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Summary

Ring-type polymerases consist of a DNA polymerase, a ring-shaped sliding clamp protein and a clamp-
loading complex. Sliding clamp proteins are found in all organisms and are called proliferating cell
nuclear antigen (PCNA) in eukaryotes and the 3 clamp in prokaryotes. Both PCNA and 3 form a ring
around DNA, which is made up of two subunits of three domains each in 3 but three subunits of two
domains each in PCNA. Despite this difference and a lack of detectable sequence homology, the
structures of the two rings are very similar. The sliding clamp slides along DNA and tethers the
polymerase to the DNA, enabling rapid and processive DNA replication.

Gene organization and evolutionary history

The ring-type polymerases (also called replicases) are found in
all organisms and consist of three major components: the DNA
polymerase, a protein ring or sliding clamp, and a clamp-
loading complex. Their primary role is to replicate the genome.
In this review, we focus on the sliding clamp proteins.

Classification

The prokaryotic sliding clamp is a protein referred to as B
and the eukaryotic sliding clamp is called proliferating cell
nuclear antigen (PCNA). The T4 bacteriophage also utilizes a
ring-type polymerase; its sliding clamp, called gene protein
45, is a trimer similar to PCNA (see Figure 1), but lacks
homology to either PCNA or 3 [1,2].

Gene organization

The location of the dnaN gene, which encodes the B sliding
clamp protein, is conserved among prokaryotes. In both the
Gram-negative and the Gram-positive genomes sequenced
to date, the dnalN gene is embedded between the dnaA and
the recF genes, within the replicative-origin region of the
bacterial chromosome. Even though differences in the orga-
nization of bacterial origins have tentatively resulted in three
classes of origins, the position of dnaN relative to dnaA and
recF is conserved in all classes [3]. The promoter and the

regulatory sequences of the dnalN gene operate from within
the dnaA gene, but expression of the B subunit is indepen-
dent of DnaA [4].

The final transcript of the human PCNA gene contains six
exons. The PCNA gene has been mapped to chromosome 20,
but two pseudogenes have been identified on chromosomes
X and 6 [5].

Evolutionary history

The ring-type polymerases are found in all organisms, both
prokaryote and eukaryote. The existing body of genome
sequence information indicates that the B sliding clamp pro-
teins are highly conserved in prokaryotes, and PCNA is highly
conserved among eukaryotes. Interestingly, B and PCNA show
no sequence homology, even though they have very similar
three-dimensional structure [6]. Homologs to Escherichia coli
B protein are readily identified in all the numerous prokaryotic
genome sequences by simple BLAST searches. There is at least
one example of an organism (Sulfolobus solfataricus) that
encodes two B homologs, and others may yet appear. The
PCNA sequence is fairly well conserved among eukaryotes. In
general, there is only one gene encoding PCNA, but the organ-
ism Daucus carota (carrot) encodes two PCNA homologs, one
of which is expressed only during embryogenesis.
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Sliding clamp rings of different organisms. Clamps are constructed from either two or three monomers to yield a ring
composed of six domains. (a) The prokaryotic 3 subunit contains three domains, whereas PCNA and T4 gp45 are about two
thirds the size of § and comprise only two domains each. The crystal structures of the oligomeric rings: (b) E. coli f3;

(c) human PCNA; (d) T4 phage gp45. In (b-d), the interfaces between protomers are indicated by the arrows, and the
domains within each monomer unit are numbered (I-3 for 3 and 1,2 for PCNA and gp45).

Characteristic structural features ATP hydrolysis to open the ring, to position DNA within it,
The sliding clamp is formed from identical protomers that and to close the clamp (Figure 2).

oligomerize to form a ring that encircles DNA [7,8]. The ring

does not self-assemble onto internally primed sites. Rather, The B clamp of the Escherichia coli replicase is a homodimer
it requires the clamp loader, which harnesses the energy of  of crescent-shaped 40 kDa subunits arranged head-to-tail to
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Figure 2

Thge action of the three components of the ring-type DNA polymerases. The protein ring (sliding clamp) is assembled onto a
primed template junction by a clamp-loader complex in an ATP-driven reaction. The DNA polymerase (Pol) then assembles
with the ring on DNA to form a highly processive polymerase, which pulls the ring along behind it during chain extension
while remaining tethered to DNA by the ring.




form a ring (Figure 1). The crystal structure of  reveals that
each monomer is constructed from three globular domains,
each with the same chain fold [7]. The inside diameter of the
ring of both p and PCNA is approximately 35 A, allowing
ample room to encircle the DNA duplex.

The structure of eukaryotic PCNA is practically superimpos-
able on that of the B clamp [4,9]. The monomeric unit is only
about two-thirds the size of B, however; it consists of two
globular domains instead of three and trimerizes to form a
six-domain ring the size of the B dimer (Figure 1). Although
the PCNA domain structure is essentially the same as that of
the domain structure in 8, no sequence homology is detected
between the two families. Perhaps the multidomain struc-
ture evolved from a common ancestral gene encoding one
domain that later underwent duplications and fusion events
to form the three-domain monomer.

Localization and function

The ring-type polymerases are ubiquitous in all cells. Their
primary role is to replicate the genome [4,10,11]. They are
highly processive enzymes and extend DNA at high speed.
The DNA polymerase component is relatively poor in DNA
synthesis because it dissociates from DNA after synthesis of
only a few nucleotides (called ‘distributive action’), and must
rebind to DNA to continue synthesis. But when coupled with
the sliding clamp and the clamp-loading complex, it
becomes rapid and highly processive. The sliding clamp
slides freely on duplex DNA [12] and binds directly to the
DNA polymerase, thereby acting as a mobile tether to hold
the polymerase to the DNA template during synthesis.

The ring-type polymerases are utilized for chromosome
replication, but are also involved in other processes. For
example, the E. coli DNA polymerase III holoenzyme is
required in mismatch repair. In eukaryotes, PCNA is
involved in both excision and mismatch repair.

Expression of the PCNA gene is associated with the prolifera-
tive state of the cell. The promoter sequence contains binding
sites for several transcription factors. Transcription of PCNA is
stimulated by a number of growth factors, so it is not surprising
that the expression of PCNA is lowest in quiescent cells.

Frontiers

As the ring-type polymerases are involved in processes other
than DNA replication, it seems likely that future studies will
reveal how this three-component machinery interfaces with
yet other proteins to perform its role, not only in replication,
but in DNA repair and possibly recombination as well.
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