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Summary

Apoptosis is a physiological cell death process important for development, homeostasis and the
immune defence of multicellular animals. The key effectors of apoptosis are caspases, cysteine
proteases that cleave after aspartate residues. The inhibitor of apoptosis (IAP) family of proteins
prevent cell death by binding to and inhibiting active caspases and are negatively regulated by IAP-
binding proteins, such as the mammalian protein DIABLO/Smac. IAPs are characterized by the
presence of one to three domains known as baculoviral IAP repeat (BIR) domains and many also have
a RING-finger domain at their carboxyl terminus. More recently, a second group of BIR-domain-
containing proteins (BIRPs) have been identified that includes the mammalian proteins Bruce and
Survivin as well as BIR-containing proteins in yeasts and Caenorhabditis elegans. These Survivin-like
BIRPs regulate cytokinesis and mitotic spindle formation. In this review, we describe the IAPs and
other BIRPs, their evolutionary relationships and their subcellular and tissue localizations.

Gene organization and evolutionary history

The inhibitor of apoptosis proteins (IAPs) were originally
identified in baculoviruses, where they provide a mechanism
for enhancing viral propagation through inhibition of defen-
sive apoptosis by host insect cells [1,2]. Cellular IAPs were
subsequently described in insects and vertebrates [3-9]. In
recent times, it has become apparent that there is a second
group of BIR-domain-containing proteins (BIRPs) carried
by organisms such as Caenorhabditis elegans and yeasts as
well as mammals and insects that can be distinguished from
IAPs both by function and by structural features of their BIR
domains (reviewed by Miller [10]). The domain structures of
various BIRPs is shown in Figure 1a, and the relationship of
different BIR domains to each other is illustrated by the phy-
logenetic tree in Figure 1b and an alignment of a selection of
BIR domains is given in Figure 1c. Table 1 lists the chromo-
somal localizations of the genes encoding human BIRPs as
well as their tissue expression patterns and the disease situa-
tions in which alterations of the genes have been observed.

The first group of BIRPs encompasses those that inhibit cell
death; they are appropriately called IAPs. These proteins
have between one and three BIR domains and also often have
a RING-finger domain. IAPs have been identified in several
multicellular organisms from Drosophila to mammals, but
are not present in plants, yeasts, protozoans or C. elegans.
The close relationship between baculoviral IAPs and insect
IAPs suggests that baculoviral IAPs may have been acquired
through gene transfer from host insect cells [11]. The BIR
domains of IAPs can be grouped into several subtypes
(Figure 1b). The three BIR domains - BIR1, BIR2 and BIR3 -
of human XIAP, cIAP-1 and cIAP-2 fall into three different
subgroups, suggesting gene duplication of an ancestral IAP
gene encoding three BIR domains and a RING finger.

The gene encoding murine XIAP/MIHA/hILP/BIRC4 spans
approximately 20 kilobases (kb) and the protein is encoded
by six exons [12]. The initiation codon, the BIR1 and BIR2
domains and half of the BIR3 domain is encoded by exon 1.
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The rest of the BIR3 domain is encoded by exons 2 and 3;
exons 4 and 5 encode the following non-structural region and
exon 6 encodes the carboxy-terminal RING-finger domain
and stop codon. The structures of the genes for cIAP-
1/MIHB/hiap2/BIRC2 and cIAP-2/MIHC/hiap1/BIRC3 are
reportedly similar to that of XIAP (referred to as unpublished
data by Farahani et al. [12]). Mammalian cIAP-1 and cIAP-2
are very similar to each other and their genes are tightly linked
(about 12 kb apart), suggesting a relatively recent gene-dupli-
cation event [13]. Both proteins have three BIR domains, a
caspase recruitment domain (CARD) and a RING finger. The
recently identified AP ML-IAP/LIVIN/KIAP/BIRC7 has only
one BIR domain which is most highly related to the BIR3
domains of cIAP-1, cIAP-2 and XIAP, particularly in
having an a-helical extension carboxy-terminal to the BIR
domain [14-16].

There are thought to be six tightly linked NAIP genes in mice
and humans [17-19]. The BIR domains of NAIPs are more
distantly related to the BIR domains of the other mam-
malian IAPs (see Figure 1b) and NAIPs do not have a RING-
finger domain but do have a nucleotide-binding domain at
their carboxyl terminus [5,20]. There are two Drosophila
IAPs, DIAP1 and DIAP2, which have two or three BIR
domains, respectively and which each have a carboxy-
terminal RING-finger domain [4]. Another insect IAP, SfIAP
from Spodoptera frugiperda, has also recently been
described, with two BIR domains and a carboxy-terminal
RING-finger domain [11]. There are several baculoviral
IAPs; most have two BIR domains and a carboxy-terminal
RING-finger domain [1,2].

The second group of BIRPs includes mammalian Survivin/
BIRC5 and Bruce/BIRC6, C. elegans BIR-1 and BIR-2
(shown as CeBIR-1 and CeBIR-2 in Figure 1), yeast Spbir1P
and ScBIR1P and Drosophila proteins d-Bruce and Deterin
[21-25]. Apart from their BIR domains, these proteins are
otherwise highly variable in size and structure. They have
slightly larger BIR domains than those of the IAPs (see
Figure 1c) and there is a conserved intron after the invariant
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glycine-encoding codon in the BIR-domain-encoding region
that is not present in IAP genes. The presence of the
Survivin-like BIRPs in a wide range of organisms and their
conserved function suggests that they represent the earliest
BIRPs. It is possible that, following a gene-duplication event,
the BIR domains in IAPs evolved to have a different func-
tion, namely to interact with and inhibit caspases. The genes
for both murine and human Survivin have been described,
and both comprise four exons, with exons 2 and 3 encoding
the BIR domain [26-28].

Characteristic structural features

BIR domains are characterized by a number of invariant
amino acids, including three conserved cysteines and one con-
served histidine residue within the sequence CX,CX,,;HX, ;C
(Figure 1c). Within IAPs, BIR domains are typically about 70
amino acids long, but they can be more than 100 amino acids
long in other BIRPs. The structures of the cIAP-1 BIR3
domain and the XIAP BIR2 and BIR3 domains are very
similar, indicating that BIR domains typically comprise a
series of four or five o helices and a three-stranded B sheet
with a single zinc ion coordinated by the conserved cysteine
and histidine residues [29-33].

RING fingers, a type of zinc finger, are present in diverse
proteins. A carboxy-terminal RING finger domain is present
in most of the IAPs and has, for XIAP and c-IAP-1, been
shown to have ubiquitin protein ligase activity, directly regu-
lating self-ubiquitination and degradation [34]. RING
domains are characterized by the presence of a set of invari-
ant metal-binding residues (C3HC 4) that coordinate two zinc
ions [35]. The equine herpes virus protein RING has been
shown to consist of an amphipathic o helix next to a triple-
stranded B sheet [36].

The c-IAP1 and c-IAP2 proteins have caspase recruitment
domains (CARDs) between their three BIR domains and the
RING-finger domain. The name relates to the ability of
CARDs within adaptor proteins such as Apaf-1 to interact

Figure |

Structure and evolution of BIRPs. (a) Domain structures of BIRPs in mammals (humans), insects, nematodes and yeast.
The length of each protein (in amino acids) is shown on the right. IAPs have type | BIR domains (dark blue), whereas type
2 BIR domains (light blue) are found in Survivin-like BIRPs. (b) The evolutionary relationship of BIR domains. A
phylogenetic tree was generated using the parsimony option of the PHYLIP Phylogeny Inference Package (version 3.5c)
[72], from BIR domains aligned by the Clustal W1.7 program. The accession numbers and regions used in the analysis are
shown in Table 2. Default settings were used; the order of the sequences was jumbled 10 times and the degree of
certainty for each node (the bootstrap value, shown on the Figure) was calculated from 100 random replicates. All
bootstrap values greater than 50 and selected others are shown. The values for placement of ML-IAP with NAIP BIR3 and
BIR2 domains are very low, and trees calculated using distance methods placed ML-IAP BIR with the BIR3 domains of
XIAP, clAP-1 and clAP-2. Also, note that the alignment used to generate this tree does not include the carboxy-terminal
a-helical extension that is conserved between the BIR3 domains of XIAP, clAP-1, clAP-2 and ML-IAP but not NAIP. (c)
Two types of BIR domain. An alignment of a selection of BIR domains illustrates the difference between BIR domains
present within classical IAPs (top four sequences) and within other BIRPs (bottom four). Aligned regions are as given in
Table 2. Amino acids that are conserved in all BIR domains are highlighted. Type | BIR domains are approximately 70

amino acids long, whereas type 2 BIR domains are longer.
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Table |

Properties of human BIRPs

Human BIRPs and  Size (kDa) = Map position ~ Expression of mRNA Diseases associated with References
alternative names of gene chromosomal rearrangements,
gene amplification or deletion
XIAP/MIHA/ 57 Xq25 Detected in all adult tissues examined [5-7,9,12]
hILP/BIRC4
clAP-1/MIHB/ 70 11922-q23 Detected in all adult tissues examined, [3,5-7,13]
HIAP2/BIRC2 with highest levels in thymus, testis
and ovary
clAP-2/MIHC/ 68 11922-q23 Detected in all adult tissues examined, In marginal zone cell lymphomas of [3,5-7,13]
HIAPI/BIRC3 with highest levels in spleen and the mucosa-associated lymphoid tissue,
thymus API2, the gene encoding clAP-2, is often
rearranged together with the novel gene
MLT at 18q21 resulting in an API2-MLT
fusion
LIVIN/ML-IAP/ 31 20ql13.3 Detected in embryonic tissue The region is frequently amplified in [14-16]
KIAP/BIRC7 and some adult tissues. melanomas, colon, lung and colorectal
Elevated levels in cancer cell malignancies
lines, particularly melanoma cell lines
NAIP/BIRCI 156 5ql3.1 Detected only in liver and placenta Deletions of the NAIP genes often occur [5,20]
(6 genes) by northern blot analysis but was in individuals with spinal muscular atrophy
detected in spinal cord mRNA by but deletions in the nearby gene SMN are
RT-PCR the most likely cause of disease
Survivin/BIRC5 17 17q25 Cell-cycle-dependent expression, [21,26-28]
restricted to tissues in which there are
dividing cells; for example, embryonic
tissue, solid tumors and transformed
cell lines. Expression is absent from
most normal adult tissue
BRUCE/BIRCé 528 2p21-p22 Expression of mRNA is detectable in [22]

most adult tissues, with high levels in

brain and kidney

with CARDs within some initiator caspases (see later), such
as caspase 9 [37]. The CARD fold is related to other protein-
protein interaction domains found in proteins involved in
cell death and elsewhere, such as the death domain, the
death effector domain and the pyrin domain. The only IAPs
described to date that possess a CARD are cIAP-1 and cIAP-2,
and the function of this domain in these proteins is not
known. Protein-protein interactions of cIAP-1 or cIAP-2
CARDs with CARDs of other proteins have not been
described, nor have the CARDs been shown to self-associate.
The structure of cIAP-1 and cIAP-2 CARDs have not yet been
described, although CARDs from other proteins have been
shown to comprise six or seven tightly packed anti-parallel o
helices, with both charged regions and hydrophobic regions
mediating CARD-CARD interactions [38-42].

Localization and function

BIRPs involved in inhibiting cell death: IAPs

The tissue and subcellular localization of mammalian IAPs
varies (see Table 1) and may be important in determining the

relative contribution of different IAPs to cell-death regula-
tion in different cell types and in response to different apop-
totic stimuli.

XIAP appears to be widely expressed [5,6]. It has a cytoplas-
mic location and has been reported to inhibit cell death in
response to a variety of apoptotic stimuli including ultravio-
let irradiation, tumor necrosis factor (TNF), Fas ligand, and
a number of toxic drugs (reviewed by LaCasse et al. [43]).
XIAP very efficiently interacts with and inhibits active cas-
pases 3, 7 and 9 [44-46]. Interaction of XIAP via its RING-
finger domain with bone morphogenetic protein (BMP)
type I receptors has also been reported, which would pre-
sumably enable some XIAP to localize to the plasma mem-
brane [47]. A role for XIAP in regulating the BMP receptor
signaling pathway by linking the receptor to downstream
signaling molecule TAB1 has been proposed.

The cIAP-1 and cIAP-2 proteins were initially identified in a
complex with TNF receptor 2, an indirect association result-
ing from direct interaction with TNF-receptor-associated
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Accession numbers of BIRPs shown in Figure Ib and regions used in the phylogenetic analysis

Protein name Accession number Amino acid residues used for each BIR domain Species
(GenBank)
XIAP P98170 BIRI 21-93, BIR2 159-230, BIR3 258-330 Human
clAP-| XP_006266 BIRI 41-113, BIR2 179-250, BIR3 264-336 Human
clAP-2 XP_006267 BIRI 24-96, BIR2 164-235, BIR3 250-322 Human
ML-IAP NP_071444 BIR 82-154 Human
NAIP NP_004527 BIRI 55-127, BIR2 154-227, BIR3 273-345 Human
Survivin XP_008623 BIR 10-87 Human
Bruce NP_031592 BIRI 256-333 Human
DIAPI AAF49548 BIRI 39-110, BIR2 221-293 Drosophila
DIAP2 Q24307 BIRI 4-76, BIR2 108-179, BIR3 207-279 Drosophila
dBRUCE AAF54520 BIR| 243-320 Drosophila
Deterin AAF55399 BIRI 22-100 Drosophila
SfIAP AAF35285 BIRI 95-166, BIR2 205-277 Spodoptera frugiperda
OplAP NP_046191 BIRI 13-84, BIR2 106-178 Orgyia pseudotsugata nuclear polyhedrosis virus
CplAP P41436 BIRI 2-73, BIR2 103-175 Cydia pomonella granulosis virus
CilAP P47732 BIR1 32-108 Chilo iridescent virus
AclAP D36828 BIRI 24-96,BIR2 126-199 Autographa californica nuclear polyhedrosis virus
OpBIRP2 NP_046197 BIRI 19-91, BIR2 121-193 Orgyia pseudotsugata nuclear polyhedrosis virus
BmBIRP NP_047432 BIR1 24-96, BIR2 125-199 Bombyx mori nuclear polyhedrosis virus
CeBIRP2/ CeBIR-2 U72208 BIR| 18-97, BIR2 162-240 C. elegans
CeBIRPI/ CeBIR-1| T37471 BIR 12-86 C. elegans
SpbirlP T41649 BIRI 17-98, BIR2 122-193 Schizosaccharomyces pombe
ScBIRIP NP_012622 BIRI 12-116, BIR2 145-240 Saccharomyces cerevisiae

factors (TRAFs) 1 and 2 involving the BIR and TRAF
domains of the respective proteins [3]. The expression of
cIAP-1 and cIAP-2 is increased following activation of the
NF-kB transcription factor by the TNF receptor, and these
IAPs may have a role in protecting cells from TNF-induced
apoptosis by reducing the amount of caspase 8 activation
[48]. Exactly how they do this is unclear, because caspase 8
can not be directly inhibited by cIAP-1 or -2 or by any other
known IAPs [49]. Perhaps they act by inhibiting down-
stream caspases such as caspase 3, preventing the feedback
loop involved in the further activation of upstream caspase
8. The cIAP-1 and cIAP-2 proteins have been shown directly
to inhibit the activity of caspases 3 and 7 [49]. Although
cIAP-1 and cIAP-2 can be found within the TNF-R complex,
and they are presumably localized in part to the cell mem-
brane, it is not clear what proportion of total cellular cIAP-1
or cIAP-2 this represents, and when transiently transfected
into cells, cIAP-1 has a perinuclear localization [50].

The recently described mammalian IAP ML-IAP is
detectable in embryonic tissue, selected adult tissues and
several cancer cell lines, particularly in melanoma cell
lines (see Table 1) [14-16]. One study reported expression

predominantly in the nucleus but also in filamentous struc-
tures in the cytoplasm, whereas only cytoplasmic expression
was reported in another study. Although ML-IAP has only
one BIR domain, it is reported to interact with and inhibit
both the initiator caspase 9 and effector caspases 3 and 7; it
inhibits cell death induced through death receptors, by over-
expression of the cell-death pathway proteins FADD, Bax,
RIP, RIP3 and DR3 or in response to various toxic drugs.

The first NAIP gene was identified as a candidate gene defec-
tive in spinal muscular atrophy [5,20]. It is now clear that
deletion of a neighboring gene encoding the protein survival
motor neuron (SMN) is the cause of the disease [51], but it is
possible that loss of functional NAIP may contribute to the
severity of the disease. NAIP is reported to inhibit cell death
in response to serum withdrawal, menadione and TNF, but
because the NAIP ¢cDNA used in these experiments does not
correspond to any of the NAIP genes and may represent
sequences derived from a number of different NAIP genes,
the exact activities of NAIP proteins are unclear.

The strongest evidence for regulation of developmental cell
death by IAPs comes from studies in Drosophila, where loss
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of DIAP1 results in extensive early embryonic cell death and a
corresponding increase in caspase activity [52]. An equivalent
study in mammals is still required to establish the role of
these proteins in mammalian developmental cell death (see
Frontiers section). A punctate perinuclear pattern of expres-
sion has been described for DIAP2 when overexpressed in
insect cells [53].

BIRPs involved in the regulation of cell division

Although originally described as a protein that could inhibit
cell death [21], Survivin functions primarily in the regula-
tion of cell division, a role conserved in the yeast and
C. elegans BIRPs, whose BIR domains closely resemble that
of Survivin [23,24,54-59]. Survivin is expressed only during
mitosis (see Table 1). Subcellular localization has shown
that Survivin is a chromosome passenger protein: that is, it

is initially associated with the centromeres, but at the
metaphase-anaphase transition it leaves the centromeres
and remains in the spindle midzone [56-58,60]. It can be
found in the mid-body at telophase, after which it is ubiquiti-
nated and degraded. Consistent with its subcellular localiza-
tion, elimination of Survivin by homologous recombination
results in mouse embryos that are unable to survive beyond
day 5 because of failure of cytokinesis [56].

The C. elegans proteins BIR-1 and BIR-2 are also involved in
the regulation of cytokinesis [23,57]. BIR-1, like Survivin, is
expressed only during cell division and is a chromosome
passenger protein. The phenotype of BIR-1-deficient
embryos is identical to that of embryos deficient for the
Aurora-like kinase AIR-2, and BIR-1 is required for localiza-
tion of AIR-2. Like Survivin and the C. elegans BIRPs, yeast
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or drugs
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Figure 2

The role of IAPs in the regulation of cell death. Apoptosis induced by TNF or Fas ligand via death receptors (DR) involves
adaptor-protein-mediated recruitment and activation of initiator caspases, such as caspase 8 (C8), and the subsequent
activation of downstream caspases such as caspase 3 (C3) and 7 (not shown). In cell death induced via stress pathways such
as irradiation or drugs, cytochrome c (Cyt c) and DIABLO are released from the mitochondria. Cytochrome c binds to the
carboxyl terminus of the adaptor protein Apaf-1, allowing it to unfold, interact with inactive caspase 9 (Pro-C9) and promote
its oligomerization and autoprocessing to give active C9; active caspase 9 then can activate downstream caspases. Pro-survival
members of the Bcl-2 family inhibit cell death via stress pathways and can prevent release of cytochrome c and DIABLO from
mitochondria. The downstream caspases cleave cellular substrates (such as poly (ADP-ribose) polymerase (PARP) and
inhibitor of caspase-activated DNase (ICAD)), resulting in many morphological changes and culminating in cell death. IAPs
prevent cell death by interacting with and inhibiting active caspases, whereas the IAP antagonist DIABLO can prevent these
interactions.
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Mechanism of caspase inhibition by IAPs and its prevention by the IAP antagonist DIABLO/Smac. (a) The amino terminus of
the p10 subunit of caspase 9, revealed following autoprocessing, interacts tightly within a groove of the BIR3 domain of XIAP.
(b) The linker region upstream of the BIR2 domain of XIAP interacts tightly with the catalytic site of caspase 3 (and caspase
7; C indicates the catalytic cysteine residue), resulting in effective caspase inhibition. A less significant interaction of the amino
terminus of the small subunit of caspase 3 within a groove of the BIR2 domain has been proposed. (c) The amino terminus of
DIABLO (red) is similar to that of caspase 9 and competes for the exact same interaction site within the BIR3 domain. (d) A
similar groove within the BIR2 domain of XIAP is believed to mediate interaction with DIABLO and provides a mechanism for

DIABLO to remove caspase 3 from XIAP.

proteins ScBIR1P and Spbir1P have a role in regulating cell
division [24], and as yeasts do not have caspases, a role in
cell-death regulation can be excluded.

Mammalian Bruce/Apollon has a punctate pattern of cellu-
lar expression and colocalizes with the Golgi marker protein
TGN38. Expression in dendrites and axons of primary
neurons has also been detected [22]. While Bruce has a BIR
domain at its amino terminus, it also has ubiquitin-conju-
gating activity as a result of a ubiquitin-conjugating enzyme
(UBC) domain at the carboxyl terminus of the protein. The
BIR domain of Bruce is most similar to the BIR domains of
Survivin and other BIRPs that are involved in regulating cell
division, although the function of Bruce is unknown.

Mechanism of caspase inhibition
Caspases are produced as inactive zymogens that are
processed into an active form following cell-death stimuli.

The active caspase is believed to be a heterotetrameric
complex generated from two zymogen monomers. Cell-
death pathways involve the sequential activation of initiator
and effector caspases (see Figure 2). Activation of initiator
caspases such as caspases 9 and 8 is facilitated by adaptor
proteins such as Apaf-1 or FADD, and when activated, cas-
pases 8 and 9 can process and activate downstream effector
caspases such as caspases 3 and 7. IAPs can inhibit some
active caspases, whereas the mammalian protein DIABLO
antagonizes IAP function [61-63] (see Figures 2,3).

The BIR3 domain of XIAP interacts with and inhibits active
processed caspase 9 [46,63,64]. The amino terminus of
DIABLO and that of the p10 subunit of active caspase 9 -
which is revealed only after autoprocessing - are similar and
compete for exactly the same site within a groove of the BIR3
domain of XIAP [64-69] (Figure 3). The interactions of
DIABLO and caspase 9 with XIAP are thus mutually exclusive.
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The amino termini of the Drosophila proteins Grim, Reaper
and Hid are similar to the amino terminus of DIABLO within
the first four amino acids, and this region is responsible for
interaction with IAPs [67-69].

The main point of contact between caspases 3 and 7 and
XIAP involves the linker region immediately upstream of the
BIR2 domain of XIAP [31-33,70] (Figure 3). The linker forms
a direct contact with the catalytic site of the caspases, thereby
blocking their activity. An additional interaction of the amino
terminus of the processed p10 fragment of caspase 3 within
the groove of the BIR2 domain has been proposed [33] and,
although dispensable for caspase interaction and inhibition
by XIAP, the IAP antagonist DIABLO/Smac is thought to
compete for the same groove, presumably levering out
caspase 3 and dislodging it from the IAP.

DIABLO is a dimeric protein with two amino termini that
can potentially interact with BIR domains [65]. Although
DIABLO is able to interact with individual BIR2 and BIR3
domains, albeit with higher affinity for the BIR3, the type of
interaction favored with full-length XIAP is not known. For
example, it is possible that a DIABLO dimer interacts simul-
taneously via its two amino termini with both the BIR2 and
BIR3 domains on a single XIAP molecule, or that the two
amino termini interact with BIR domains on different XIAP
molecules with three different possible BIR domain combi-
nations (two BIR2 domains, a BIR2 plus BIR3 domain or
two BIR3 domains). Establishing this structurally may be
difficult given that the generation of well-folded full-length
XIAP has eluded crystallographers so far.

Frontiers

Our understanding of IAPs and how they inhibit cell death
has taken enormous strides in the last few months. At a struc-
tural level, we now know how IAPs interact with and inhibit
caspases and how this interaction can be regulated by IAP
antagonists such as DIABLO. Much research is still required,
however, to define the different roles for different mam-
malian IAP proteins in the face of different cell-death stimuli.
It is likely that there is some redundancy between family
members. Indeed, MIHA-deficient mice are without pheno-
type, with the exception of apparently increased expression
levels of cIAP-1 and cIAP-2, suggesting some compensation
[71]. It may be necessary to generate mice deficient for more
than one IAP in order to establish the role of IAPs in
mammals. So far, only one mammalian IAP antagonist,
DIABLO, has been described, but given that there are three
such proteins in Drosophila, other mammalian IAP antago-
nists are almost certain to exist. The second group of BIRPs
discussed in this review are clearly involved in regulating
cytokinesis, although the exact mechanism is not known.
Direct interactions of BIR domains from these proteins with
other cellular proteins have not yet been reported but are
likely to provide some clues to how these proteins function.
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