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Background: Microarray technology is increasingly being applied in biological and medical
research to address a wide range of problems, such as the classification of tumors. An important
statistical problem associated with tumor classification is the identification of new tumor classes
using gene-expression profiles. Two essential aspects of this clustering problem are: to estimate
the number of clusters, if any, in a dataset; and to allocate tumor samples to these clusters, and
assess the confidence of cluster assignments for individual samples. Here we address the first of
these problems.

Results: We have developed a new prediction-based resampling method, Clest, to estimate the
number of clusters in a dataset. The performance of the new and existing methods were
compared using simulated data and gene-expression data from four recently published cancer
microarray studies. Clest was generally found to be more accurate and robust than the six
existing methods considered in the study.
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Conclusions: Focusing on prediction accuracy in conjunction with resampling produces accurate

and robust estimates of the number of clusters.

Background

The burgeoning field of genomics, and in particular DNA
microarray experiments, has revived interest in cluster
analysis by raising new methodological and computational
challenges. DNA microarrays are part of a new and promis-
ing class of biotechnologies that allow the monitoring of
expression levels in cells for thousands of genes simultane-
ously. Microarray experiments are increasingly being caried
out in biological and medical research to address a wide
range of problems, including the classification of tumors
[1-6]. A reliable and precise classification of tumors is essen-
tial for successful diagnosis and treatment of cancer. By
allowing the monitoring of expression levels on a genomic

scale, microarray experiments may lead to a more complete
understanding of the molecular variations among tumors
and hence to a finer and more reliable classification. An
important statistical problem associated with tumor classifi-
cation is the identification of new tumor classes using gene-
expression profiles. Two essential aspects of this clustering
problem are: first, to accurately estimate the number of clus-
ters, if any, in a dataset; and second, to allocate tumor
samples accurately to these clusters, and assess the confi-
dence of cluster assignments for individual samples. In a
clinical application of microarray-based cancer diagnosis,
the definition of new tumor classes would be based on the
clustering results, and these classes would then be used to
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build predictors for new tumor samples. Inaccurate cluster
assignments could lead to erroneous diagnoses and unsuit-
able treatment protocols.

Here we address the estimation of the number of clusters in
a dataset. First, we describe the basic principles of cluster
analysis and review existing methods for estimating the
number of clusters. We then present a new prediction-based
resampling method, Clest, for estimating the number of
clusters in a dataset. The performance of the new and exist-
ing methods is compared using simulated data and gene-
expression data from four recently published cancer
microarray studies. We have addressed the problem of
improving and assessing the accuracy of a given clustering
procedure in [7].

Cluster analysis

In classification, one is concerned with assigning objects to
classes on the basis of measurements made on these objects.
There are two main aspects to classification: discrimination
and clustering, or supervised and unsupervised learning. In
unsupervised learning (also known as cluster analysis, class
discovery and unsupervised pattern recognition), the classes
are unknown a priori and need to be discovered from the
data. In contrast, in supervised learning (also known as dis-
criminant analysis, class prediction, and supervised pattern
recognition), the classes are predefined and the task is to
understand the basis for the classification from a set of
labeled objects (training or learning set). This information is
then used to classify future observations. The present article
focuses on the unsupervised problem, that is, on cluster
analysis, but draws on notions from supervised learning to
address the problem.

In cluster analysis, the data are assumed to be sampled from
a mixture distribution with K components corresponding to
the K clusters to be recovered. Let (X, ..., X,) denote a
random 1 x p vector of explanatory variables or features, and
let Y € {1, ..., K} denote the unknown component or cluster
label. Given a sample of X values, the goal is to estimate the
number of clusters K and to estimate, for each observation,
its cluster label Y.

Suppose we have data X = (x;) on p explanatory variables
(for example, genes) for n observations (for example,
tumor mRNA samples), where X denotes the realization of
variable X; for observation i and x; = (xl-l,...,xl-p) denotes
the data vector for observation 7, i = 1,...,n,j = 1,...,p. We
consider clustering procedures that partition the learning
set £ = {x,,..., X, into K clusters of observations that are
‘similar’ to each other, where K is a user-prespecified
integer. More specifically, the clustering P (-; £) assigns class
labels P (x; L) = ﬁi to each observation, where ﬁi e {1,...,.K}.
Clustering procedures generally operate on a matrix of
pairwise dissimilarities (or similarities) between the
observations to be clustered, such as the Euclidean or

Manhattan distance matrices [8]. A partitioning of the
learning set can be produced directly by partitioning clus-
tering methods (for example, k-means, partitioning
around medoid (PAM), self-organizing maps (SOM)) or by
hierarchical clustering methods, by ‘cutting’ the dendro-
gram to obtain K ‘branches’ or clusters. Important issues,
which will only be addressed briefly in this article, include:
the selection of observational units, the selection of vari-
ables for defining the groupings, the transformation and
standardization of variables, the choice of a similarity or
dissimilarity measure, and the choice of a clustering
method [9]. Our main concern here is to estimate the
number of clusters K.

When a clustering algorithm is applied to a set of observa-
tions, a partition of the data is returned whether or not the
data show a true clustering structure, that is, whether or not
K = 1. This fact causes no problems if clustering is done to
obtain a practical grouping of the given set of objects, as for
organizational or visualization purposes (for example, hier-
archical clustering for displaying large gene-expression data
matrices as in Eisen et al. [10]). However, if interest lies pri-
marily in the recognition of an unknown classification of the
data, an artificial clustering is not satisfactory, and clusters
resulting from the algorithm must be investigated for their
relevance and reproducibility. This task can be carried out by
descriptive and graphical exploratory methods, or by relying
on probabilistic models and suitable statistical significance
tests (for example [11,12]).

We argue here that validating the results of a clustering pro-
cedure can be done effectively by focusing on prediction
accuracy. Once new classes are identified and class labels are
assigned to the observations, the next step is often to build a
classifier for predicting the class of future observations. The
reproducibility or predictability of cluster assignments
becomes very important in this context, and therefore pro-
vides a motivation for using ideas from supervised learning
in an unsupervised setting. Resampling methods such as
bagging [13] and boosting [14,15] have been applied success-
fully in the field of supervised learning to improve prediction
accuracy. We propose here a novel resampling method,
Clest, which combines ideas from discriminant and cluster
analysis for estimating the number of clusters in a dataset.
Although the proposed resampling methods are applicable
to general clustering problems and procedures, particular
attention is given to the clustering of tumors on the basis of
gene-expression data using the partitioning around medoids
(PAM) procedure (see below).

Partitioning around medoids

The new Clest procedure is demonstrated using the PAM
method of Kaufman and Rousseeuw [16]. As implemented in
the cluster package in R and S-Plus, the PAM function takes
as its arguments a dissimilarity matrix (for example the
Euclidean distance matrix as used here) and a prespecified



number of clusters K. The PAM procedure is based on the
search for K representative objects, or medoids, among the
observations to be clustered. After finding a set of K
medoids, K clusters are constructed by assigning each obser-
vation to the nearest medoid. The goal is to find K medoids
that minimize the sum of the dissimilarities of the observa-
tions to their closest medoid. The algorithm first looks for a
good initial set of medoids, then finds a local minimum for
the objective function, that is, a solution such that there is no
single switch of an observation with a medoid that will
decrease the objective.

The PAM method tends to be more robust and computa-
tionally efficient than k-means. In addition, PAM provides
a graphical display, the silhouette plot, which can be used
to select the number of clusters and to assess how well
individual observations are clustered. Let a; denote the
average dissimilarity between 7 and all other observations
in the cluster to which i belongs. For any other cluster C,
let d(i,C) denote the average dissimilarity of 7 to all objects
of C and let b; denote the smallest of these d(i,C). The sil-
houette width of observation i is sil; = (b; - a;)/max(a;b;)
and the overall average silhouette width is simply the
average of sil; over all observations i,stl = Y; sil;/n. Intu-
itively, objects with large silhouette width sil; are well clus-
tered, whereas those with small sil; tend to lie between
clusters. Kaufman and Rousseeuw suggest estimating the
number of clusters K by that which gives the largest
average silhouette width, sil.

Existing methods for estimating the number of
clusters in a dataset

Null hypothesis

Suppose that the maximum possible number of clusters in the
data is set to M, 2 < M < n. One a proa/c\h to estimating the
number of clusters K is to look for K, 1 < K < M, that provides
the strongest significant evidence against the null hypothesis
H, of K = 1, that is, ‘no clusters’ in the data. Two commonly
used parametric null hypotheses are the unimodality
hypothesis and the uniformity hypothesis.

Under the unimodality hypothesis, the data are thought to
be a random sample from a multivariate normal distribu-
tion. This model typically gives a high probability of rejec-
tion of the null K = 1 if the data are sampled from a
distribution with a lower kurtosis than the normal distribu-
tion, such as the uniform distribution [17].

The uniformity hypothesis, also referred to as random posi-
tion hypothesis, states that the data are sampled from a
uniform distribution in p-dimensional space [18-20].
Methods based on the uniformity hypothesis tend to be con-
servative, that is, lead to few rejections of the null hypothe-
sis, when the data are sampled from a strongly unimodal
distribution such as the normal distribution. In two or more
dimensions, and depending on the test statistic, the results
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can be very sensitive to the region of support of the reference
distribution [17].

For both types of hypotheses, evidence against the null
hypothesis can be summarized formally under probability
models for the data or more informally by using internal
indices as described next.

Internal indices

Numerous methods have been proposed for testing the
null hypothesis K = 1 and estimating the number of clus-
ters in a dataset, however, none of them is completely sat-
isfactory. Jain and Dubes [20] provide a general overview
of such methods. The majority of existing approaches do
not attempt to formally test the null hypothesis that K = 1,
but rather look for the clustering structure under which a
summary statistic of interest is optimal, being large or
small depending on the statistic [21-23]. These statistics
are typically functions of the within-clusters, and possibly
between-clusters, sums of squares. They are referred to as
internal indices, in the sense that they are computed from
the same observations that are used to create the cluster-
ing. Consequently, the distribution of these indices is
intractable. In particular, as clustering methods attempt to
maximize the separation between clusters, the ordinary
significance tests such as analysis of variance F-tests are
not valid for testing differences between the clusters. Milli-
gan and Cooper [12] conducted an extensive Monte Carlo
evaluation of 30 internal indices. Other approaches
include modeling the data using Gaussian mixtures and
applying a Bayesian criterion to determine the number of
components in the mixture [11]. A recent proposal of Tib-
shirani et al. [24], called the gap statistic method, cali-
brates an internal index, such as the within-clusters sum
of squares, against its expectation under a suitably defined
null hypothesis (note that gap tests have been used in
another context in cluster analysis by Bock [18] to test the
null hypothesis of a ‘homogeneous’ population against the
alternative of ‘heterogeneity’). Tibshirani et al. carried out
a comparative Monte Carlo study of the gap statistic and
several of the internal indices that showed a better perfor-
mance in the study of Milligan and Cooper [12]. These
internal indices and the gap statistic are described in more
detail below.

For a given partition of the learning set into 1 < k < M clus-
ters, define B, and W, to be the p x p matrices of between
and within k-clusters sums of squares and cross-products
[8]. Note that B, is not defined. The following six internal
indices are commonly used to estimate the number of clus-
ters in a dataset.

sil: Kaufman and Rousseeuw [16] suggest selecting the
number of clusters k > 2 which gives the largest average sil-
houette width, sil,. Silhouette widths were defined above
with the clustering procedure PAM.
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ch: Calinski and Harabasz [21]. For each number of clusters
k > 2, define the index

h = tI‘Bk/(k - 1)
rW,/(n- k)~

where tr denotes the trace of a matrix, that is, the sum of the
diagonal entries. The estimated number of clusters is
argmax,, , chy.

Kkl: Krzanowski and Lai [23]. For each number of clusters
k > 2, define the indices

diff, = (k - 1)2/PtrW,_, - k2PtrW,,  and
kb = | diffi |/|diffys,-
The estimated number of clusters is argmax, . , kl,.

hart: Hartigan [25]. For each number of clusters k > 1,
define the index

tr'Ww,
# _1) (Tl-k-l).
trwkﬂ

hart,= (
The estimated number of clusters is the smallest k > 1 such
that hart, < 10.

gap or gapPC: Tibshirani et al. [24]. This method compares
an observed internal index, such as the within-clusters sum
of squares, to its expectation under a reference null distribu-
tion as follows. For each number of clusters k > 1, compute
the within-clusters sum of squares trW,. Generate B (here
B = 10) reference datasets under the null distribution and
apply the clustering algorithm to each, calculating the
within-clusters sums of squares trW,}, ..., trW, 5. Compute
the estimated gap statistic

gap =+ glog tr WP -log tr W,

and the standard deviation sd, of log trW,?, 1 < b < B. Let
szlk = sd,, \[(1 + 1/B)]. The estimated number of clusters is
the smallest k > 1 such that gap, > gap;, - sd;, where k* =

argmax; . ; gapy.

Tibshirani et al. [24] chose the uniformity hypothesis to
create a reference null distribution and considered two
approaches for constructing the region of support of the dis-
tribution. In the first approach, the sampling window for the
Jjth variable, 1 <j < p, is the range of the observed values for
that variable. In the second approach, following Sarle [17],
the variables are sampled from a uniform distribution over a
box aligned with the principal components of the centered
design matrix (that is, the columns of X are first set to have

mean 0 and the singular value decomposition of X is com-
puted). The new design matrix is then back-transformed to
obtain a reference dataset. Whereas the first approach has
the advantage of simplicity, the second takes into account
the shape of the data distribution. Note that in both
approaches the variables are sampled independently. The
version of the gap method that uses the original variables
to construct the region of support is referred to as gap and
the second version as gapPC, where ‘PC’ stands for princi-
pal components.

Note that of the above methods, only hart, gap, and gapPC
g\llow the estimation of only one cluster in the data, that is,
K =1.

External indices

The term ‘validation of a clustering procedure’ usually refers
to the ability of a given method to recover the true clustering
structure in a dataset. There have been several attempts to
assess validity on theoretical grounds [18,25]; however, such
approaches turn out to be of little applicability in the context
of high-dimensional complex datasets. In many validation
studies, clustering methods are evaluated on their perfor-
mance on empirical datasets with a priori known cluster
labels [25] or, more commonly, on simulation studies where
true cluster labels are known. To assess the ability of a clus-
tering procedure to recover true cluster labels it is necessary
to define a measure of agreement between two partitions;
the first partition being the a priori known clustering struc-
ture of the data, and the second partition resulting from the
clustering procedure. In the clustering literature, measures
of agreement between partitions are referred to as external
indices; several such indices are reviewed next.

Consider two partitions of n objects x,, ..., x,: the R-class parti-
tion U = {u,, ..., uxy and the C-class partition ¥ = {v,, ..., v.}.
External indices of partitional agreement can be expressed
in terms of a contingency table (Table 1), with entry n;
denoting the number of objects that are both in clusters u;
and vj, i=1,.,R j=1,.,C[20] Let n; = ch= L Ny and
n;=2>R_, n;denote the row and column sums of the contin-
gency table, respectively, and let Z =>%_, >¢_ n;2

Table |

Contingency table for two partitions of n objects

v, v, Ve
u Ny Ny Nic ny.
Uy Y Ny e Nyc My,
Ug MRy Mgy Nre Ng
n, n, ne n =n




The following indices can then be used.
1. Rand: Rand [26]

Rand =1+ (Z- (1/2) (in?_+ in;"))/(b:
Jj=1

1=1

2. Jaccard: Jain and Dubes [20]
& 2 S 2
Jac = (Z— n)/(gni_ +j§1 n;-Z- n).
3. FM: Fowlkes and Mallows [27]
Ry & e
= ()2 S0 S ()]

Note that Rand and FM are linear functions of Z, and hence
are linear functions of one another, conditional on the row
and column sums in Table 1. If the row and column sums in
Table 1 are fixed, but the partitions are selected at random;
that is, if there is independence in the table, the hypergeo-
metric distribution can be applied to determine the expected
value of quantities such as Z. In particular

B[22 (ZU)]=(1/2)E(z-n):ﬁ(gi.>. )

=1 j=1 = Jj=1

-

An external index S is often standardized in such a way that
its expected value is 0 when the partitions are selected at
random and 1 when they match perfectly. This amounts to
computing a standardized external index

S - E(S)
Smax - E(S) ’

where S, . is the maximum value of the statistic S and E(S)
is the expected value of S when partitions are selected at
random. Accordingly, an often used correction for the Rand
statistic is

252 () -G ) Za(HE ()

o /<j=1\ o

Rand' = .
/2 [24(F) + 255 (F) - G )2 A2 ()

o)< j=1\ o

The significance of an observed external index is usually
assessed under the assumption that the two partitions to be
compared are independent. This assumption does not hold
for the resampling methods described in the following
section, since the same data are used to produce the two par-
titions. Nevertheless, external indices are convenient tools
for comparing two clusterings, and are used in the new
resampling method Clest. In this context, one should think
of these indices as internal rather than external measures.
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Results

Clest, a prediction-based resampling method for
estimating the number of clusters

We propose a new prediction-based resampling method, Clest,
for estimating the number of clusters, if any, in a dataset. The
idea behind Clest is very intuitive if one is concerned with
reproducibility or predictability of cluster assignments.

It is proposed to estimate the number of clusters K by
repeatedly randomly dividing the original dataset into two
non-overlapping sets, a learning set £ and a test set 7. For
each iteration and for each number of clusters k, a clustering
P(-;£b) of the learning set £ is obtained and a predictor
C(;£b) is built using the class labels from the clustering. The
predictor C(-;£b) is then applied to the test set 7% and the
predicted labels are compared to those produced by applying
the clustering procedure to the test set, using one of the
external indices (or similarity statistics) described in the
Background section. The number of clusters is estimated by
comparing the observed similarity statistic for each k to its
expected value under a suitable null distribution with K=1
The estimated number of clusters is defined to be the K cor-
responding to the largest significant evidence against the
null hypothesis of K = 1.

An early version of this approach was introduced by Breck-
enridge [28] under the name of replication analysis and was
designed to evaluate the stability of a clustering. In the origi-
nal replication analysis, the number of clusters k is fixed,
and the data are randomly divided into two samples. A clus-
tering procedure partitions both samples into k clusters, and
the centroids of the clusters of the first sample are com-
puted. A second set of labels is assigned to the observations
in the second sample by assigning to each observation the
cluster label of the closest centroid from the first sample.
Finally, an external index is used to assess the agreement
between the two partitions of the second sample. This
measure reflects the stability of the clustering structure. The
Clest procedure proposed here generalizes the work of
Breckenridge [28].

Clest procedure for estimating the number of clusters
in a dataset

Denote the maximum possible number of clusters by M,
2 < M < n. For each number of clusters k, 2 < k < M, perform
steps 1-4.

1. Repeat the following B times:

(a) Randomly split the original learning set £ into two non-
overlapping sets, a learning set £t and a test set 7%.

(b) Apply a clustering procedure ? to the learning set £b to
obtain a partition P(-;£?).

(c) Build a classifier C(-;£%) using the learning set £t and its
cluster labels.

(d) Apply the resulting classifier to the test set 7%.
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(e) Apply the clustering procedure ? to the test set 70 to
obtain a partition P(-;7?).

(f) Compute an external index s; ;, comparing the two sets
of labels for 70, namely the labels obtained by clustering
and prediction.

2. Lett, = median(s, ..., s; ) denote the observed similar-
ity statistic for the k-cluster partition of the data.

3. Generate B, datasets under a suitable null hypothesis.
For each reference dataset, repeat the procedure described
in steps 1 and 2 above, to obtain B, similarity statistics

tk,l’ ceey tk,BO’

4. Let t@ denote the average of these B, statistics, @ =
[1/(B,)IZfe, ty. 5, and let p; denote the proportion of the ¢,
1< b < B, that are at least as large as the observed statistic
t;, that is, the p-value for t,. Finally, let d = t; - 12 denote the
difference between the observed similarity statistic and its
estimated expected value under the null hypothesis of K = 1.

Define the set K as

K={2=k=M:p,=ppw d=d

min }’

where p,, .. and d,;, are preset thresholds (see Parameters of
the Clest procedure section below). If this set is empty, esti-
mate the number of clusters as K = 1. Otherwis/e\‘,, let
K = argmax; _ ; d,, that is, take the number of clusters K that
corresponds to the largest significant difference statistic d,..

Parameters of the Clest procedure

In this paper, the following decisions are made regarding the
different parameters for the Clest procedure (see summary
in Table 2).

Clustering procedure: partitioning around medoids (PAM)

The PAM clustering procedure of Kaufman and Rousseeuw
[16], implemented in the cluster package in R and S-Plus,
was used to cluster observations based on the Euclidean dis-
tance metric (see Background).

Classifier: diagonal linear discriminant analysis (DLDA)

For multivariate Gaussian class conditional densities, that is,
for x|y = k ~ N(1,%;), the maximum likelihood (ML) dis-
criminant rule (or Bayes rule with uniform class priors) pre-
dicts the class of an observation x by that which gives the
largest likelihood to x, that is,

Cc(x) = argminlskgK{(x - 1) (x - ) + log |Ek|}.
When the class densities have the same diagonal covariance

matrix ¥ = diag(o%,...,07), the discriminant rule is linear and
given by

Table 2

Parameters for Clest

Clest parameter Value

Maximum number of clusters M = 10 for microarray data

M =5 for simulated data

Number of learning/test set B=20
iterations

Number of reference datasets B, =20
Size of learning sets LP 2n/3
Clustering procedure PAM

Classifier Linear discriminant analysis with

diagonal covariance matrix - DLDA
Reference null distribution Uniformity hypothesis

External index Fowlkes and Mallows [27] external

index, FM
Maximum p-value Pmax = 0.05
Minimum difference statistic d,, = 0.05
P (x; - )2
. 7Pk
C(x) = argmin,_;_p > —_—
J=t G

For the corresponding sample ML discriminant rules, the
population mean vectors and covariance matrices are esti-
mated from a learning set by the sample mean vectors and
covariance matrices, respectively: /i, = X, and f‘.k = S;. For
the constant covariance matrix case, the pooled estimate of the
common covariance matrix is used: £ = 2 -1) S, /(n - K),
where n;, denotes the number of observations in class k and n
is the total sample size. DLDA is a very simple classifier but it
has been shown to perform well in complex situations, in par-
ticular, in an extensive study of discrimination methods for
the classification of tumors using gene-expression data [29].
DLDA is also known as naive Bayes classification.

Reference null distribution
The reference datasets are generated under the uniformity
hypothesis as in the gap statistic method (see Background).

External index

All the external indices described in Background were con-
sidered. The FM index [27] was found to be superior to the
other indices when reference datasets are generated under
the uniformity hypothesis (data not shown).

Threshold parameters, p,.,. and d, ..

The choices p,,,. = 0.05 and d,;, = 0.05 are ad hoc and can
probably be improved upon. Nevertheless, this rule gives a
satisfactory performance and is used in the absence of a
better choice.



Number of iterations and reference datasets
Here we used B = B, = 20. In general, the Clest procedure is
robust to the choice of B and B, (data not shown).

Comparison of procedures on simulated data

The new procedure Clest was compared to six existing
methods presented in Background using data simulated
from the models described in Materials and methods.
Figure 1 displays bar plots for the percentage of simulations
for which a given method correctly recovered the number of
clusters for each of the eight models. Table 3 provides a
more detailed account of the simulation results for each pro-
cedure. It can be seen that Clest gave uniformly good results
over the range of models, its worst performance being for
Model 7 with two overlapping clusters. The rest of the
methods failed for at least one of the eight models consid-
ered. The gap procedure failed twice (Models 5 and 6) and
gapPC failed once (Model 6). Neither gap nor gapPC were
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able to identify the presence of the two clusters for Model 6,
which is a model with two drawn-out clusters and seven
noise variables with varying variances. Both gap and gapPC
consistently estimated one cluster for this model, perhaps
because both methods are based on the within-clusters sums
of squares and consequently are more affected by the vari-
ables with larger variances. In a majority of the simulations
from Model 7, Clest, gap, and gapPC failed to distinguish
between one and two clusters, while the simple hart index
performed well. The rest of the procedures do not have, by
definition, the ability to estimate one cluster and hence gen-
erally identified the two clusters. Interestingly, for Model 8
with three overlapping clusters, sil and ch performed poorly,
choosing two clusters in a majority of the simulations, while
hart and Clest showed the best performance. Overall, most
methods tended to underestimate more often than they
overestimated the number of clusters, but the situation was
reversed for hart and kl. For Model 1 it is only fair to

Model 1, K=1 Model 2, K=3 Model 3, K= 4
o o o
2 2 2
s 3 8 8
S
° o o o
L © © ©
j=2}
S
5 < g g
o
€ R & &
o o o
clest gap gapPC sil ch ki hart clest gap gapPC sil ch ki hart clest gap gapPC sil ch ki hart
Method Method Method
Model 4, K=4 Model 5, K=2 Model 6, K=2
o o o
o o o
8 3 8 8
19
° o o o
o © © ©
(=)
hut
5 9 g g
IS
£ | & &
o o o
clest gap gapPC sil ch ki hart clest gap gapPC sil ch ki hart clest gap gapPC sil ch ki hart
Method Method Method
Model 7, K=2 Model 8, K=3
o o
o o
s 8 8
S
o 3 2 Clest
g gapPC
£ S o El
g ¥ ¥ a
@ ch
e ] Q Ki
B hart
<) o
clest gap gapPC sil ch ki hart clest gap gapPC sil ch kI hart
Method Method
Figure |

Estimating the number of clusters; results for simulated data. For each of the eight simulation models, the bar plots represent the percentage of
simulations for which the number of clusters was correctly estimated by each method (out of 50 simulations).
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Table 3

Estimating the number of clusters in simulated data

Method Number of clusters,ll<\
Model |
I* 2 3 4 5 >5
Clest 48 2 0 0 0 0
gap 48 0 | | 0 0
gapPC 50 0 0 0 0 0
sil - 37 6 4 3 0
ch - 42 7 | 0 0
kl - 12 14 | 13 0
hart 0 5 22 16 7 0
Model 2
| 2 3* 4 5 >5
Clest 0 | 49 0 0 0
gap 0 0 50 0 0 0
gapPC 0 0 50 0 0 0
sil - 5 45 0 0 0
ch - 0 50 0 0 0
ki - 0 41 2 7 0
hart 0 0 0 2 2 46
Model 3
| 2 3 4% 5 >5
Clest 0 | 20 29 0 0
gap 0 | 16 33 0 0
gapPC 0 | 12 37 0 0
sil - 17 24 9 0 0
ch - 8 20 22 0 0
ki - 3 I 35 | 0
hart 0 0 8 42 0 0
Model 4
| 2 3 4% 5 >5
Clest 0 0 | 49 0 0
gap 0 0 0 50 0 0
gapPC 0 0 | 49 0 0
sil - 5 8 37 0 0
ch - 5 7 38 0 0
ki - 0 | 49 0 0
hart 0 0 0 50 0 0
Model 5
| 2% 3 4 5 >5
Clest 0 44 0 6 0 0
gap 0 0 0 19 31 0
gapPC 0 50 0 0 0 0
sil - 50 0 0 0 0
ch - 3 0 47 0 0
ki - 50 0 0 0
hart 0 0 0 0 50




Table 3 (continued)

http://genomebiology.com/2002/3/7/research/0036.9

Method Number of cIusters,IQ
Model 6
| 2% 3 4 5 >5
Clest 0 43 7 0 0 0
gap 47 3 0 0 0 0
gapPC 43 5 | | 0 0
sil - 41 5 4 0 0
ch - 43 5 2 0 0
ki - 16 9 17 8 0
hart 0 | 0 5 14 30
Model 7
| 2% 3 4 5 >5
Clest 26 15 6 3 0 0
gap 25 22 2 | 0 0
gapPC 31 17 2 0 0 0
sil - 42 6 | | 0
ch - 39 10 0 | 0
kl - 13 15 10 12 0
hart 6 39 5 0 0 0
Model 8
| 2% 3 4 5 >5
Clest 0 16 34 0 0 0
gap 0 22 28 0 0 0
gapPC 0 28 21 | 0 0
sil - 50 0 0 0 0
ch - 50 0 0 0 0
ki - 25 17 4 4 0
hart 0 3 43 4 0 0

For each simulation model, the distribution of the estimated number of clusters is recorded for each method. The true number of clusters is denoted by
the asterisk and the modes for the distribution of the 50 estimates are indicated in bold for each method. Note that sil, ch, and kil do not have the ability

to estimate K = | cluster.

compare Clest, gap, gapPC, and hart, as the other methods
only estimate K > 2.

In summary, for the simulation models considered here,
Clest was the most robust and accurate, whereas hart per-
formed worst. gapPC was better than gap and the rest of the
methods performed similarly.

For a given model, it is of interest to consider the median
value of the statistics used by each method to estimate the
number of clusters. For each number of clusters k, the plots
of the median values, over the 50 simulated datasets, of the
Clest d,-statistic, gapPC,, and sil, statistics are shown in
Figures 2, 3 and 4, respectively. The d-statistic does not gen-
erally have local maxima except for Model 5. There, a local
maximum appears at K = 4 clusters, but the global
maximum occurs at K = 2. It can be seen that the ability of

Clest to distinguish between one and two clusters is very low
for Model 7; the median of the d, values is less than the sig-
nificance cut-off d,;, used in the Clest procedure. Indeed,
the results in Table 3 show that Clest identified two clusters
for only 30% of the datasets simulated from Model 7. The
figures suggest that for the majority of the models, the global
maximum of the median d-statistic is more pronounced
than the global maxima of the median gapPC, and sil, sta-
tistics, respectively. This again suggests good robustness and
accuracy properties for the Clest method.

Comparison of procedures on microarray data

The new Clest method was also evaluated using gene-expres-
sion data from the four cancer microarray studies described
in Materials and methods and summarized in Table 4. Recall
that mRNA samples in the lymphoma, leukemia, and NCI60
datasets were assigned class labels from the laboratory
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Figure 2

Estimating the number of clusters using the Clest procedure; results for simulated data. Plots are of median d versus k for each simulation model
(medians are computed over 50 simulations). The horizontal line corresponds to the d,;, cut-off of 0.05, and the true number of clusters is indicated by a

filled plotting symbol.

analyses of the tumor samples or from a priori knowledge of
the cell lines. For the melanoma dataset, tumor class labels
were obtained from the statistical analysis described in
Bittner et al. [30]. In the discussion that follows, these class
labels are treated as known. The six methods described in
Background and Clest were applied to estimate the number
of clusters for each of the four microarray datasets; the
results are presented in Table 5.

The methods Clest and sil correctly estimated the presumed
number of classes for all but the NCI60 dataset, where both
methods identified three clusters only. The gap and gapPC
methods overestimated the number of clusters for all
datasets, with the exception of gapPC, which identified eight
clusters for the NCI60 dataset. The ch method estimated two
clusters for each of the four datasets, whereas kl and hart
identified four classes for the lymphoma dataset.

For Clest, gapPC, and sil, we further investigated how the
strength of the evidence for the estimated number of clusters
varied between datasets. Figure 5 displays plots of the d,,
gapPC,, and sil, statistics versus the number of clusters k.
Error bars for d, and gapPC;. are based on the standard devi-
ations of ¢, and log trW,. under their respective null distribu-
tions. Whereas the evidence for the existence of clusters is
very strong for the lymphoma, leukemia, and NCI60 datasets,
the evidence for the two clusters in the melanoma dataset is
much weaker. In particular, for Clest, the maximum value of
the d, statistic barely reaches the d,,;, threshold of 0.05. For
the leukemia dataset, the d, statistic clearly peaks at k = 3
clusters and drops off abruptly; for the lymphoma and NCI60
datasets the decrease is more gradual. Note that according to
Clest there was not enough evidence to identify the
two DLBCL subclasses for the lymphoma dataset. Alizadeh
et al. [1] identified these subclasses using subject matter



http://genomebiology.com/2002/3/7/research/0036.1 |

Model 1, K=1 Model 2, K= 3 Model 3, K=4 Model 4, K=4
o o o o
A A A A (S (S
0 | v | 0 | v |
e °
g o o o o . ° ) °
S — o o ° — 1 - 1 - 1 )
s 0
el
] L]
S 0 A 0 ° ° 0 ° [
o
o
o
o
o o Jo o Jo o
‘? ‘¢ ‘¢ ‘¢
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Number of clusters (k) Number of clusters (k) Number of clusters (k) Number of clusters (k)
Model 5, K=2 Model 6, K=2 Model 7, K=2 Model 8, K=3
o o o o
A A [SUlN (S AN A
L] =]
o | o | v | v |
O
Q o
S o ° o |° o o
o v ~ — 1 — 1 o
S ° o ° ° o
g ° ° °
S w4 0 4 [To g ° ° ° o [Tog o
o A o 4 o A o A
P Je P P P
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Number of clusters (k) Number of clusters (k) Number of clusters (k) Number of clusters (k)
Figure 3

Estimating the number of clusters using the gapPC procedure; results for simulated data. Plots are of median gapPC, versus k for each simulation model
(medians are computed over 50 simulations). The true number of clusters is indicated by a filled plotting symbol.

knowledge to select the genes for the clustering procedure;
here the genes were selected in an unsupervised manner.

Discussion

Resampling methods such as bagging and boosting have
been applied successfully in a supervised learning context to
improve prediction accuracy. Here and in a related article
[7], we have proposed resampling methods to address two
main problems in cluster analysis: estimating the number of
clusters, if any, in a dataset; improving and assessing the
accuracy of a given clustering procedure. As the groups
obtained from cluster analysis are often used later on for
prediction purposes, the approaches to these two problems
rely on and extend ideas from supervised learning. Although
the methods are applicable to general clustering problems and
procedures, particular attention is given to the clustering of

tumors using gene-expression data. The performance of
the proposed and existing methods was compared using
simulated data and gene-expression data from four
recently published cancer microarray studies.

To estimate the number of clusters in a dataset, we propose a
prediction-based resampling method, Clest, which estimates
the number of clusters K based on the reproducibility of
cluster assignments. In comparative studies, Clest was gen-
erally found to be more accurate and robust than six existing
methods. For the simulated datasets, Clest performed well
across a wide range of models with varying numbers of over-
lapping and non-overlapping clusters, different numbers of
variables and covariance matrix structures. Unlike methods
based on between- or within-clusters sums of squares, the
resampling method seems robust to the varying covariance
structure of the variables.
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Figure 4

Estimating the number of clusters using the sil procedure; results for simulated data. Plots are of median sil, versus k for each simulation model (medians
are computed over 50 simulations). The true number of clusters is indicated by a filled plotting symbol.

For the microarray datasets, Clest and sil correctly estimated
the number of tumor or cell-line clusters (as determined
from a priori known or putative tumor and cell-line classes)
for three out of the four datasets; the performance of other
methods was significantly worse. We focus here on the clus-
tering of tumor mRNA samples using gene-expression data.
Once tumor classes are specified, an important next step
would be the identification of marker genes that characterize
these different tumor classes. A related question, which we
have not considered here, is the ‘transpose’ clustering
problem; that is, the clustering of genes that have similar
expression levels across biological samples. One could then
investigate the clusters for the presence of shared regulatory
motifs among the genes [31]. This could lead to the identifi-
cation of genes that are not only coexpressed but are also
under similar regulatory control. Joint analysis of transcript
level and sequence data should lead to greater biological
insight into the molecular characterization of tumors.

A number of decisions were made regarding the different
parameters of the Clest procedure. The clustering procedure
PAM was used in the comparison; however, one should keep
in mind that different clustering procedures can generate
different partitions of the same data, possibly leading to dif-
ferent inferences about the number of clusters. In addition,
the clustering (PAM) and prediction methods (DLDA or
naive Bayes) considered in this article focus on similar fea-
tures of the data, namely, the distance of the observations
from cluster ‘centers’. More work is needed to investigate the
robustness of Clest to these choices. In particular, it would
be interesting to consider prediction and clustering methods
that focus on different aspects of the data (for example, clas-
sification trees instead of DLDA). Although it may seem that
having a classifier as a parameter of the Clest procedure
creates more room for error, we have found that this is not
the case in practice. When the classifier in Clest performs
poorly, other methods for estimating the number of clusters



Table 4

Description of microarray datasets

Dataset Number of  Class sizes Number of
classes genes

Lymphoma* [1] K=3 B-CLL (29) p =4,682
(cDNA microarrays)  classes FL (9)

DLBCL (43)
Leukemia [3] K=3 ALL B-cell (38) p =357l
(Affymetrix chips) classes ALL T-cell (9)

AML (25)
NCI 60T [6] K=8 Breast (7), CNS (6), p=157244
(cDNA microarrays)  classes colon (7), leukemia (6),

melanoma (8),

NSCLC (9), ovarian (6),

renal (8)
Melanoma¥ [30] K=2 Group A (19)
(cDNA microarrays)  classes Group B (12) p=3,613

*The DLBCL class for the lymphoma dataset is likely to contain two
subclasses.tFor the NCI60 data, the two prostate cell lines and the
unknown cell line (ADR-RES) were excluded from our analysis because of
their small class size. ¥Note that for the first three datasets, tumor classes
were known a priori, whereas for the melanoma dataset the two classes
were inferred by Bittner et al. [30] by cluster analysis but not confirmed
on an independent dataset.

Table 5

Estimating the number of clusters from microarray data

Dataset  Known Clest gap gapPC il ch kI hart

Lymphoma 3 3 10 8 3 2 4 4
Leukemia 3 3 10 5 3 2 3 3
NCI60 8 3 10 8 3 2 6 2
Melanoma 2 2 9 4 2 2 8 |

also perform poorly. Another important choice in the Clest
procedure is the reference null distribution used to calibrate
the observed similarity statistics t, for different numbers of
clusters. The uniformity hypothesis was used here; a natural
alternative would be to consider random permutations of the
variables, that is, permutations of the entries of the design
matrix within columns. In Clest, the observed similarity sta-
tistics t; are compared across numbers of clusters k by con-
sidering their distance from their estimated expected value
t% under the null distribution. A more sensitive calibration
may be achieved by taking scale into account, that is, by
dividing the difference statistic d, by the standard deviation
of t; under the null distribution, or even by considering
p-values p,, for t,. We briefly considered these refinements
and found that on their own they did not allow good discrim-
ination between the different ks. The Clest method does,

http://genomebiology.com/2002/3/7/research/0036.13

however, use the idea of p-value in combination with the dif-
ferences d,, as it imposes an upper limit on the p-value p;.
Finally, the choice of cut-off parameters d,;, and p,,,. was
rather ad hoc and could be fine tuned.

We have not considered model-based methods, such as the
Bayesian approach of Fraley and Raftery [11] or the mixture-
model approach of McLachlan et al. [32]. Another issue only
briefly addressed here is the selection of variables on which
to base the clusterings. For the microarray datasets, genes
were selected on the basis of the variance of their expression
levels across samples, and it was found that the clusterings
were fairly robust to the number of genes.

Resampling methods are promising tools for addressing
various problems in cluster analysis. Ben-Hur et al. [33]
have recently proposed a stability-based method for estimat-
ing the number of clusters, where stability is characterized
by the distribution of pairwise similarities between cluster-
ings obtained from subsamples of the data. It would be
interesting to relate the approach of Ben-Hur et al. and
Clest. Elsewhere, we proposed two bagged clustering
methods for improving and assessing the accuracy of a given
partitioning clustering procedure [7]. There, the bootstrap is
used to generate and aggregate multiple clusterings and to
assess the confidence of cluster assignments for individual
observations. Leisch [34] proposed a bagged clustering
method which is a combination of partitioning and hierar-
chical methods. A partitioning method is applied to boot-
strap learning sets and the resulting partitions are combined
by performing hierarchical clustering of the cluster centers.
This method is similar in spirit to our two new bagging pro-
cedures [7].

Conclusions

Focusing on prediction accuracy in conjunction with resam-
pling produces accurate and robust estimates of the number
of clusters. As reproducibility of the cluster assignments is
an integral part of the Clest method, the clustering results
can be used reliably for building a classifier to predict the
class of future observations. In addition, the procedure is
robust to the covariance structure among variables.

Materials and methods

Simulation models

Procedures for estimating the number of clusters in a dataset
were evaluated using simulated data from a variety of
models, including those considered by Tibshirani et al. [24].
The models used for comparison contain different numbers
of overlapping and non-overlapping clusters, different
numbers of variables, and a wide range of covariance matrix
structures. In addition, a variable number of irrelevant or
‘noise’ variables are included in the models. A noise variable
is a variable whose distribution does not depend on the
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Figure 5

Estimating the number of clusters; results for microarray data. Plots of d,, gapPC,, and sil, versus k, with error bars computed as described in Results. The
horizontal lines for the d, plots correspond to a d,,, cut-off of 0.05. The estimates for the number of clusters are indicated by filled plotting symbols.

cluster label, and such variables are added to obscure the
underlying clustering structure to be recovered.

Model 1. One cluster in 10 dimensions. n = 200 observa-
tions are simulated from the uniform distribution over the
unit hypercube in p = 10 dimensions.

Model 2. Three clusters in two dimensions. The observa-
tions in each of the three clusters are independent bivariate
normal random variables with means (0,0), (0,5), and (5,-3),
respectively, and identity covariance matrix. There are 25, 25,
and 50 observations in each of the 3 clusters, respectively.

Model 3. Four clusters in 10 dimensions, 7 noise variables.
Each cluster is randomly chosen to have 25 or 50 observa-
tions, and the observations in a given cluster are indepen-
dently drawn from a multivariate normal distribution with
identity covariance matrix. For each cluster, the cluster

means for the first three variables are randomly chosen from
a N(og, 2513) distribution, where o, denotes a 1 x p vector of
zeros and I, denotes the p x p identity matrix. The means for
the remaining seven variables are 0. Any simulation where
the Euclidean distance between the two closest observations
belonging to different clusters is less than 1 is discarded.

Model 4. Four clusters in 10 dimensions. Each cluster is
randomly chosen to contain 25 or 50 observations, with
means randomly chosen as N(0,,, 3.61,). The observations
in a given cluster are independently drawn from a normal
distribution with identity covariance matrix and appropriate
mean vector. Any simulation where the Euclidean distance
between the two closest observations belonging to different
clusters is less than 1 is discarded.

Model 5. Two elongated clusters in three dimensions.
Cluster 1 contains 100 observations generated as follows. Set



X, = X, = x, = t, with t taking on equally spaced values from
-0.5 to 0.5. Gaussian noise with standard deviation of 0.1 is
then added to each variable. Cluster 2 is generated in the
same way except that the value 10 is added to each variable.
This results in two elongated clusters, stretching out along
the main diagonal of a three-dimensional cube, with 100
observations each.

Model 6. Two elongated clusters in 10 dimensions, 7 noise
variables. The clusters are generated as in Model 5, but, in
addition, seven noise variables are simulated independently
from a normal distribution with mean o and variance v2 for
the vth variable, 4 <v <10.

Model 7. Two overlapping clusters in 10 dimensions, 9
noise variables. Each cluster contains 50 observations. The
first variable in each of the two clusters is normally distrib-
uted with mean o0 and 2.5, respectively, and with variance 1.
The remaining nine variables are simulated from the
N(09,Ig) distribution (independently of the first variable).

Model 8. Three overlapping clusters in 13 dimensions, 10
noise variables. Each cluster contains 50 observations. The
first three variables have a multivariate normal distribution
with mean vectors (0,0,0), (2,-2,2), and (-2,2,-2), respec-
tively, and covariance matrix X, where o; = 1, 1 <7< 3, and
0;=0.51%< 1 #j < 3. The remaining 10 variables are simu-
lated independently from the N(o,,I,,) distribution.

Note that Models 1, 2, 4, and 5 were considered in Tibshirani
et al. [24]. Model 3 is similar to the third model in [24], with
the addition of seven noise variables. Model 6 is the same as
Model 5, with the addition of seven noise variables.

Fifty datasets were simulated from each model and the
methods described in the Background and Results sections
were applied to estimate the number of clusters in the result-
ing datasets. We are primarily interested in comparing the
percentage of simulations for which each procedure recovers
the correct number of clusters, as this quantity reflects the
accuracy of the procedure. However, for the purpose of
future applications, it is useful to also know whether a
method tends to underestimate or overestimate the true
number of clusters. Hence, the full distribution of the
number of clusters estimated by each method is presented in
Table 3. Note that only the methods Clest, gap, gapPC and
hart have the capability to identify one cluster in the data.

Microarray data

The new Clest procedure and existing methods described in
Background were applied to gene-expression data from four
recently published cancer microarray studies: the lymphoma
dataset of Alizadeh et al. [1], the leukemia (ALL/AML)
dataset of Golub et al. [3], the 60 cancer cell line (NCI60)
dataset of Ross et al. [6], and the melanoma dataset of
Bittner et al. [30] (see summary in Table 4). Note that the

http://genomebiology.com/2002/3/7/research/0036.15

expression levels are, in general, highly processed data: the
raw data in a microarray experiment consist of image files,
and important pre-processing steps include image analysis
of the scanned images and normalization. Because we chose
to use publicly available datasets, most of these decisions
were beyond our control, and one should bear in mind that
different pre-processing decisions could have a large impact
on the measured expression levels [35,36].

Lymphoma

This dataset comes from a study of gene expression in the
three most prevalent adult lymphoid malignancies: B-cell
chronic lymphocytic leukemia (B-CLL), follicular lymphoma
(FL), and diffuse large B-cell lymphoma (DLBCL) (see [1,37]
for a detailed description of the experiments). Gene-expres-
sion levels were measured using a specialized cDNA
microarray, the Lymphochip, containing genes that are pref-
erentially expressed in lymphoid cells or which are of known
immunological or oncological importance. In each
hybridization, fluorescent cDNA targets were prepared from
a tumor mRNA sample (red-fluorescent dye, Cy5) and a ref-
erence mRNA sample derived from a pool of nine different
lymphoma cell lines (green-fluorescent dye, Cy3). The cell
lines in the common reference pool were chosen to represent
diverse expression patterns, so that most spots on the array
would exhibit a non-zero signal in the Cy3 channel. This
study produced gene-expression data for p = 4,682 genes in
n = 81 mRNA samples. The tumor mRNA samples consist of
29 cases of B-CLL, 9 cases of FL, and 43 cases of DLBCL.
Alizadeh et al. [1] further showed that the DLBCL class is
heterogeneous and comprises two distinct subclasses of
tumors with different clinical behaviors. The gene-expres-
sion data are summarized by an 81 x 4,682 matrix X = (xij),
where x; denotes the base-2 logarithm of the Cy5/Cy3 back-
ground-corrected and normalized fluorescence intensity
ratio for gene j in lymphoma sample i. The mean percentage
of missing observations per array is 6.6% and missing data
were inferred as outlined below. The data were standardized
as described below.

Leukemia

The leukemia dataset is described in [3] and available at
[38]. This dataset comes from a study of gene expression in
two types of acute leukemia: acute lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML). Gene-expression
levels were measured using Affymetrix high-density oligonu-
cleotide arrays containing p = 6,817 human genes. The data
comprise 47 cases of ALL (38 ALL B-cell and 9 ALL T-cell)
and 25 cases of AML. Following Golub et al. (P. Tamayo,
personal communication), three pre-processing steps were
applied to the normalized matrix of intensity values avail-
able on the website (after pooling the 38 mRNA samples
from the learning set and the 34 mRNA samples from the
test set). First, a floor of 100 and ceiling of 16,000 was set;
second, the data were filtered to exclude genes with
max/min < 5 or (max - min) < 500, where max and min refer
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respectively to the maximum and minimum intensities for a
particular gene across the 72 mRNA samples; and third, the
data were transformed to base 10 logarithms. The data are
then summarized by a 72 x 3,571 matrix X = (xl-j), where X
denotes the expression level for gene j in mRNA sample 1.
There are no missing values and the data were standardized
as described below. Note that this standardization differs
from the one described in Golub et al. [3].

NCI60

In this study, cDNA microarrays were used to examine the
variation in gene expression among the 60 cell lines from the
National Cancer Institute’s (NCI60) anti-cancer drug screen
[6,39]. The cell lines were derived from tumors with differ-
ent sites of origin: 7 breast, 6 central nervous system (CNS),
7 colon, 6 leukemia, 8 melanoma, 9 non-small-cell-lung-
carcinoma (NSCLC), 6 ovarian, 2 prostate, 8 renal, and
1 unknown (ADR-RES). Gene expression was studied using
microarrays with 9,703 spotted DNA sequences. In each
hybridization, fluorescent cDNA targets were prepared from
a cell-line mRNA sample (red-fluorescent dye, Cys5) and a
reference mRNA sample obtained by pooling equal mixtures
of mRNA from 12 of the cell lines (green-fluorescent dye,
Cy3). To investigate the reproducibility of the entire experi-
mental procedure (cell culture, mRNA isolation, labeling,
hybridization, scanning, and so on), a leukemia (K562) and a
breast cancer (MCF?7) cell line were analyzed by three inde-
pendent microarray experiments. Ross et al. screened out
genes with missing data in more than two arrays. In addi-
tion, because of their small class size, the two prostate cell
lines and the unknown cell line (ADR-RES) were excluded
from our analysis. The data are summarized by a 61 x 5,244
matrix X = (x;), where x; denotes the base-2 logarithm of
the Cys5/Cy3 background-corrected and normalized fluores-
cence intensity ratio for gene j in cell line i. The mean per-
centage of missing observations per array is 3.3% and
missing data were inferred as outlined below. The data were
standardized as described below.

Melanoma

The melanoma dataset is described in the recent paper of
Bittner et al. [30] and is available at [40]. There are 31
melanoma samples and 7 control samples. Gene-expression
levels were measured using cDNA microarrays with 8,150
probe sequences, representing 6,971 unique genes. In each
hybridization, fluorescent cDNA targets were prepared from
a melanoma or control mRNA sample (red-fluorescent dye,
Cys) and a common reference mRNA sample (green-fluores-
cent dye, Cy3). The following pre-processing steps were
applied by Bittner et al. First, a gene was excluded from the
analysis if its average mean intensity above background for
the least intense signal (Cy3 or Cys) across all experiments
was < 2,000 or its average spot size across all experiments
was < 30 pixels; and second, a floor and ceiling of 0.02 and
50, respectively, were applied to the individual intensity log-
ratios. This initial screening resulted in a dataset of 3,613

genes (see Supplemental Information to [30], document II,
page 2). Finally, Bittner et al. did not include the seven
control samples in their analysis. The data are summarized
by a 31 x 3,613 matrix X = (xl-j), where X;j denotes the base-2
logarithm of the Cys5/Cy3 background-corrected and nor-
malized fluorescence intensity ratio for gene j in mRNA
sample i. There were no a priori known classes for this
dataset, but the analysis of Bittner et al. suggests that two
classes may be present in the data, with observations in one
of the classes (Group A in their figures) being more tightly
clustered. There were no missing values and the data were
standardized as described below. Note that this standardiza-
tion is slightly different from the one described in [30].

Imputation of missing data

For the lymphoma and NCI60 datasets, each array contains
a number of genes with fluorescence-intensity measure-
ments that were flagged by the experimenter and recorded
as missing data points. Missing data were imputed by a
simple k-nearest-neighbor algorithm, in which the neigh-
bors are the genes and the distance between neighbors is
based on the correlation between their gene-expression
levels across arrays. For each gene with missing data: first
compute its correlation with all other p - 1 genes, and then,
for each missing array, identify the k nearest genes having
data for this array and infer the missing entry from the
average of the corresponding entries for the k neighbors. A
value of k = 5 neighbors was used for the lymphoma and
NCI60 datasets. For a detailed study of methods for imput-
ing missing values in microarray experiments, see [41],
which suggests that a nearest-neighbor approach provides
accurate and robust estimates of missing values.

Standardization

The gene-expression data were standardized so that the
observations (arrays) have mean o and variance 1 across
variables (genes). Standardizing the data in this fashion
achieves a location and scale normalization of the different
arrays. In a study of normalization methods, we have found
scale adjustment to be desirable in some cases, to prevent
the expression levels in one particular array from dominat-
ing the average expression levels across arrays [36]. Further-
more, this standardization is consistent with the common
practice in microarray experiments of using the correlation
between the gene-expression profiles of two mRNA samples
to measure their similarity [1,4,6]. In practice, however, we
recommend general adaptive and robust normalization
methods which correct for intensity, spatial, and other types
of dye biases using robust local regression [36].

Preliminary gene selection

Expression levels were monitored for thousands of genes in
each of the four studies. However, the majority of the genes
exhibit near-constant expression levels, as measured by the
variance (or coefficient of variation) of the expression levels
across tumor samples. Genes showing nearly constant



expression levels are not likely to be useful for classification
purposes; therefore, we chose to exclude low-variance genes
from the clustering process.

Figure 6 displays for each dataset the individual gene vari-
ances divided by the maximum variance over all genes. All
four variance curves show a sharp drop-off which gradually
flattens. The plots are remarkably similar for all the datasets,
with the melanoma dataset having the fastest drop-off. In
this report, the p = 100 most variable genes were used to
analyze the leukemia, lymphoma and melanoma datasets,
and the p = 200 most variable genes were used for the
NCI60 dataset as it contains more classes. Increasing the
number of genes to p = 300-400 or decreasing the number
of genes to p = 50 did not have much effect on the results
(data not shown). One could also select genes based on a
coefficient of variation filter.

Correlation matrices

The following is not part of the cluster analysis per se, but is
an interesting side-step which may be predictive of the
results of the forthcoming analysis. Recall that for the first
three datasets, tumor classes were known a priori, and for
the melanoma dataset two classes were inferred by Bittner
et al. [30] through cluster analysis. For each dataset, images

http://genomebiology.com/2002/3/7/research/0036.17

of the n x n correlation matrix for the n mRNA samples are
displayed in Figures 7-10, with observations grouped accord-
ing to their a priori known or putative classes. Note that if
observations are highly correlated within classes, the corre-
lation image in this representation should show bright red
squares along the diagonal.

Lymphoma

The existence of three well-separated classes for the lym-
phoma dataset is reflected in Figure 7 for both sets of genes,
the classes being more clearly separated when the majority
of the genes are screened out. Recall that gene-expression
levels were measured using a specialized cDNA microarray,
the Lymphochip, enriched in genes that are involved in the
immune system. This may partly account for the clear sepa-
ration of the classes even when the correlation matrix is
computed using the full set of genes. When PAM is applied
to the lymphoma dataset using the 100 genes with the
largest variance, the K = 2, 3, 4, 5 partitions are as follows.
For K = 2 classes, one cluster consists of the FL. and DLBCL
classes combined and the other consists of the CLL class.
This could reflect differences in tissue sampling, as the CLL
mRNA samples were obtained from peripheral blood cells as
opposed to lymph-node biopsy specimens for the FL and
DLBCL samples. For K = 3, all three classes (CLL, FL,
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Gene variances for microarray datasets. Plots of the variance of the expression levels of each gene across mRNA samples. The variances are scaled by
the maximum variance over all genes and the genes are ordered by variance in descending order. The vertical lines correspond to 50, 100, 200 and 500
genes, and the horizontal lines correspond to ratios of variances of 0.1, 0.2, 0.3, 0.4 and 0.5.
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(a) Lymphoma, all genes (b) Lymphoma, 100 gene
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Figure 7

Correlation matrix, lymphoma dataset. Images of the correlation matrix for the 81 B-CLL, FL, and DLBCL samples based on expression profiles for

() all p = 4,682 genes and (b) the p = 100 genes with the largest variance. The mRNA samples are ordered by class, first B-CLL (blue), then FL (orange),
and finally DLBCL (magenta). Correlations of zero are represented in black, increasingly positive correlations are represented with reds of increasing
intensity, and increasingly negative correlations are represented with greens of increasing intensity. The color bar below the images can be used for
calibration purposes.

(a) Leukemia, all genes (b) Leukemia, 100 genes
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Figure 8

Correlation matrix, leukemia dataset. Images of the correlation matrix for the 72 ALL B-cell, ALL T-cell, and AML samples based on expression profiles
for (a) all p = 3,571 genes and (b) the p = 100 genes with the largest variance. The mRNA samples are ordered by class, first ALL B-cell (blue), then ALL
T-cell (orange), and finally AML (magenta).
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Figure 9

Correlation matrix, NCI60 dataset. Images of the correlation matrix for the 61 cell line mRNA samples based on expression profiles for (a) all p = 5,244
genes and (b) the p = 200 genes with the largest variance. The mRNA samples are ordered by class: 7 + 2 breast, 6 CNS, 7 colon, 6 + 2 leukemia,

8 melanoma, 9 NSCLC, 6 ovarian, 8 renal.
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Figure 10

Correlation matrix, melanoma dataset. Images of the correlation matrix for the 31 melanoma mRNA samples based on expression profiles for (a) all

p = 3,613 genes and (b) the p = 100 genes with the largest variance. The mRNA samples are ordered by class, as proposed in [30], first group B (blue),
then group A (orange).
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DLBCL) are recovered as distinct clusters. For K = 4, the
largest DLBCL class is divided into two clusters of approxi-
mately equal size and the remaining two classes (CLL and
FL) are recovered as two distinct clusters. The two DLBCL
clusters have a 75% overlap with the subclasses of Alizadeh
et al. [1]. Finally, for K = 5, the smallest class, FL, is divided
into two clusters and the rest of the clusters are as with
K = 4. On the basis of this analysis we do not expect to
recover more than four classes in the lymphoma data.

Leukemia

Images of the correlation matrix for the leukemia dataset are
displayed in Figure 8. The three classes corresponding to the
ALL T-cell, ALL B-cell, and AML samples clearly stand out in
the image of the correlation matrix for the 100 genes with the
largest variance, but are indistinguishable in the image of the
correlation matrix based on all genes. When the PAM proce-
dure is applied to the leukemia dataset using the 100 genes
with the largest variance, the results are as follows. For K = 2,
eight ALL T-cell observations are misclassified with the AML
observations. For K = 3 classes, one ALL B-cell sample is clus-
tered with the ALL T-cell tumors and the rest of the observa-
tions are allocated correctly. For K = 4, the ALL B-cell samples
are partitioned into two clusters. Finally, for K = 5, the AML
samples are partitioned into two clusters. On the basis of the
correlation matrix, one would expect to identify three tumor
classes in this dataset.

NCI60

For the NCI60 cell-line dataset, the classes are not clearly
distinguishable from the images of the correlation matrix.
Colon, leukemia and melanoma cell lines display the
strongest correlations within class, whereas breast, NSCLC
and ovarian cell lines seem to be the most heterogeneous
classes. When the PAM procedure is applied to the NCI60
dataset using the 200 genes with the largest variance and
varying the number of clusters K < 8, only five types of cell
lines tend to cluster together (CNS, colon, leukemia,
melanoma, and renal cell lines). On the basis of this observa-
tion, one should not expect to recover more than five classes.

Melanoma

Finally, for the melanoma dataset, the image of the correla-
tion matrix for the p = 100 most variable genes (Figure 10)
could possibly suggest the existence of a subclass of tumors
which includes the group A samples of Bittner et al. [30].
However, some observations in this cluster (the first one
from the left in particular) were not identified by Bittner
et al. as being part of the tight cluster. Indeed, when PAM is
applied to the melanoma dataset using the 100 genes with
the largest variance, four additional observations are joined
to the 19 observation cluster (group A) proposed by Bittner
et al. Dividing the data into three clusters results in a split of
the 19 observations into two clusters. One would expect to
identify, at most, two or three classes for this dataset
because of the small sample size.
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