of chicken Rb-family proteins with those of
mouse, human and Xenopus reveals a 66% amino-acid iden-
tity in the A and B domains of the pocket region but only
33% identity in the spacer between A and B [17]. A 20-
amino-acid sequence at the carboxyl terminus is completely
conserved in all the aforementioned Rb-family sequences,
but its biological function is not yet clear. Although the
chicken Rb family proteins demonstrate great similarity to
the pRb homologs in mice, human and Xenopus in multiple
regions, they also possess characteristics that are unique to
each species. The region near the amino terminus is the
most variable in Rb proteins in these four species. Chicken
and Xenopus pRb each contain a unique and shorter amino
terminus than the mouse and human homologs [17,18].
There are no known homologs of human p107 or pRb2 in
Xenopus or chicken.

Invertebrates

The Drosophila RBF protein is intriguing, as it has struc-
tural features that resemble all three members of the Rb
family, suggesting that the RBF gene may have evolved from
a common ancestor of the human Rb-family genes. Paradox-
ically, the nucleotide sequence of RBF is more similar to
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human p107 and RB2 genes than it is to the Rb gene, but the
RBF protein sequence has a higher percentage identity with
pRb than with p107 or pRb2. The highly conserved spacer
domain found in both p107 and pRb2 is absent in RBF, as is
a long insertion in the B segment of the pocket domain,
which is present in pRb2 and p107 but not in pRb [19].

The nematode Caenorhabditis elegans has a protein called
LIN-35 that has significant sequence similarity with the
human Rb pocket proteins [20]. LIN-35 shows 20% identity
to human pRb2, 19% to p107, 15% to pRb, and 16% to
Drosophila RBF [20]. The highest conservation is found in
domains A and B, but the spacer region is not as highly con-
served; it is short, as in human pRb. Because LIN-35 is not
particularly similar in sequence to any one of the human Rb
family proteins, LIN-35 may have diverged from an ancestor
common to the Rb family proteins.

Plants

Until recently, it was thought that the Rb family proteins
were peculiar to vertebrates [21], but in 1998 a homolog was
cloned in a plant [22], and Rb homologs have now been
found in maize, tobacco, Chenopodium rubrum (red goose-
foot) and Arabidopsis. The conservation of Rb and of other
components of the Rb pathway in plants suggests that Rb
may have an important role in the development of all multi-
cellular organisms, not just animals. The highest level of
identity with human Rb-family proteins (20-35%) is found
in the pocket region [23].

There is no evidence of an Rb pathway in any unicellular
organism, but the mat3 gene of the unicellular green alga
Chlamydomonas reinhardtii, which belongs to the land
plant lineage, has a domain structure homologous to Rb
[22]. Tt contains a pocket region with two domains separated
by a spacer and also has the sequence Leu-X-Cys-X-Glu
(LxCxE in the single-letter amino-acid code, where x indi-
cates a non-conserved amino acid), which is characteristic of
the Rb-family proteins and is thought to be a peptide-
binding site (see Characteristic structural features). Unlike
mammalian Rb-family mutants, however, mat3 mutants do
not have a shortened G1 phase, do not enter S phase prema-
turely, and can exit the cell cycle and differentiate normally,
indicating that this Chlamydomonas gene has a different
role from that of animal Rb-like genes [24].

Characteristic structural features

The three pocket proteins consist of an amino-terminal
domain, a pocket region composed of two conserved
domains (A and B, residues 373-771 in human pRb) sepa-
rated by a spacer region, and a carboxy-terminal domain.
The pocket domain is responsible for interaction of
the protein with transcription factors, cyclins, and cyclin-
dependent kinases (CDKs), and for its functional activity
[1,6,8,14,25,26]. The pRb2 and p107 proteins are thought to

be more closely related to each other than they are to pRb.
Some amino acids present in the B region of pRb are lacking
in p1o7 and in pRb2. Conversely, p107 and pRb2 share a
motif in the spacer region, which is absent in the pRb
sequence. This enables them to form a strong binding site
for cyclin A-Cdk2 and cyclin E-Cdk2 [8,14,26-29]. Addition-
ally, pRb2 and p107 share a sequence near the amino termi-
nus that is missing in pRb. A 20-amino-acid sequence at the
carboxyl terminus is completely conserved in most Rb-
family homologs, but its biological function has not been
yet clarified.

The crystal structure of human pRb domain A shows that it
is composed of nine a helices, two of them forming a
hydrophobic core and the remaining seven surrounding this
core [9]. In domain A, 47 amino acids are completely con-
served between the three human Rb-family proteins, of
which 21 are polar and 26 are non-polar. The majority of the
conserved non-polar residues interact to stabilize the ter-
tiary structure of the proteins. Interactions of the polar con-
served residues suggest that they also have a role in
stabilizing the tertiary structure. The A and B domains of the
PRb pocket region have a cyclin-fold structural motif that is
also common to cyclins and the transcription factor TFIIB.
The pRb pocket domain also has a  hairpin, an extended
tail, and eight additional helices. The cyclin folds of the B
domain are more similar to the cyclin folds in cyclin B and
TFIIB than they are to the cyclin folds of the A domain [30].

Both domains A and B are required for interactions with
viral oncoproteins and cellular transcription factors [9,30].
The pocket region can also bind proteins that lack the LxCxE
motif, such as the E2F family of transcription factors
[31-35]. In pRb2 and p107 the spacer region can bind cyclin
A-Cdk2 and cyclin E-Cdk2 complexes [36-39]. The surface
residues of pRb that are conserved across species and with
human p107 and pRb2 proteins cluster in two regions: the
LxCxE-binding site in the B domain and the interface
between the A and B domains. The conservation of this
interface suggests that it may participate in binding to E2F
or to proteins that may mediate transcriptional repression
by pRb. Conservation of regions within the LxCxE binding
site across species indicates its structural and functional
importance. The four residues that meet the backbone of the
peptide are identical in pRb homologs from human, newt,
chicken, fruit fly and maize and in the human p107 and
pRb2 [30].

A dozen distinct phosphorylation sites have been found in
the spacer region, but the exact number of serine and threo-
nine residues of pRb that can be phosphorylated during the
G1 phase remains undefined [40]. Phosphorylation of pRb is
important because it can influence its relationship with
interacting proteins [40]. Ten of the potential phosphoryla-
tion sites are fully conserved between the three members of
the Rb family in the rat: four in the amino-terminal region,



five in the carboxy-terminal region, and one in the spacer
region [16].

Localization and function

Subcellular distribution

Rb-family proteins are found in the nucleus. High-resolu-
tion deconvolution microscopy studies have revealed that,
during G1 and S phases, the three pocket proteins are found
in perinucleolar foci [41]. A recent study reported that some
mechanisms of control of the cell cycle correlate, at least in
part, with the compartmentalization of Rb proteins within
the nucleus [42]. For example, the cell-cycle-dependent
binding of pRb2 and p107 to the E2F4 transcription factor
changes as a function of their subnuclear localization.
Specifically, in the nucleoplasm, pRb2-E2F4 complexes are
more numerous during Go and G1 phases, whereas in the
nucleolus they increase in S phase. In contrast, p107-E2F4
complexes in the nucleoplasm are more numerous in S
phase than in Go or G1 phases, and no cell-cycle change is
observed in the nucleolus [42].

Additionally, pRb2, p107, E2F4 and the complexes between
pRb2 and the histone deacetylase HDAC1 are all associated
with the inner nuclear matrix, and they localize to sites dif-
ferent from pRb. The nuclear matrix, which is composed of
chromatin and filamentous structures, is an integral part of
nuclear structure and undergoes profound reorganization
during DNA replication, gene expression and mitotis [43].
Recently, it has been shown that pRb is associated with the
nuclear matrix only during Go and G1 phases [44], whereas
pRb2 and p107 associate with the nuclear matrix in a phase-
independent manner [42]. According to Mancini et al. [44],
pRb is distributed widely throughout the matrix, particu-
larly at the nuclear periphery and in nucleolar remnants,
whereas the core filaments of the matrix contain no
detectable pRb. A significantly larger amount of pRb2,
p107, E2F4, and their complexes were found in interchro-
matin than in heterochromatin regions [42]. Because active
transcriptional sites are confined to the less-condensed
interchromatin regions, it is not surprising that both Rb-
related proteins and E2Fs, possibly associated with HDAC1,
are more numerous in these regions.

The phosphorylation status of pRb2 and p107 regulates
their association with different parts of the nuclear matrix.
In extracts from Go/G1-phase cells, pRb2 and p107 are pri-
marily in a hypophosphorylated state; in S-phase extracts,
p107 remains hypophosphorylated but pRb2 is hyperphos-
phorylated, weakly bound to the nuclear matrix and inacti-
vated. This suggests that the repressional control exhibited
by pRb2 could be more intricate than that of pRb because
the interaction of pRb2 with the nuclear matrix is modu-
lated by phosphorylation as the cell moves from G1 to
S phase. Nuclear structure may bring specific sequences
together with transcriptional factors in both normal and
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transformed cells [45]; the association of p107 and pRb2
with the inner nuclear matrix is therefore a promising new
area of research.

Tissue expression patterns

The three Rb-family members vary in their expression pat-
terns in different tissues at various stages of the cell cycle:
PRb is abundant during all phases of the cell cycle, showing
only slight variations in expression levels but significant dif-
ferences in its phosphorylation status; pRb2 is detectable at
high levels in non-proliferating cells; and p107 expression is
lost in cells that have withdrawn from the cell cycle, but is
high throughout the proliferative cell cycle [31,46-48]. The
PRb protein is ubiquitously expressed in normal cells and
tissues. All three pocket proteins are highly expressed in
some differentiated cells, although the pattern of expression
is cell-type-specific. In neurons and in skeletal muscle cells
there is a high expression of pRb2, whereas p107 shows
higher expression levels in breast and prostate epithelial
cells [49].

Functions

The retinoblastoma protein was originally described as a
tumor suppressor, as it was found to be mutated in many
forms of cancer. The region to which the human p107 gene
maps (20q11.2) is not normally mutated in tumor cells, but a
fraction of human myelogenous leukemias contain deletions
of this region [1]. Mutations or deletions within the region
containing Rb2 (16q12.2) have been described several times
in human neoplasias, including breast, hepatic, ovarian, and
prostatic cancers, suggesting that it is also a tumor suppres-
sor [15]. Even though the pocket proteins are highly similar
in many ways, each member of the family has distinct func-
tions and has a non-redundant role [39]. Pocket-protein
functions sometimes appear redundant, however, such as
when the loss of one family member by mutation is totally or
partially compensated for by the activity of another family
member [50-53].

Growth-suppressive properties

The three Rb-family members can inhibit cell growth,
acting on the cell cycle between Go and S phases, primarily
through binding and inactivation of transcription factors
[54]. The growth-suppressive activity of the Rb-family
members is cell-type-specific: for example, the C33A
human cervical carcinoma cell line is inhibited by overex-
pression of p107 [25] and pRb2 [55], but not by pRb,
whereas the T98G human glioblastoma cell line is sensitive
to the growth-suppressive effects of pRb2 yet is unrespon-
sive to that of pRb and p107 [25,56]. Saos-2 human
osteosarcoma cells are growth-arrested in the Go/G1 phase
of the cell cycle by all of the Rb-family members [25,56,57].
Together, these findings indicate that there are some fun-
damental differences in the molecular pathways by which
the different Rb-family proteins exert control over the
cell cycle.
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The Rb family and differentiation

The pRb protein has an integral role in various differentia-
tion processes, such as adipogenesis, myogenesis and
hematopoiesis [58,59]. Studies on cellular differentiation
have shown an interaction between pRb and several differ-
entiation-specific transcription factors, such as the basic
helix-loop-helix transcription factor MyoD, nuclear factor
activated by interleukin-6 (NF-IL6) and the HMG-box-
containing repressor HBP1 [60-62]. For example, members
of the MyoD family associate with pRb, and the binding of
PRb to MyoD is thought to induce activation of genes that
are specific for myogenic development. This is supported by
the finding that cell lines lacking a functional RB are unable
to convert into myogenic cells [63].

Perhaps the most convincing evidence of the importance of
pRb in cellular differentiation and specialization comes from
the studies of RB knockout mice. Homogeneous germline
disruptions of the RB gene cause death by day 14 of gesta-
tion, associated with gross defects in the development of the
hematopoietic and central nervous systems [64-66].

The Rb family and apoptosis

In addition to the canonical role of RB as a tumor suppressor
gene, it has been recently discovered that pRb also acts as an
anti-apoptotic factor. The evidence implies that transform-
ing growth factor B1 (TGF-B1) induces apoptosis by
suppressing pRb expression [67], and the active hypophos-
phorylated form of pRb inhibits the apoptotic function of
interferon y (IFN-v) [68]. Experiments performed with RB7/~
mice demonstrated that widespread cell death occurs in
tissues that normally express high levels of pRb, such as
liver, ocular lens, nervous system, and skeletal muscle tissue
[64-66,69]. The p107 protein could also have an anti-apop-
totic effect: RB/p107/- double-knockout mouse embryos
have more extensive apoptosis in their central nervous
system and liver than single mutant RB-/- embryos [70].
Further studies are needed, though, to clarify the role of
pRb2 in this context.

The Rb family and angiogenesis

Proper vascularization is necessary for the formation of a
tumor mass and for invasion of other tissues during metas-
tasis [71]. New blood vessels form a network in the tumor
mass that provides the nourishment and substrates neces-
sary for the progression of tumorigenesis. In fact, if a tumor
is not nourished by supports derived from the blood vessels,
its diameter is limited to 1-2 mm [72]. The vascularization
mechanism is controlled by the highly balanced activities of
angiogenic and anti-angiogenic molecules, which act in
opposition to each other [72,73]. Two of the major factors
regulating angiogenesis are the vascular endothelial growth
factor (VEGF) and the multifunctional protein throm-
bospondin-1 (TSP-1). Recent evidence shows that pRb2, like
the oncoprotein Ras and the tumor suppressor p53, is
involved in angiogenesis [74-76]. Enhanced expression of

pRb2 through virus-mediated gene transfer in tumors grown
in nude mutant mice downregulates VEGF expression, con-
tributing to the inhibition of tumor formation [76]. To date,
no reports have been published on the role of the other Rb
family members in angiogenesis.

Frontiers

During the past ten years our understanding of cell-cycle
events has increased exponentially. Most of the work on the
Rb family so far has focused on the development of assays
that enhance our understanding of the key cell-cycle players.
With the advent of proteomics, the next steps will be to study
the interactions among different proteins and to discern the
different protein-expression profiles that occur in normal
and diseased tissues. These studies will help to find novel
diagnostic and prognostic markers, as well as new and more
specific targets for future molecular therapies.
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