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Background: We propose two different formulations of the Rasch statistical models to the
problem of relating gene expression profiles to the phenotypes. One formulation allows us to
investigate whether a cluster of genes with similar expression profiles is related to the observed
phenotypes; this model can also be used for future prediction. The other formulation provides an
alternative way of identifying genes that are over- or underexpressed from their expression levels
in tissue or cell samples of a given tissue or cell type.

Results: We illustrate the methods on available datasets of a classification of acute leukemias and
of 60 cancer cell lines. For tumor classification, the results are comparable to those previously
obtained. For the cancer cell lines dataset, we found four clusters of genes that are related to drug
response for many of the 90 drugs that we considered. In addition, for each type of cell line, we
identified genes that are over- or underexpressed relative to other genes.

Conclusions: The cluster-Rasch model provides a probabilistic model for describing gene expression

patterns across samples and can be used to relate gene expression profiles to phenotypes.

Background

Recently, DNA chip or microarray technology has been
developed that allows researchers to measure the expression
levels of thousands of genes simultaneously over different
time points, different experimental conditions or different
tissue samples. It is based on the hybridization of DNA or
RNA molecules with a library of complementary strands
fixed on a solid surface. Oligonucleotide chips contain thou-
sands of features with gene-specific sequences about 25
bases long. These oligos are then hybridized with labeled
probe derived from a given tissue or cell line. The resulting
fluorescence intensity gives information about the abun-
dance of the corresponding mRNA. This is the Affymetrix
DNA chip technology. Alternatively, cDNA can be spotted on
nylon filters or glass slides. Complex mRNA probes are
reverse transcribed to cDNA and labeled with red or green
fluorescent dyes. This technique is often called the spotted

array or cDNA array. In both methods, thousands of mRNA
concentrations can be measured in parallel, potentially
revealing complex gene regulatory networks.

One important application of the microarray gene expres-
sion data in medicine is to study the relationship between
tissue phenotypes and gene expression profiles on the
whole-genome scale. The phenotype could be several differ-
ent types of cancers [1-3], responses of cell lines to different
chemical compounds [4], or time to tumor recurrence after
treatment. For binary phenotypes such as two different types
of cancers, the problem becomes the classification of
patients’ samples. It has been suggested that gene expres-
sion may provide the additional information needed to
improve cancer classification and diagnosis [4]. For continu-
ous phenotypes such as drug sensitivity, the problem of
interest is to relate gene expression patterns to sensitivity to
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drugs and, therefore, aid in the process of drug discovery
and provide a rationale for selection of therapy on the basis
of the molecular characteristics of a patient’s tumor.

From the statistical point of view, the challenge is that the
microarray gene expression data are often measured with a
great deal of noise, and that the sample size of tissues or cell
lines, denoted by n, is usually very small compared to the
number of genes in expression arrays, denoted by p. This
results in the ‘large p, small n’ problem [5]. Most current
approaches to dealing with this problem first select genes that
can best separate tissues of different types by performing uni-
variate analysis. The expression levels of these genes are then
combined linearly in a weighted way to form compound
covariates. These covariates are then used in the standard
regression models for model fitting and prediction. West et
al. [5] proposed a Bayesian binary regression approach using
the singular value decomposition to first reduce the dimen-
sion of the variable space (p) to the number of samples (n).
They called the resulting linear combination of the expression
levels of all the genes the expression of the ‘supergenes’. All
these approaches reduce the variable space by making one or
several linear combinations of the expression levels of some
or all of the genes. Linear combination may not, however, be
the best way of reducing the dimension of the variable space.

Another popular approach to analyzing gene expression data
is to use clustering methods to simultaneously cluster both
samples and genes in order to determine some clusters of
genes that are mostly correlated with some clusters of
samples. Examples of such an application include analysis of
gene expression data and drug response for the 60 human
cancer cell lines of the National Cancer Institute (NCI60
data) [4], and analysis of cancerous and normal colon tissues
[2]. However, the clustering approach is purely exploratory
and requires an external similarity measure. Methods that
can be used to assess the significance of the clustering
results are needed.

The Rasch model (RM) and its extensions [6,7] are an impor-
tant staple of psychological research and are used in other
fields such as sociology, educational testing and medicine.
The idea of the RM is that one can indirectly infer a person’s
position on a latent trait from his/her responses to a set of
well-chosen items. For example, the RM has been used to
infer the quality of life of cancer patients from their answers
to a well-designed questionnaire [8], or to measure disability
from activities of daily living [9]. For these applications, data
are usually given in a matrix, with rows being individuals
and columns being responses to a set of items. Microarray
gene expression data are also given in a transposable matrix
form with rows being genes and columns being samples, and
vice versa. The RM can therefore be used to explain the
observed patterns over different columns. Here we propose
two different formulations of the polytomous RM for analy-
sis of microarray gene expression data. The first formulation

treats samples as ‘persons’ and genes as ‘items’. The idea is to
infer several latent factors associated with a given sample on
the basis of its expression profile over many genes. We
combine a model-based clustering method [10] with the RM
to define a small set of latent factors associated with
samples. For a given sample, we assume that genes in the
same cluster determine one latent factor associated with this
sample, and use the RM to estimate this latent factor for
each gene cluster. These latent factors are then used in a
regression analysis of the observed phenotypes. The rational
of this approach is that genes of similar function yield
similar expression patterns in microarray hybridization
experiments [11-13]. Co-regulated genes may share similar
expression profiles, maybe involved in related functions or
regulated by common regulatory elements [14]. Therefore, if
genes are clustered together, it is impossible from a statisti-
cal point of view to differentiate one gene from the other. In
this case, a better way of studying these genes is to treat
them as a cluster. Consideration of genes in the same cluster
can potentially reduce noise associated with a single gene.

The second formulation is to treat genes as ‘persons’ and
samples as ‘items’. The idea is to infer several latent factors
associated with each gene based on its expression levels across
samples from different tissue or cell types. This formulation
provides simple summary statistics for genes based on their
expression profiles over samples, and helps to identify genes
that are more likely be over- or underexpressed within samples
of the same type or between samples of different types. We
first briefly review some key ideas of the polytomous RM and
its estimation. We then present two different formulations of
the RM for the gene expression data. Details involved in these
formulations are given. We apply our proposed methods to the
analysis of the leukemia dataset [1] and the NCI60 dataset [4]
and conclude with discussion of our method.

Results

The Rasch model (RM)

The RM was originally proposed as an item-response theory
model in the psychological test or attitude scale [6]. The idea
is that the use of a test or scale presupposes that one can
indirectly infer a person’s position on a latent trait from
his/her responses to a set of well-chosen items. Assume that
we have I persons and J items. Let Z; be the response of
individual i to the item j, where the response can take one
from m + 1 possible ordinal categories, 0, ... , m. One version
of the RM, which we use in this paper, called the partial
credit model [15], assumes the probability of response h, as

exp(ha; + )

Pr(Z;=h= 57—,
Lo explla; + By
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fori=1,..,I,j=1,..,J,and h = 0, 1, ..., m, where By is the
item-specific parameter, which expresses the attractiveness



of the respective level [ of item j. ¢; is the person parameter
that expresses the latent factor of the ith person that is mea-
sured by the J items. It is easy to verify that the probability
of the response is monotonous in both person and item
parameters. For example, for m = 3, Figure 1 plots the Rasch
probabilities as a function of the value of the latent factor («)
for two sets of item-specific 8 values. It can be seen from
these plots that for a given item, persons with larger o value
tend to have greater probability of expressing high scores,
and for a given person, the response probabilities are differ-
ent for items with different B values. To make the model (1)
identifiable, the following constraints are required

Bim =0, for j=1,---,p,and Ezﬁﬂ=0
71

Therefore, there is a total of Jm - 1 unconstraint item-spe-
cific parameters.

The item parameters can be estimated based on the condi-
tional likelihood, given minimal sufficient statistics for the
person parameters. For a given person, the minimal suffi-
cient statistic is the sum of the category weights correspond-
ing to the observed responses. After the 8 parameters are
estimated, the person parameters can then be estimated by
maximizing the likelihood function. Details on the condi-
tional likelihood estimation of the item parameters can be
found in Anderson [16].

Relating gene expression profiles to phenotypes

Typical microarray data consist of expression levels for a
large number of genes on a relatively small number of
samples. Let x; be the gene expression level of the jth gene
in the ith sample, fori =1, ..., n, and j = 1, ..., p. In practice,
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n is usually much smaller than p. For spotted arrays, to
moderate the influence of gene expression ratios above and
below one, we may apply the natural log transform to all
the red to green ratios [12]. Upregulated genes thus have a
positive log expression ratio, whereas downregulated genes
have a negative log expression ratio. Or x; might be the
expression level from an oligonucleotide array. In addition,
for the ith sample, we have observed phenotype y;, which
could be a binary indicator such as two different types of
cancer, a continuous measurement such as drug-response
activity or censored survival time such as time to tumor
recurrence. To apply the RM to the gene expression data
X;;, we first need to discretize the gene expression levels x;;
into Zj which takes value from o, ..., m,fori=1,..,n,j=1,
..., p. In practice, we can use the quantiles or the quantiles
within quantiles as cut-off points for discretization.
Because this approach uses only ranks rather than the
actual expression levels, there may be slight loss of infor-
mation. However, in return, we gain a valid analysis with
robustness to the outliers.

Outline of the approach

Our goal is to infer several latent factors associated with each
sample based on its gene expression profile, and relate these
latent factors to the observed phenotypes. Using the terms of
the RM, we treat each gene as an ‘item’, each tissue sample
or cell line as a ‘person’, and treat the expression level as the
response of a given tissue to a given gene. The unidimen-
sional RM may not, however, hold for the complete set of
genes generated by microarrays. Here we assume that genes
with similar expressions determine one latent factor, and
that the RM holds for each set of genes with similar expres-
sion profiles.
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Example of Rasch probabilities as a function of the value of the latent factor for an item with four different response
categories for two different sets of item-specific parameters (a) = (0.3,0.5,-0.5,0) and (b) = (-0.3,-0.5,0.5,0).
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To identify genes with similar expression profiles over
samples, we first use the model-based clustering method of
Fraley and Raftery [10] to cluster p genes into K clusters
based on their gene expression profiles over n samples. Note
that the cluster-step is performed based on the observed
continuous gene expression data, not the discretized gene
expression patterns. For a given sample, using expression
profiles of genes in a given cluster, we estimate a latent
factor by fitting a RM. These latent factors are then used in a
regression analysis to study the relationship between the
gene expressions and the phenotype. The method allows to
investigate whether a cluster of genes with similar expres-
sion profiles is related to the observed phenotypes, and can
also be used for future prediction by estimating the latent
factors using the maximum likelihood estimation. We give
some details for each of these steps in the following sections.

Model-based clustering analysis

Cluster analysis, based on multivariate normal mixture
models [10,17], has been used for clustering various types of
biological, zoological, financial and industrial data. We first
set up the mixture model for the gene expression data. Let
x; = {xlj, ...,xnj} be the n-dimensional vector of the jth gene
expression over n samples. We assume that the gene expres-
sion values of p genes, x,, ..., X, arise from a mixture of K
n-dimensional Gaussian distribution with density

K
JX) = 1; o, (Xl 2, (2

where the 7 is the probability that a gene belongs to the kth
cluster, and ¢,(X|u,%;) denotes the density function of the
multivariate normal distribution with mean g, and variance-
covariance matrix X,. Possible parameterization of the covari-
ance matrix is discussed in Fraley and Raftery [10]. Note that
if we assume a simple covariance structure, %, = LI, where I is
the identity matrix, and A is the variance, then the model-
based clustering method becomes the K-means clustering
method [18].

Treating clustering as a mixture model problem allows us to
use the EM algorithm to estimate the probability of a given
gene belonging to each of the K clusters, and to estimate the
corresponding mean vector and covariance matrix for each
cluster [10]. One advantage of this approach is that it allows
us to obtain an estimate of the number of gene clusters. Fol-
lowing Fraley and Raftery [10], we propose to use the
Bayesian inference criterion (BIC) [19] for selecting the
number of gene clusters. BIC is defined as

BIC(K) = 2L(K) - ng log p,

where L(K) is the maximized log-likelihood, nj; is the
number of independent parameters to be estimated in the
K-cluster model and p is the sample size (number of the
genes). We will choose K that gives the maximum BIC(K)
value.

As the first step of our approach, we cluster genes into K clus-
ters using the model-based clustering method described above,
where the number of gene clusters K is determined by maxi-
mizing the BIC scores. Let C;. denote the genes in cluster k, and
Py denote the number of genes in this cluster, for k=1, ..., K.

Rasch model and regression analysis

We fit a RM model as in equation (1) for genes in each of the
K clusters respectively, treating samples as ‘persons’ and genes
as ‘items’. To fit the RM (equation 1) for genes in the kth
cluster, we let i be the sample index, and j be the gene index,
fori=1,..,nandj =1, .., p;, and let o; = o in model (1) be
the latent factor for the ith sample which is determined by the
genes in the kth cluster, and $; be the gene-specific parameter
for the jth gene. The RM assumes that the variation of the
gene expression patterns observed over different samples is
due to a latent factor, and it provides a probabilistic model to
describe the gene expression pattern for a given sample.

Let @ be the maximum likelihood estimate of the latent
factor for the ith sample determined by the genes in the kth
cluster. Let &i = (6\:il, ...,&iK) be the vector of the estimated
latent factors based on the gene expression profiles for the
ith sample. In general, we can relate the phenotype y; for the
ith sample to the estimated of latent factors &; by a regres-

sion model,
Yi =f(&i; 7/) + &, (3)

fori =1, ..., n, where yis the vector of regression parameters,
g; is the error term, and the actual model of the regression
function (f) and the distribution of the error depend on type
of the phenotype. If the phenotype is a continuous variable,
linear regression can be used, if it is a binary variable, logis-
tic or probit regression can be used, and if the phenotype is
survival time, the Cox regression model can be used. Alter-
natively, the generalized linear model can be used. One
advantage of the proposed method is that we can model the
interactions between the latent factors in the standard way
of modeling interactions in the regression models. As only
the estimated and not the observed latent factors are avail-
able in the regression model (equation 3), the variance of the
estimate of the y parameter has to be corrected. We propose
to use a two-step bootstrap resampling procedure [20] to
estimate the variance of the estimate of the parameter y in
the regression model. First, within the kth gene cluster, we
resample genes and re-estimate the oy parameter by fitting
the RM (1). Second, for a given set of estimated « parame-
ters, we resample the n samples from (yi,&i), fori=1,..n,
and fit the regression model (equation 3) to obtain a new
estimate of y. We can then estimate the variance of 7 with
these resampled estimates.

Prediction

For a new sample with gene expression x,,, = (Xpu

e Xnew p), these p genes are first divided into K clusters



according to the clustering result. For a gene j in cluster k,
we first discretize its expression level into one of the m + 1
categories using the cut-off points used in the discretization-
step, denoted by z,,,. We can then estimate the corre-
sponding latent factor ¢, by maximizing the following
likelihood function,

L(ak) = HPr(Znew,j = Znew,j |ak, ﬂjh)’ (4)
JeC;

A
where B, is the estimated gene-specific parameter for gene j
in the kth cluster based on the training sample. Using the
estimated vector of the latent factors &, the regression model
(3) can then be used for predicting phenotype Y,,,,,..

RM for latent factors associated with genes

The second formulation of the RM for gene expression data
is to treat genes as ‘persons’, and samples as ‘items’. Assume
that we have gene expression data of p different genes,
indexed by 1, over n, samples of the kth sample type, indexed
by j, for k = 1, ..., K. Note that the indices i and j are used dif-
ferently from the previous sections. We are interested in
identifying genes that are expressed differently among these
different sample types. Here each gene has its own expres-
sion patterns over different samples. For gene i, we can esti-
mate a latent factor o, based on its gene expression profile
over n;, samples from the kth sample type by fitting the RM
(equation 1), for k = 1, ..., K. In this formulation of the RM,
we treat genes as ‘persons’, treat samples as ‘items’, and treat
each gene’s expression level over samples as the responses.
InRM (1), I = p, and J = ny, a; = o, which is the latent factor
for the ith gene determined by the samples of the kth type,
and p; is the sample-specific parameter. This model assumes
that the variation of gene expression patterns across differ-
ent samples among different genes is due to several gene-
specific latent factors. Here the latent factor o can be
interpreted as some quantities related to the transcription
factors of the ith gene which determine the gene expression
levels in samples of the kth sample type. For a given tissue or
cell line type k, genes with larger estimated latent factor (o)
tend to have higher expression levels than those with smaller
estimated latent factor. For a given sample type k, the esti-
mated latent factors, (&1k}, ey &pk), provide a nice way to
order genes based on their expression levels over a small
number of samples of sample type k, and to identify genes
that are relatively over- or underexpressed in the kth sample
type. In addition, by comparing the estimated latent factors
associated with genes across different sample types, we can
identify genes that are differentially expressed among differ-
ent tissue or cell line types.

Analysis of the leukemia dataset

Classification using cluster-RM

We applied the proposed approach to the problem of classify-
ing acute leukemias. Acute leukemias can broadly be divided
into two classes, acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL), that originate, respectively,
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from cells of myeloid or lymphoid origin. The two diseases
appear identical under the microscope. However, correct
diagnosis is critical, as they respond best to different treat-
ment regimens. Golub et al. [1] used a set of 38 leukemia
samples including 11 AML and 27 ALL as training samples
set, and used an additional 34 samples (14 AML, 20 ALL) as
a test set for testing their proposed method for class predic-
tion. In our analysis, we combined both the training and the
test datasets into a dataset of 72 samples (25 AML and 47
ALL). For each of the 72 samples, the gene expression data
were extracted from Affymetrix expression arrays.

We first selected the subset of 3,571 genes based on an initial
processing adopted by the authors of the leukemia study. The
expressions summarized are the log (base 10) values of the
actual expression levels following this initial filtering and
transformation. We then select 50 genes that are mostly over-
expressed in AML, and 50 genes that are mostly overexpressed
in ALL by using the Wilcoxon rank sums test. This simple rule
of selecting a smaller set of genes are also used in Golub et al.
[1] using slightly different tests. As expected, the model-based
clustering method assuming the common covariance matrix
clusters these 100 genes into two clusters, with 50 genes in
each cluster. The left plot of Figure 2 shows the gene expres-
sion levels of these 100 genes for the 72 leukemia samples.
Clearly, these 100 genes are highly differentially expressed
between the two types of the leukemia samples.

Given the 100 genes selected, methods such as principal
component analysis, partial least-square regression or com-
posite covariate predictor can be used to further reduce the
gene dimension to two or three dimensions by taking linear
combinations of the gene expression levels. Instead of taking
linear combination of gene expression levels, we first dis-
cretize the expression levels of all the 100 genes over 72
samples into four categories using the quantiles as the cut-
off points. Therefore, for each gene, their expression level
can take one of four possible values of 0, 1, 2 and 3. The
same analysis was also done by discretizing gene expression
levels into eight categories, the results were essentially the
same. In the following, we only present the results using four
categories. Fitting two RMs to these discretized gene expres-
sion levels, we estimate two latent factors for each sample;
one latent factor is determined by gene expression profiles of
50 genes in one cluster, the other is determined by the gene
expression profiles of 50 genes in another cluster. The right
panel of Figure 2 shows the estimated values of these two
latent factors for all the 72 samples. This plot shows that the
two leukemia types are well separated by these two latent
factors, with no overlap, except that two leukemia samples,
one from ALL group and the other from AML group, are
close to each other in this two-dimensional space.

Discriminant analysis using these two latent factors would
expect to perform very well in classification. We performed a
leave-one-out cross validation analysis to estimate the

-
o
o
2
o
©
Q.
-
©
(7
[]
5}
2
fal
>




6 Genome Biology Vol2No 8 Liand Hong

(a) (b)

o

O | .o

- o . o ALL

+ AML
. . .
N N . e .
‘6 .

£ <], .
() C °«
a:)g- % ° o o O 0
Q] 3 o o

o el o, 00 00 [

N T 000 %0 Go e o0

o 800 0 00
o§ . S
o o 0
0 20 40 60 -2 0 2 4
Sample index Latent factor 1
Figure 2

(a) Log (base 10) of gene expression levels of 100 genes chosen using the Wilcox rank sum tests for the leukemias dataset.
Darker spots indicate higher expression levels. The first 47 samples along the x-axis are ALL, the next 25 samples are AML.
Genes are selected to best separate the two types of leukemias. (b) Plot of two latent factors estimated using the Rasch
model for all 72 samples based on their gene expression profiles over 100 genes selected.

misclassification rate. Specifically, we leave one sample out,
and first estimate the sample-specific latent factors «;, for the
ith gene for k = 1,2 and gene-specific parameter f; using the
remaining samples. We then estimate the latent factors of the
left-out sample by maximizing the likelihood function
(Equation 4). Fisher’s linear discriminant analysis using the esti-
mated latent factors was then used to classify the left-out sample.
The above procedure was applied to each of the 72 samples, and
resulted in a misclassification rate of 2/72 = 3%. We use this
example to demonstrate that two latent factors carry most of
the information of the gene expression levels of the 100 genes.

Summary of gene expression profiles

In order to study the difference of the gene expression pro-
files between the ALL and AML samples, we fit two RMs
treating genes as ‘persons’. The first model uses the ALL
samples as ‘items’, and the second uses the AML samples as
‘items’. Therefore, for each gene, we obtain two latent
factors, one based on the gene expression profiles of ALL
samples, the other based on the gene expression profiles of
AML samples. Figure 3 plots the estimated latent factors for
each gene together with the 99% point-wise confidence
intervals. From these two plots, we conclude that the gene
expression levels of most of the genes (genes with 99% con-
fidence intervals containing zero) are not significantly dif-
ferent in both AML and ALL samples. For the ALL samples,
189 genes expressed at lower level and 164 genes expressed
at higher level compared to the rest of the 3,753 genes. For
the AML samples, 92 genes were expressed at lower level
and 94 genes at higher level compared to the rest of the
3,920 genes.

In order to see the difference of gene expression between ALL
and AML samples, the two estimated factors are plotted on
the left in Figure 4. Genes in the upper left quadrant tend to
have higher gene expression level in AML, but lower expres-
sion level in ALL. On the other hand, genes in the lower right
quadrant tend to higher gene expression level in ALL, but
lower expression level in AML. The logarithm (base 10) of the
gene expression levels of these genes are plotted on the right
panel in Figure 4. Clearly, these genes are differentially
expressed between the two type of the samples. Further
examination indicates that all the 100 genes identified by the
Wilcoxon rank-sum test are included in these genes.

Analysis of NCI60 dataset

Relating gene expression profiles to drug activities

Scherf et al. [4] reported the use of ¢cDNA microarrays to
assess gene expression profiles in a set of 60 human cancer
cell lines that have been characterized pharmacologically by
treatment with more than 70,000 different drug agents, one
at time and independently. This dataset offers us a unique
opportunity to relate variations in gene expression to the
molecular pharmacology of cancer. The NCI60 set includes
cell lines derived from cancers of colorectal (CO, seven cell
lines), renal (RE, eight cell lines), breast (BR, eight cell
lines), ovarian (OV, six cell lines), prostate (PR, two cell
lines), lung (LC, nine cell lines) and central nervous system
(CNS, six cell lines) origin, as well as leukemias (LE, six cell
lines) and melanomas (ME, eight cell lines). In this analy-
sis, we consider only the 9o drug subsets whose mecha-
nisms of action is putatively understood, and their activity
data are available from the Web. We used the 1,376 gene
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Figure 3

(a§ Estimated latent factor and its 99% confidence interval for each gene based on its expression profile over the ALL
samples. (b) Estimated latent factor and its 99% confidence interval for each gene based on its expression profile over the
AML samples. For each plot, genes are ordered in the increasing order of the estimated latent factor. Genes between the two
vertical lines are those whose expression levels are not significantly different. For a given leukemia type, genes with 99%
confidence interval of the estimated latent factor not including zero show significantly different expression from those genes
with 99% confidence interval of the estimated latent factor including zero.

subset along with 40 individually assessed targets for the  expression profiles. The phenotype of interest is chemother-
present analysis. These subset was selected by selective  apeutic susceptibility, as measured by -log GI,,, where GI,
filters used in [4]. These 9o drugs are listed in Table 1 of = measures the dose needed to cause 50% growth inhibition.
[4]. They applied the clustering methods to cluster cell lines =~ We first cluster the 1,476 genes using the model-based clus-

basing on both gene expression profiles, and the drug  tering method described previously using the original data
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(a§ Estimated latent factors for each gene using ALL and AML samples. Genes in the upper left quadrant tend to be
overexpressed in the AML samples, but underexpressed in the ALL samples, and genes in the lower right quadrant tend to be
overexpressed in the ALL samples, but underexpressed in the ALL samples. (b) Log (base 10) of gene expression levels for
genes differentially expressed between ALL and AML samples.
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Table |

Genes over- and under-expressed in breast-cancer cell line

Overexpressed
TP53 tumor protein p53 (Li-Fraumeni syndrome)
Antiquitin
Elongation factor TU, mitochondrial precursor
Human mRNA for collagen-binding protein 2

Homo sapiens intermediate conductance calcium-activated potassium
channel

H. sapiens mRNA for phosphoenolpyruvate carboxykinase
H. sapiens inactive palmitoyl-protein thioesterase-2i (PPT2) mRNA

H. sapiens lysosomal neuraminidase precursor

Underexpressed
Tumor-associated antigen CO-029
Probable trans-1,2-dihydrobenzene-1,2-diol dehydrogenase
Human fetus brain mRNA for membrane glycoprotein M6
Human mitochondrial |,25-dihydroxyvitamin D3 24-hydroxylase mRNA
H. sapiens DAP-kinase mRNA

Carbonic anhydrase Il antileukoproteinase | precursor

of the log-ratios. The BIC scores in the upper left panel of
Figure 5 indicate that there are four gene clusters, with 307,
312, 323 and 474 genes in each cluster, respectively. As a
comparison, we also applied the hierarchical clustering
method to cluster these genes. The dendrogram shown in
the upper right plot of Figure 5 also indicates four gene
clusters. For each cell line, a latent factor is estimated using
the RM, based on the gene expression levels of the genes in
each of the four clusters. To fit the RM, we discretize the
gene expression levels into four categories using the quar-
tiles. The same analysis was also done with eight catagories,
and the results are the same. The lower left plot of Figure 5
shows the levels of these four latent factors sorted by cancer
types. In general, cell lines with the same origin tend to
have similar levels of the latent factors; therefore, these
factors can be used for discriminating among the nine dif-
ferent cell lines. However, for the third latent factor, the cell
lines MDA-MB-435 (derived from the pleural effusion of a
patient with breast cancer) and its Erb/B2 transfectant
MDA-N have similar levels to those of latent factors esti-
mated for the melanoma cell lines. To verify the utilities of
these latent factors in clustering cell lines, we performed the
hierarchical clustering analysis based on these four factors
(see lower right plot in Figure 5). We note that the two
breast cancer cell lines are clustered together with
melanomas. Hierarchical clustering analysis using all the
genes also resulted in clustering these two cell lines with
melanomas. In general, cell lines of the same origin are
clustered together on the basis of the four latent factors
estimated with the RM. The clustering result of the cell lines
using these four factors are similar to the clusters obtained
using all the genes (see [4]).

Each of the 60 cell lines is now characterized by four differ-
ent latent factors, where each latent factor is estimated
based on the expression profiles of the genes in each of the
four clusters. It would be interesting to relate these four
latent factors to the drug activity patterns as measured by
-log GI,, across the 60 cell lines. For a given drug, we first
performed a simple linear regression analysis treating the
drug activity as response variable and using one of the four
latent factors as a predictor, and obtained the parameter
estimate of y in the following model:

drug activity = u + y x latent factor.

The left panel of Figure 6 shows the estimated y value
together with point-wise 99% confidence interval for each of
the 9o drugs using one of the latent factors as a predictor.
The variance of the regression parameter 8 and the 99% con-
fidence interval was estimated using the bootstrap proce-
dure, where 50 resamples of genes in each cluster and 50
resamples of samples were used. For each latent factor,
greater positive parameter estimate implies that higher gene
expression level in a given gene cluster corresponds to a
higher drug activity. For a given latent factor, drugs with
99% confidence interval of the estimated y parameter not
including zero are those whose activities are related to genes
which determine this latent factor.

In order to relate the drug activity of a given drug to all the
four latent factors, we performed multiple linear regres-
sion analysis where drug activity for a given cell line was
treated as a response variable, and the four latent factors
were treated as the predictors. The right plot of Figure 6
shows the estimates of the parameters in the multiple
regression model for each of the 9o drugs. This plot can be
used for selecting drugs that are related to gene expression
profiles. For example, only drugs with at least one large
parameter estimate are important for further study, as only
for these drugs, their activity levels are related to gene
expression profiles.

Identifying genes differentially expressed in different cell lines

It is also interesting to identify genes that are over- or under-
expressed relative to other genes for a given cell line type.
Using the RM, we treat genes as ‘persons’ and cell line
samples as different ‘items’, and estimate the latent factor
for each gene based on its expression profiles over all the
samples of a given cell line type. Figure 7 shows the esti-
mated latent factor for each gene based on the gene expres-
sion profiles over each of nine different cell lines. These
estimated latent factors provide a summary of gene expres-
sions over different cell lines. Clearly, the gene expression
profiles are different across different cell line types.

For a given cell line type, we can also infer which genes are
over- or underexpressed compared to other genes based on
the estimated latent factors. Figure 8 shows the estimated
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Figure 5

(a) BIC scores as a function of the number of clusters for the NCI60 dataset. (b) Dendrogram showing hierarchical
clustering of the genes. (c) Four latent factors estimated by using the Rasch model. The cancer indexes are sorted by cancer
types as CNS, BR, RE, LC, ME, PR, OV, CO, LE (see text for abbreviations). (d) Dendrogram showing hierarchical clustering
of cell lines based on four latent factors estimated by using the Rasch model.

latent factor and the point-wise 99% confidence interval for
each gene for each of the nine cell line types. For a given cell
line, genes with 99% confidence interval of the estimated
latent factor not including zero show significantly different
expression from those genes with 99% confidence interval of
the estimated latent factor including zero. For example, for
breast cancer cell line, the method identified 15 genes or
expressed sequence tags (ESTs) that are relatively overex-
pressed (the estimated latent factor is greater than zero, and
is significant at the 0.01 level) and 23 genes or ESTs that are
relatively underexpressed (estimated latent factor is less
than zero, and is significant at the 0.01 level) in the breast
cancer cell lines. Table 1 lists the known genes. Interestingly,
we note that genes that are overexpressed include p53, and
genes that are underexpressed include that for tumor-associ-
ated antigen CO-029. On the basis of our analysis, all other
genes have similar gene expression level in the breast cancer

cell line. Genes that are over- or underexpressed in other
types of cell line can be similarly identified.

Discussion

We have described two different formulations of the RM
for relating gene expression data to phenotypes. The RM
provides a probabilistic model to describe the observed gene
expression patterns. The first formulation can be used for
cancer class prediction, and for identifying clusters of genes
with similar expression profiles that are related to drug
responses. The method is based on a combination of cluster-
ing analysis, the RM and the regression analysis. The second
formulation can be used for identifying differentially
expressed genes from different types of sample. We applied
this method to a publicly available leukemia dataset to
demonstrate the application of the proposed method for
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(@) Parameter estimate and the bootstrap 99% confidence interval of simple linear regression parameter y for each of the 90
drugs and for each latent factor. For a given latent factor, drugs with 99% confidence interval of the estimated y parameter
not including zero are those whose activities are related to genes which determine this latent factor. (b) Parameter estimates
(for each drug, four regression coefficients for four latent factors) of multiple linear regression for each of the 90 drugs.
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Figure 7

Estimated latent factor for each gene and each cell line type. Genes are in the same order across different cell lines to show
that genes have different values of the latent factors, and therefore, different expression profiles across different cell line

types. See text for abbreviations.

class prediction. We also applied this method to an analysis
of the NCI60 data to show that the method can also be
applied to other phenotypes.

The method introduced here has several advantages. First, it
provides a probabilistic model for describing the gene
expression patterns. These models are used to reduce the
complexity of the raw data and offer a certain degree of sim-
plification. In contrast to most of the currently available
methods for gene expression data, such as principal compo-
nent analysis, the model used here provides a non-linear
method for dimension reduction. Second, compared with
traditional density-based models, the method is more robust
to outliers, as it uses ranks rather than actual expression
levels. There is a long sequence of steps in the laboratory as

well as in the image analysis before a single number is pro-
duced for an expression level, and there are many potential
sources of error. Methods that use ranks rather than the
original measured gene expression data are also advocated
by A Tsodikov, A Szabo and D Jones (unpublished data) and
Park et al. [21]. Third, in contrast to clustering methods for
simultaneously clustering both genes and samples, the
model-based approach allows formal estimates of the vari-
ance and therefore facilitates formal tests of null hypotheses
and assignments of confidence intervals.

There are several limitations to the proposed approach. First,
in order to apply the RM, the gene expression levels are dis-
cretized. It is clear that by discretizing the measured expres-
sion levels we are losing information. Certainly, additional
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Figure 8

Estimated latent factor and the associated point-wise 99% confidence interval for each gene and each cell line type. For cell
line type, the genes are sorted by the estimated value of the latent factor. For a given cell line, genes with 99% confidence
interval of the estimated latent factor not including zero show significantly different expression from those with 99%
confidence interval of the estimated latent factor including zero. See text for abbreviations.

information is present in the level of gene expression, but
normalization or scaling errors across subjects or slides
make it difficult to determine the precision of these
numbers. We believe that discretization provides a reason-
ably unbiased approach for dealing with this type of data.
For both the leukemia and NCI60 datasets, we fitted the
RMs by discretizing the gene expression levels into both four
and eight categories, and obtained essentially the same con-
clusions. Of course, the more categories we use, the closer
are the discretized data to the real continuous data.
However, this will introduce more parameters to the model.
Second, this approach assumes that genes can be clustered
into several subgroups based on their expression profiles
over samples. This might not be true for some studies. In
this case, we can consider all the possible clusters of genes in

a step-wise regression analysis as proposed by Hastie et al.
[22]. Third, we used the bootstrap resampling procedure to
estimate the variance of the regression parameter f3 after we
have clustered genes into several classes. This procedure
does not account for possible variability associated with the
clustering step, and therefore, the bootstrap variance esti-
mates are likely to be underestimated.

In our proposed method, the clustering, the Rasch modeling
and the regression analysis are done separately. Important
research for the future is to take a joint likelihood approach
that can combine all three steps to obtain better estimates
of the number of clusters, the latent factors and the regres-
sion parameters. This kind of mixture RM provides a
natural framework for unifying statistical inference and



clustering. We are currently carrying out research in this
direction. In conclusion, we demonstrate here the potential
application of the RMs in analysis of gene expression data.
RMs provide a probability model for describing gene
expression profiles measured over different samples or over
different times. We are currently exploring various other
formulations of the microarray gene expression problems in
the framework of the RMs, including class discovery in
cases of hidden taxonomies based on the estimated latent
factors using the RM.
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