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Detection of evolutionarily stable fragments of cellular pathways by hierarchical clustering of phyletic patterns<p>Phyletic patterns denote the presence and absence of orthologous genes in completely sequenced genomes and are used to infer func-tional links between genes, on the assumption that genes involved in the same pathway or functional system are co-inherited by the same set of genomes. However, this basic premise has not been quantitatively tested, and the limits of applicability of the phyletic-pattern method remain unknown.</p>

Abstract

Background: Phyletic patterns denote the presence and absence of orthologous genes in
completely sequenced genomes and are used to infer functional links between genes, on the
assumption that genes involved in the same pathway or functional system are co-inherited by the
same set of genomes. However, this basic premise has not been quantitatively tested, and the limits
of applicability of the phyletic-pattern method remain unknown.

Results: We characterized a hierarchy of 3,688 phyletic patterns encompassing more than 5,000
known protein-coding genes from 66 complete microbial genomes, using different distances,
clustering algorithms, and measures of cluster quality. The most sensitive set of parameters
recovered 223 clusters, each consisting of genes that belong to the same metabolic pathway or
functional system. Fifty-six clusters included unexpected genes with plausible functional links to the
rest of the cluster. Only a small percentage of known pathways and multiprotein complexes are
co-inherited as one cluster; most are split into many clusters, indicating that gene loss and
displacement has occurred in the evolution of most pathways.

Conclusions: Phyletic patterns of functionally linked genes are perturbed by differential gains,
losses and displacements of orthologous genes in different species, reflecting the high plasticity of
microbial genomes. Groups of genes that are co-inherited can, however, be recovered by
hierarchical clustering, and may represent elementary functional modules of cellular metabolism.
The phyletic patterns approach alone can confidently predict the functional linkages for about 24%
of the entire data set.

Background
Completely sequenced genomes and their gene repertoires
are an important resource for studying biological evolution
and cellular function. A crucial step in genome analysis, and
the foundation of evolutionary and metabolic reconstruc-
tions, is determination of orthologous relationships between
genes in different genomes [1]. In 1997, Tatusov, Koonin and

Lipman combined orthologs and their lineage-specific dupli-
cates into clusters of orthologous groups (COGs) and pro-
posed the first practical algorithm for finding orthologs on a
large scale [2]. They introduced phyletic patterns as a repre-
sentation of the distribution of COGs across genomes, useful
for tracking the evolutionary events such as vertical gene
inheritance, gene loss and horizontal transfer.

Published: 27 April 2004

Genome Biology 2004, 5:R32

Received: 11 November 2003
Revised: 19 February 2004
Accepted: 31 March 2004

The electronic version of this article is the complete one and can be 
found online at http://genomebiology.com/2004/5/5/R32
Genome Biology 2004, 5:R32

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2004-5-5-r32
http://genomebiology.com/2004/5/5/R32
http://www.biomedcentral.com/info/about/charter/


R32.2 Genome Biology 2004,     Volume 5, Issue 5, Article R32       Glazko and Mushegian http://genomebiology.com/2004/5/5/R32
Pellegrini and co-workers [3] emphasized the idea that
phyletic patterns can also be used as a post-homology method
of predicting protein function, on the premise that genes/
COGs encoding functionally linked proteins are co-inherited
(simultaneously present or simultaneously absent) in the
same subsets of genomes. A functional link between two pro-
teins can be understood either as physical interaction
between them, or, more broadly, as their involvement in the
same metabolic pathway or functional system, and phyletic
patterns are coded as strings of bits, standing for presences or
absences of homologs in different genomes. It has been pro-
posed that the Hamming distance of 3 bits or less between
phyletic patterns is a useful similarity threshold for detecting
functionally linked genes [3]. Ad hoc application of the
method produced several experimentally validated predic-
tions, such as a novel type of isopentenyl pyrophosphate iso-
merase in archaea and some bacteria [4,5], several
participants in the 2-C-methyl-D-erythritol-4-phosphate
(MEP) pathway of isoprenoid biosynthesis in bacteria and
plants [6], and new components of queuosine biosynthesis
pathway in Gram-positive bacteria [7].

Even with complete genome sequencing and high-throughput
determination of gene function, many central metabolic path-
ways remain only partially characterized. The candidate
genes filling the 'missing' steps are sought, and phyletic pat-
terns may be used to identify many more such candidates. In
practice, this approach is usually combined with other homol-
ogy and post-homology methods, such as measurement of
gene coexpression, prediction of coexpression from operon
structure, and identification of multidomain fusions [8-10].
We do not know how many functional connections between
genes/COGs can be inferred solely from their co-inheritance.
On a more general note, co-occurrence of genes in genomes is
one measure of their association in gene networks, and quan-
tification of this association is needed for any system-wide
study of gene function and evolution.

To utilize fully the information offered by phyletic patterns,
and to understand their limitations, we seek a better under-
standing of general properties of patterns and distances

between them. A possible limitation of the phyletic-pattern
method is that lineage-specific gains and losses of genes,
thought to be pervasive in microbial evolution [11], will cor-
rupt the similarity, increasing distance between functionally
linked genes. One example of a pathway teeming with differ-
ential gains and losses is the tricarboxylic acid (TCA) cycle,
which is present in its 'full' (that is, E. coli-like) form in only a
few species, mostly within the proteobacterial clade, but is
rearranged in other microbial lineages, presumably in con-
nection with adaptation to changes in the redox status of the
environment (Figure 1 and [12]).

A special case of gene gain/loss is gene displacement, when
the same function is performed by non-orthologous genes in
different species [13]. For example, most enzymes from the
triose part of the glycolytic pathway are present in almost
every species, but one activity, phosphoglycerate mutase, can
be carried out by three non-orthologous genes, and the pat-
tern for each of these COGs is not a good match to the rest of
the pathway (Figure 1). Phyletic patterns themselves, how-
ever, may be used to track displacements, by assuming that
the alternative isofunctional genes display negative correla-
tion, or 'complementarity'. A recent example of such an
approach is the discovery of the novel type of thymidylate
synthase, flavin-dependent ThyX, deduced by reversing pres-
ences and absences in a pattern of the conventional, folate-
dependent thymidylate synthase ThyA [14]. As with positive
correlations, the complementary relationship is obscured by
asynchronous gains and losses and by functional redundancy,
when two genes performing the same molecular function are
encoded by the same genome (Figure 1).

Recent attempts at a more quantitative understanding of
phyletic patterns include devising a scoring function for neg-
ative correlation, which has helped to find displacements of
thiamine biosynthesis genes among the candidates short-
listed by other methods [15], and development of significance
tests for similarities between two patterns [16,17]. It has also
been proposed to improve the sensitivity of phyletic pattern
matching by combining binary information of gene presence/
absence and phylogenetic distance between orthologs [18,19].

Phyletic patterns are corrupted by gene gains and lossesFigure 1 (see following page)
Phyletic patterns are corrupted by gene gains and losses. The consensus phylogenetic tree on top is the species' tree based on genomic content [26]. Small 
black and white squares indicate, respectively, presences and absences of genes in each species. (a) TCA cycle. Blue box indicates the 'canonical' cycle, as 
known from saprophytic Enterobacteriaceae with large genomes. (b) Glycolysis. The green box indicates omnipresent COGs in the evolutionarily ancient 
bottom part of glycolysis, and the red box indicates three COGs coding for phosphoglycerate mutase activity. None of the patterns in the red box is close 
to the patterns in the green box, even though all these COGs are functionally linked. (c) Most genomes have just one of the two types of thymidylate 
synthase, but the blue boxes indicate several exceptions to this rule. (d) The full names of the species listed along the top of (a) and the TCA enzymes 
corresponding to the COGs shown in (a-c).
Genome Biology 2004, 5:R32
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Figure 1 (see legend on previous page)

Archaea (13): Eukaryota (3):

Bacteria (10):

Actinobacteria (4):
Gram plus (12):

Gamma (11):

Proteobacteria (6):

Alpha (7):

 (d)    Afu  Archaeoglobus fulgidus Sce  Saccharomyces cerevisiae
Hbs  Halobacterium sp. NRC-1 Spo  Schizosaccharomyces pombe
Mac  Methanosarcina acetivorans Ecu  Encephalitozoon cuniculi
Mth  Methanothermobacter
Mja  Methanococcus jannaschii Aae  Aquifex aeolicus
Mka  Methanopyrus kandleri AV19 Tma Thermotoga maritima
Tac  Thermoplasma acidophilum Ctr  Chlamydia trachomatis
Tvo  Thermoplasma volcanium Cpn  Chlamydophila pneumoniae
Pho  Pyrococcus horikoshii Tpa  Treponema pallidum
Pab  Pyrococcus abyssi Bbu  Borrelia burgdorferi
Pya  Pyrobaculum aerophilum Syn  Synechocystis
Sso  Sulfolobus solfataricus Nos  Nostoc sp. PCC7120
Ape  Aeropyrum pernix Fnu  Fusobacterium nucleatum

Dra  Deinococcus radiodurans
Cgl  Corynebacterium glutamicum
Mtu  Mycobacterium tuberculosis H37Rv Cac  Clostridium acetobutylicum
MtC  Mycobacterium tuberculosis CDC1551 Lla  Lactococcus lactis
Mle  Mycobacterium leprae Spy  Streptococcus pyogenes M1GAS

Spn  Streptococcus pneumoniae
Eco  Escherichia coli K12 Sau  Staphylococcus aureus N315
EcZ  Escherichia coli O157:H7EDL933 Lin  Listeria innocua
Ecs  Escherichia coli O157:H7 Bsu  Bacillus subtilis
Ype  Yersinia pestis Bha  Bacillus halodurans
Sty  Salmonella typhimurium LT2 Uur  Ureaplasma urealyticum
Buc  Buchnera sp. APS Mpu  Mycoplasma pulmonis
Vch  Vibrio cholerae Mpn  Mycoplasma pneumoniae
Pae  Pseudomonas aeruginosa Mge  Mycoplasma genitalium
Hin  Haemophilus influenzae
Pmu  Pasteurella multocida Nme  Neisseria meningitides MC58
Xfa  Xylella fastidiosa 9a5c NmA  Neisseria meningitides Z2491

Rso  Ralstonia solanacearum
Atu  Agrobacterium tumefaciens strain C58  Hpy Helicobacter pylori 26695
Sme  Sinorhizobium meliloti jHp  Helicobacter pylori J99
Bme  Brucella melitensis Cje  Campylobacter jejuni
Mlo  Mesorhizobium loti
Ccr  Caulobacter crescentus CB15
Rpr  Rickettsia prowazekii
Rco  Rickettsia conorii

(a) TCA cycle

(b) Glycolysis

(c) Two types of thymidylate synthase
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C_COG0538
C_COG0567
C_COG1048
CE_COG0473
C_COG0372
C_COG0074
C_COG0045
C_COG0479
C_COG1053
C_COG0508
C_COG1249
C_COG0039
C_COG0114
C_COG1951
C_COG1838

G_COG1830
G_COG0837
G_COG0205
G_COG0191
G_COG0166
G_COG0057
G_COG0149
G_COG0126
G_COG0148
G_COG0469
G_COG0588
G_COG0696
G_COG3635

F_COG0207
F_COG1351

TCA

Glycolysis

Two thymidylate synthases

C_COG0538 Isocitrate dehydrogenases
C_COG0567 Dehydrogenase (E1)
C_COG1048 Aconitase A
CE_COG0473 Isocitrate dehydrogenase
C_COG0372 Citrate synthase
C_COG0074 Succinyl-CoA synthetase a
C_COG0045 Succinyl-CoA synthetase b
C_COG0479 Succinate dehydrogenase Fe-S
C_COG1053 Succinate dehydrogenase
C_COG0508 Acyltransferase (E2)
C_COG1249 Dehydrogenase (E3)
C_COG0039 Malate/lactate dehydrogenases
C_COG0114 Fumarase
C_COG1951 Tartrate dehydratase a
C_COG1838 Tartrate dehydratase b

G_COG1830 DhnA-type fructose aldolase
G_COG0837 Glucokinase
G_COG0205 6-phosphofructokinase
G_COG0191 Fructose bisphosphate aldolase
G_COG0166 Glucose-6-phosphate isomerase
G_COG0057 Glyceraldehyde-3-phosphate
G_COG0149 Triosephosphate isomerase
G_COG0126 3-phosphoglycerate kinase
G_COG0148 Enolase
G_COG0469 Pyruvate kinase
G_COG0588 Phosphoglycerate mutase1
G_COG0696 Phosphoglyceromutase
G_COG3635 Phosphoglycerate mutase AP

F_COG0207 ThyA Thymidylate synthase
F_COG1351 ThyX Thymidylate synthase
Genome Biology 2004, 5:R32
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In this work, we characterize the relationships between func-
tionally linked genes/COGs across multiple genomes, and ask
what can be inferred, in a systematic way, about the metabo-
lism and evolution of prokaryotes, on the basis of phyletic
patterns alone. Four main components of our quantitative
analysis are: distance between patterns; method for produc-
ing graphs based on the distance data; method for partition-
ing the graph into subsets; and estimation of error rate in
predicting functional links. Generally speaking, phyletic pat-
terns are binary vectors in species space, and distance
between them can be measured in many ways. Patterns and
the set of distances between each pair of them define a graph,
in which one may discern subgraphs, or clusters, of similar
pattern vectors. The quest for finding functionally linked
genes/COGs then amounts to constructing a graph in which
the number of automatically identifiable, biologically relevant
clusters is maximized.

Results
Hierarchical clustering of phyletic patterns
The key question in any clustering is the choice of the appro-
priate combination of distance measure and clustering algo-
rithm. We investigated the effect of various distances between
patterns, of different clustering approaches, and of several
methods of tree splitting on the recovery of functionally
linked proteins.

Several measures of distance between phyletic patterns have
been proposed [3,18,20-22]. Most of them do not address a
crucial requirement, which we illustrate in the following
example. Consider two pairs of proteins (x1, y1) and (x2, y2),

with patterns x1 = (1011110), y1 = (0111110), x2 = (1000000), y2

= (0000001). We are interested in whether there is a func-
tional link between x1 and y1, and between x2 and y2. Clearly,

only in the case (x1, y1) can it be said that 'two proteins tend to

be found together'. Yet, most distances, including Euclidean
and other lp-norms, Hamming distance, and J-divergence,

are the same in both cases (see Materials and methods for
details). The two cases are nevertheless readily distinguisha-
ble by the mutual information (MI) measure, and are placed
even further apart when using complement of correlation

coefficient , or its modifications, such as

squared anticorrelation, also called diametric distance [23],
and absolute anticorrelation (see Materials and methods).
MI- and correlation-based measures are further compared in
the next section.

To derive clusters of related patterns from their pairwise dis-
tances, we have explored several unsupervised clustering
techniques, of both agglomerative and divisive type. Divisive
algorithms, such as K-means clustering and bisection [24],
need an a priori fixed number of clusters, which is unknown.
When we fixed this number using the average number of the
UPGMA clusters, we found that divisive methods

under-per-form compared to agglomerative algorithms.
Therefore, agglomerative approaches were used throughout
most of the study, in particular the hierarchical clustering
methods UPGMA (unweighted pair-group method with arith-
metic mean) and neighbor joining (NJ). The programs that
we used produce a tree-like graph of phyletic patterns, exem-
plified in Figure 2.

The large tree-like graph produced by hierarchical clustering
of phyletic patterns has to be partitioned into smaller graphs
in order to find groups of functionally linked proteins. The
splitting criterion can be chosen beforehand, by, say, deciding
on the upper level of distance at which two phyletic patterns
are still considered similar, or by controlling the size or
number of clusters. Instead of making a more or less arbitrary
choice of such parameters, we used the distribution of simi-
larities between patterns to infer the threshold at which a
similarity becomes significantly higher than average [25]. We
settled on a threshold at which about 90% of the entire data-
set was included in the partitioned clusters (see Materials and
methods for details).

Species themselves can be seen as vectors in the COG space,
and distances between such vectors can be used to build the
species' phylogeny [26]; this aspect is not considered in the
current work, except for illustrative purposes (Figure 2, tree
at the top).

The quality of clustering solutions
We studied the quality of eight clustering solutions produced
by combining two clustering algorithms - UPGMA and NJ -
and four variants of correlation-based distance (all graphs are
available from the authors on request). We were interested in
two criteria of quality: sensitivity and percentage of lost data.
Sensitivity of a solution is defined as the percentage of genes/
COGs that belong to the same pathway or functional system
and are assigned to the same cluster, counted for each path-
way and averaged. The percentage of lost data is the fraction
of COGs that belong to the set of known pathways, but were
not included into our clusters at a given similarity threshold.
In these tests, we used 52 pathways and functional systems,
containing 716 COGs altogether, from the COG database [27].
The sensitivity and the percentage of lost data both depended
on the clustering algorithm and distance measure. Use of
diametric distance resulted in the major improvement in sen-
sitivity and the lowest percentage of the lost data (Figure 3a).

Functional inference on the basis of phyletic patterns has
been benchmarked by von Mering et al. [28]. They used
smaller set of species and distances based on mutual informa-
tion, and evaluated the performance of the method by com-
paring linked pairs of genes in E. coli and their co-occurrence
in the KEGG metabolic maps (see Figure 2 in [28] for details).
We compared their and our approach in the context of the
current dataset, by clustering our phyletic patterns using
their MI-derived distance, and interrogating KEGG maps

d 1 x yr = − ( )corr ,
Genome Biology 2004, 5:R32
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with E. coli proteins. The performances of correlation and
MI-based distances were quite similar in this test (Figure 3b).
Apparently, however, correlation distance is more accurate in
assigning to genes to metabolic pathways as defined in the
COG database than to larger KEGG charts (Figure 3a and
G.V.G. and A.R.M., unpublished data).

Analysis of the clustering quality within the individual path-
ways and functional systems indicate that they tend to fall
into three broad categories. For some pathways, such as heme

biosynthesis or TCA cycle, the specificity of clustering was
similar and low, regardless of the methods. Other pathways
and systems were confidently clustered regardless of the pro-
tocol. These include, for example, the MEP pathway of terpe-
noid biosynthesis, lipid A biosynthesis, and the NADH-
ubiquinone oxidoreductase complex. The third, and largest,
category included pathways for which recovery in a cluster
was dependent on the clustering method. Perhaps predicta-
bly, the percentage of correctly extracted genes in a pathway
correlates significantly (p < 0.05) with its average

Groups of phyletic patterns and COGs revealed by hierarchical clustering of patterns in species spaceFigure 2
Groups of phyletic patterns and COGs revealed by hierarchical clustering of patterns in species space. The presentation is similar to Figure 1, but the black 
and white squares are vertically compressed in order to show all 4,589 COGs in one figure. The full tree of COGs is shown at the left; at 170 COGs per 
1 mm height, it is not particularly suitable for visual consumption, but some closely linked clusters (short branches) can be discerned.
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information content; that is, with the conservation of phyletic
patterns among the members of a pathway (Additional data
file 1). It seems likely that, given the genes already assigned to
a partially characterized pathway or function, one might be
able to estimate the probability that phyletic patterns will be
helpful in finding the functionally linked genes.

Partitioning of the best clustering solution
The NJ algorithm in combination with diametric distance
between phyletic patterns produced the clustering solution in
which the known pathways were optimally recovered. To
detect more relationships between phyletic patterns, and
novel functional links between genes, we analyzed that clus-
tering solution manually, by studying all clusters of similar
phyletic patterns within the graph.

One obvious result of our analysis is the existence of several
large clusters of co-inherited COGs, seen as prominent rec-
tangles of black and white (Figure 2). Inspection of the corre-
sponding phyletic patterns indicates mostly phylogenetic,
rather than functional, relationships, namely the presence of
these COGs in all species, or only in bacteria, or only in
archaea/eukarya. The former type of pattern reflects the min-
imal gene set compatible with modern-type cell [29]. The lat-
ter two patterns apparently indicate extreme divergence of
some pathways between bacteria and archaea/eukarya, and
the independent origin of other pathways in these domains of
life [30].

Each of these three clusters contains COGs from more than
one functional system. The minimal gene set (about 70 COGs)

Comparison of distance measures and clustering algorithmsFigure 3
Comparison of distance measures and clustering algorithms. (a) Diametric distance combined with NJ clustering results in the highest sensitivity and the 
smallest percentage of lost data. (b) The effect of selected distance measures between phyletic patterns on the recovery of functionally linked pairs of 
genes. The criteria of functional linkages on the basis of the KEGG maps, as well as the values for mutual information are as in [28].
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is dominated by proteins involved in translation and tran-
scription, and also includes components of other systems,
such as protein maturation and nucleotide salvage [31].
Archaea and eukarya share, to the exclusion of bacteria, many
ribosomal proteins, basic machinery for DNA replication and
transcription, some factors of RNA transcription, translation
and decay, and a few metabolic enzymes (about 55 COGs
[30,31]). Forty-seven COGs found in all bacteria but not in
archaea have roles in replication, transcription, translation
and protein secretion. Thus, if an uncharacterized protein has
a phyletic pattern similar to any of these three patterns, this
would suggest a shortened list of functional possibilities, but
would not be sufficient to pinpoint the pathway.

We removed these large clusters and focused on identifying
every small cluster that consisted of proteins with experimen-
tally established functional connections. We called these
functionally linked clusters of genes 'PP-clusters', because
genes in these clusters share similar phyletic patterns. There
were 223 PP-clusters, ranging in size from two to 23 COGs,
with diametric distance from zero to 0.4, and including 890
COGs (24% of the entire dataset) altogether (see the list of PP-
clusters in Additional data file 2).

To estimate the probability of obtaining these functional con-
nections by chance, all COGs were randomly assigned to clus-
ters, so that the average size was the same as the average PP-
cluster size (327 random clusters, 14 COGs per cluster on
average). The ratios of experimentally established functional
connections observed within PP-clusters and at random were
computed for 100 independent replicates of random clusters.

The probability of getting, in random trials, as many or more
functional connections as found in PP-clusters was estimated
to be less than 3%. Thus, the functional linkage of COGs in
PP-clusters was highly significant.

We were next interested in how many of these tightly linked
PP-clusters could be derived automatically, without manual
inspection. We computed the range of the average within PP-
cluster branch lengths, which, in the case of diametric dis-
tance, were found to vary from 0 to 0.4, and derived clusters
in one step, by cutting the graph in Figure 2 at several fixed
lengths within this range. Cutting at two different branch
lengths produced the same number (89) of automatically
derived PP-clusters, but the number of COGs included in
these clusters was different (Table 1). The number of false
positives, estimated as the percent of automatically derived
PP-clusters that were not presented in manually derived PP-
clusters, was less than 20% in each case.

The largest distance between two COGs in one PP-cluster
(0.36) was observed for two subunits of NADH:ubiquinone
oxidoreductase - COG1143 and COG1894 - linked into PP-
cluster both manually and automatically. Among the 66
genomes, 25 contain both these COGs, and 15 genomes either
one or the other, giving a Hamming distance of 15. Although
this is an extreme case, many COGs in other PP-clusters were
separated by Hamming distances as high as 8 to 10. Thus,
hierarchical clustering with diametric distance can detect
functional links in the zone where more simple measures
were not particularly helpful.

Table 1

Manually and automatically derived PP-clusters*

Procedure of PP-
cluster definition

Number of PP-
clusters

Total number of 
COGs in all 

clusters

COGs shared 
with manually 
derived PP-

clusters

Average 
number of 
COGs in a 

cluster

Number of 
clusters absent 

in manually 
derived PP-

clusters

Number of 
pure RS† 

clusters

FPs‡

Manual 
annotation

223 890 N/A 4.1 N/A - -

Automated tree 
cutting at 
average branch 
length 0.2

89 1,774 315 19.9 38 20 0.19

Automated tree 
cutting at 
average branch 
length 0.3

89 3,960 395 44.5 26 12 0.16

*PP-clusters, clusters of COGs functionally linked on the basis of similar phyletic patterns. †RS clusters: clusters containing only COGs annotated as 
'poorly characterized' in COGs database, where R stands for 'general function prediction only' and S stands for 'function unknown'. ‡The number of 
false positives (FPs) is the proportion of clusters that were not presented in manually derived PP-clusters.
Genome Biology 2004, 5:R32
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Case-by-case analysis of phyletic pattern hierarchy: 
known and new functional connections
The PP-clusters are dominated by groups of COGs from the
same metabolic pathway or functional system. In 56 cases,
however, a PP-cluster contained component(s) without an
established functional connection to the rest of the cluster. In
17 cases, such COGs were the ingroups within the PP-cluster;
that is, the distance between a COG and the rest of the PP-
cluster was smaller than between some of the functionally
linked PP-cluster members. In 23 cases, the connection
between the 'unexpected' COG and the rest of the PP-cluster
could be tentatively proposed. Examples of such novel func-
tional connections follow (see Additional data file 2 for com-
plete listing of COGs and additional predictions).

PP-cluster new005
PP-cluster new005 (genes found in archaea, eukarya and
gammaproteobacteria) is a multienzyme system probably
involved in RNA maturation. It contains RNA 3'-terminal
phosphate cyclase (COG0430), pseudouridylate synthase dis-
tantly related to TruB (COG0585), and a multifunctional pro-
tein (COG1444) that is found in the rRNA processosome [32]
and contains an uncharacterized enzymatic domain with a
Rossmann-like fold, a Walker-type ATPase domain, a GNAT-
type acetyltransferase and a putative nucleic acid-binding
domain [33].

PP-cluster new023
PP-cluster new023 links cell-shape determination genes
mreA (COG1077), mreB (COG1792), ccmA (COG1664) and
COGs involved in flagellum biosynthesis and chemotaxis (in
diverse bacteria, including spirochetes, proteobacteria and
cyanobacteria).

PP-cluster new015
PP-cluster new015 suggests novel activities involved in the
MEP pathway (most bacteria, except Gram-positives) and
links it to the biosynthesis of cell-wall components
(COG0860, COG0791).

PP-cluster new012
PP-cluster new012 from proteobacteria links a component of
the N-end rule protein degradation pathway - Leu/Phe-
tRNA-protein transferase (COG2360) - to the putative execu-
tive components of the pathway, two metalloproteases
(COG2377 and COG0339).

PP-cluster new001 and PP-cluster new006
Two specialized systems consist of divalent cation transport-
ers and enzymes predicted to require these cations for activ-
ity. PP-cluster new001 (diverse bacteria, archaea and some
fungi) contains a zinc transporter (COG0053) and membrane
zinc-dependent hydrolase (COG2220). PP-cluster new006
(many bacteria and some archaea) contains thymidine phos-
phorylase (COG0213) and two proteins transporting cobalt or
similar divalent cation (COG0619 and COG 1122); an

unidentified cation has been detected in thymidine phospho-
rylase crystals and is thought to be involved in enzyme func-
tion [34].

Other PP-clusters
There were 16 putative PP-clusters composed only of COGs
that had at best only a very generic functional prediction
('putative hydrolase') or none at all. These clusters may repre-
sent pathways and systems that we still have to discover.

Finally, a distinct type of PP-clusters is recovered by two of
the distances we used in this study, d|r| and dr2. Both of these
distances approach zero not only when two patterns are sim-
ilar, but also when they are close to complementarity. This
can indicate mutual exclusion between two COGs, as often
observed with non-orthologous gene displacements [14]. We
found 12 PP-clusters that included COGs with complemen-
tary patterns (Additional data file 2). Some of them represent
the well-known pairs of mutually displacing COGs, for exam-
ple, the two types of thymidylate synthases (COG0207 and
COG1351), two ribose 5-phosphate isomerases (COG0120
and COG0698), or two classes of lysyl-tRNA synthetases
(COG1190 and COG 1384). Other PP-clusters of that type
seem to predict previously unknown gene displacements,
such as the HD-superfamily phosphohydrolase (COG1078),
probably substituting for some function of the Holiday junc-
tion resolvase RuvC (COG0817). Thus, the diametric distance
is not only the most sensitive distance measure for PP-cluster
definition, but it also has an advantage of finding some gene
displacements. We expect to detect many more as our meth-
odology of pattern comparison improves.

Hierarchical clustering decomposes pathways and 
systems into blocks of genes with tight co-inheritance
One result of this work is that, whatever we tried, most of the
PP-clusters recovered only fragments of the known pathways
and functional complexes. This fragmentation affects all
classes of processes - biosynthesis and degradation of all
classes of molecules, signal transduction, cell division, and so
on - and was especially evident in the case of long biosynthetic
pathways. Indeed, of the 52 pathways represented among the
PP-clusters, only MEP pathway, lipid A biosynthesis and the
aerobic branch of cobalamine biosynthesis were completely
covered by one specific PP-cluster each (Additional data file
2), whereas most of the other pathways were distributed
among two, three or four PP-clusters, and some of their com-
ponents may not be included in any PP-cluster at all.

One reason for this fragmentation may be a rigid hierarchical
clustering procedure, which forces each COG into a cluster
once and for all. For example, the path of riboflavin biosyn-
thesis was split between PP-cluster 211 and PP-cluster 220,
and the latter cluster also included the components of two
pathways for biosynthesis of several different amino acids;
there are no obvious links between biosynthesis of all those
compounds (unless one resorts to the general arguments of
Genome Biology 2004, 5:R32
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carbon-pool availability). Because a COG cannot be included
in more than one PP-cluster, there is also a possibility of COG
misplacement, which may happen more readily in the case of
the larger COGs that include paralogs with different func-
tions. This phenomenon deserves further investigation.

At least in some cases, however, the fragmentation of path-
ways into PP-clusters seems also to reflect different func-
tional roles and evolutionary fates of COGs within the same
pathway. Indeed, further inspection of the split between the
components of riboflavin pathway (Figure 4) indicates that
PP-cluster 211 contains the components of the pathway that
are missing from most archaea (archaeal protein with ribofla-
vin synthase activity [35] belongs to COG1731, which appears
to be a distant paralog of COG0054; A.R.M., unpublished
data). COGs 1985, 0108 and 0054 (PP-cluster 220) define the
evolutionarily most conserved core of the pathway, whereas
the entrance into it (COGs 0807 and 0117), as well as the last
step, enabled by COGs 0307 or 1731, but also known to occur
spontaneously [36], are more variable and prone to gene
displacements.

In another example, the bacterial type IV secretion apparatus
came out as four PP-clusters, one of which (PP-cluster 067)
consisted of genes virB8, virB9, virB10 and virB4 (the names
are from the operon involved in transfer of plasmid DNA in
Agrobacterium). Recent studies indicate that the virB7-
virB8-virB9-virB10 subset of the VirB operon is indeed a
module sufficient for DNA uptake by the recipient, but some
of the VirB1-VirB4 components are additionally required for
maximum recipient activity [37].

These two examples may represent two facets of pathway
decomposition into PP-clusters. In the case of the type IV
secretion apparatus, at least some of the components of the
system appear to represent a functionally and perhaps struc-
turally discrete subsystem, which may be inherited semi-
autonomously and retain its own phyletic pattern. In the case
of riboflavin biosynthesis, evolutionary variation at the first
step of the pathway remains unexplained, while a non-orthol-
ogous gene displacement appears to have perturbed the
phyletic pattern of the last step.

Discussion
Here we have examined the quantitative aspects of deducing
functional links between proteins on the basis of their simul-
taneous presences and absences in completely sequenced
genomes. Whereas the post-homology methods, including
definition of operons, multidomain proteins and phyletic pat-
terns, work quite well when combined with each other [8-
10,28,30], very little is known about the efficiency and limita-
tions of each method. It has been noted that a high 'co-occur-
rence score' (essentially, the distance between phyletic
patterns based on the complement of mutual information) is
less indicative of a functional link than chromosomal
proximity of genes or translational fusion of domains [28].
We were interested in whether the comparison of phyletic
patterns can be improved, in order to detect functional links
and to separate them from the phylogenetic signal [2].

One notable result of our investigation is that the use of cor-
relation-based measures, and, in particular, of the diametric
distance between patterns, substantially improves recovery of
functional links between genes. This choice of distance
measure appears to distinguish well between true co-inherit-
ance versus pairs of rare genes whose patterns are dominated
by zeros. Moreover, diametric distance groups not only pat-
terns that are close to identity, but also those that are close to
complementarity, thus helping to detect gene displacements.
We focused on the algorithms producing the hierarchical
trees, that is, directed acyclic graphs. Other, non-hierarchical
types of graph have also been used to represent the relation-
ships between proteins; for example, pairwise linkage graphs
with scale-free properties have been used to describe the net-
work of protein-protein interactions [38] and the space of
protein structures [39]. Some of these approaches may com-
plement our pattern-clustering procedure, and different
types of graphs may discover different subsets of functional
links.

Another result of our study is the evidence that the co-inher-
itance of functionally linked genes is constantly perturbed by
differential gains, losses and displacements of orthologous
genes. This volatility of phyletic patterns reflects the high
plasticity and rapid evolution of gene content in microbial

Fragmentation of riboflavin biosynthesisFigure 4
Fragmentation of riboflavin biosynthesis. (a) PP-cluster 211 contains the volatile part of riboflavin biosynthesis that is mostly missing in archaea (COGs 
0307, 0117, 0807). (b) PP-cluster 220 contains the evolutionary most conservative part of the pathway (COGs 1985, 0108, 0054). Gray shading indicates 
enzymes in PP-cluster 220, unrelated to riboflavin biosynthesis.

PP-cluster 211

PP-cluster 220

H COG0807 GTP cyclohydrolase II
H COG0117 Pyrimidine deaminase
H COG0307 Riboflavin synthase alpha chain

H COG0054 Riboflavin synthase beta-chain (Lumazine synthase)
H COG0108 3,4-dihydroxy-2-butanone 4-phosphate synthase
H COG1985 Pyrimidine reductase, riboflavin biosynthesis
E COG0082 Chorismate synthase
E COG0128 5-enolpyruvylshikimate-3-phosphate synth.
E COG0169 Shikimate 5-dehydrogenase
E COG0136 Aspartate-semialdehyde dehydrogenase
E COG0527 Aspartokinases
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genomes [40] and calls for improving the techniques for
phyletic pattern comparison. When this manuscript was
under revision, Snel and Huynen [41] reported a similar set of
observations of perturbation of gene co-inheritance in micro-
bial evolution. It did not escape our attention that the two-
dimensional image of clustered patterns is similar to the now-
familiar presentation of whole-genome gene-expression
arrays, and that our PP-cluster discovery process is akin to
inferring functional links from co-activation and co-inhibi-
tion of gene activity. The analysis of gene expression makes
extensive use of hierarchical clustering of gene-expression
patterns, and many techniques involved will be the same as in
the case of phyletic patterns [42]. We note, however, that
there is currently no clear quantitative model of the process
that produces gene-expression values. In contrast, in our
case, phyletic patterns and distances between them can be
understood, in quantitative detail, in terms of gene gains and
losses in the course of genome evolution [6].

Materials and methods
The data
Gene presences and absences are summarized in the COG
database [43]. There were 4,873 COGs from 66 complete
genomes of unicellular organisms in the COG database, as of
21 September, 2003 [44]. After exclusion of 284 fungus-spe-
cific COGs, we have 3,372 patterns containing one COG and
316 patterns containing two or more COGs, 4,589 COGs in
total. Each ith COG (i = 1,..., 4,589) is a vector, where the jth
coordinate (j = 1,..., 66) is set at 1 if it is represented in the jth
genome, and at 0 if it is not. This vector is equivalent to what
has been called 'phylogenetic pattern' in [2] and 'phylogenetic
profile' in [3]. We feel 'phyletic' is preferential to 'phyloge-
netic', because a pattern explicitly tells us what is going on in
each phylum, whereas phylogeny of a set of species is not nec-
essarily recoverable from a pattern or even from a set of
patterns.

Some COGs contain a mix of orthologs and lineage-specific
gene duplications [2]. In some cases, functions of genes
within such enlarged COG diverge substantially, which may
produce artifacts in the process of functional inference [10].
In our final set of PP-clusters (see Results and Discussion sec-
tions for details) there were only 26 (3%) of these 'multifunc-
tional' COGs. An average COG in PP-clusters contained 1.2
genes per species, and 85% of all COGs in the database had
less than two genes per species (counting in the denominator
only species that had genes in this COG - that is, the 'ones' in
the phyletic pattern). The impact of large, functionally heter-
ogeneous COGs on our analysis thus appears to be slight.

The choice of distance measure
The successful discovery of a relationship between phyletic
patterns depends on the way the distance and similarity

between two pattern vectors  are measured. We

considered a variety of distance measures. These include: lp

norm (that is,

,

where p = 1: Manhattan; p = 2: Euclidean; p = ∞: Chebyshev
distance); Hamming distance, that is, the number of mis-
matched vector coordinates between two patterns, dH = #(xi ≠
yi); the complement dMS = (1 - J) of Jaccard's similarity index

J, which is the cardinality of vectors' intersection divided by
the cardinality of their union, J = #(xi ∩ yi)/#(xi ∪ yi) (this is

also known as the Marczewski-Steinhaus distance); the com-

plement of the correlation coefficient, ,

where

is the Pearson correlation coefficient; squared anticorrela-

tion, or diametric distance [23], ;

absolute anticorrelation distance, ;

mutual information

[9,45],

where Pi, Pj, Pij are the frequencies of occurrences for, respec-
tively, genes i, j and gene pairs (i, j) in two genomes; Kullback-
Leibler (KL) distance and J-divergence. KL is the relative
entropy of two probability mass functions p(x) and q(x) over
the random variable X 

[46].

The average of two KL distances between two distributions
(J-divergence) is symmetric and therefore more applicable
for clustering [47].

In the challenge example that we discuss in Results, that of
two gene pairs (x1, y1) and (x2, y2), with patterns x1 =

(1011110), y1 = (0111110), x2 = (1000000), y2 = (0000001), all

lp-norm distances are the same for both pairs: for example,

Euclidean, d2(x1, y1) = d2(x2, y2) = ; or Hamming, dH(x1,

y1) = dH(x2, y2) = 2. J-divergence is zero in both cases. The MI

measure distinguishes between the two cases: M(x1, y1) =

0.019 and M(x2, y2) = 0.010. The difference, however, is more

pronounced in the case of correlation distance dr (0.3 and -

0.16, respectively). The dr2 and d|r| distances also readilyx y
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 distinguish between these cases, as well as Jaccard's similar-
ity index (J(x1, y1) = 0.5, J(x2, y2) = 0). Note that, while all dis-
tances equal zero for two identical phyletic patterns, only the
squared correlation and the absolute anticorrelation dis-
tances also equal zero for two complementary patterns. This
is a useful property when one wants to look for gene displace-
ments (see Results and Discussion).

Clustering and preliminary partitioning
Algorithms of supervised, parametric or partitional clustering
are of limited use for our purpose, because of the lack, respec-
tively, of a well-defined training set, a statistical model of pat-
tern distribution, and the knowledge of underlying cluster
number. We studied several algorithms of divisive clustering
included in the CLUTO package [24], as well as two standard
agglomerative algorithms for hierarchical clustering, familiar
from the phylogenetic studies - average linkage (UPGMA)
and neighbor joining (NJ) from the PAUP* 4.0b8 package
[48]. Agglomerative clustering was the most sensitive and
specific, as described in detail in Results. Because the divisive
clustering algorithms need an a priori fixed number of clus-
ters, we estimated such numbers on the basis on the average
number of UPGMA clusters (from 67 to 157, depending on the
parameters). The quality of clustering solution, however, was
lower for K-means and other divisive algorithms (for exam-
ple, repeated bisections) than in the case of agglomerative
algorithms. Results of all clustering experiments are shown in
Tables 1 and 2 in Additional data file 3.

To partition the space of clustered patterns into groups of
functionally linked proteins, we used the cutoffs derived from
comparing similarity between random patterns, as well as
between the functionally linked ones. In each phyletic pat-
tern, all ones and zeros were randomly shuffled to destroy the
existing correlations. The figures in Additional data file 4
show distributions of 10,527,166 correlation coefficients
among phyletic patterns and shuffled phyletic patterns from
the COGs database. Among shuffled patterns, 99% of correla-
tion coefficients were below 0.3, corresponding to the dis-
tance dr = 0.7. Therefore, if we choose this distance value as a

threshold, the probability that two uncorrelated patterns
have a correlation coefficient more than 0.3 is less than 1%. At
this threshold, however, only several huge clusters can be
found. In another test, we inferred the similarity threshold
from the distribution of correlation coefficients among origi-
nal non-shuffled patterns. The distribution of all pairwise
correlation coefficients among original patterns does not dif-
fer significantly from the normal distribution (Figure A in
Additional date file 4, χ2 = 1.34) and 99% of correlation coef-
ficients are below 0.8, corresponding to the distance dr = 0.2

and  (average branch length in cluster). At this thresh-
old, only about 30% of the entire dataset was included in the
clusters (see Table 1 in Additional data file 3).

The quality of a clustering solution
At the first step, in order to estimate the quality of each clus-
tering solution, we introduced three empirical indices: the
'group homogeneity' (GrH), 'functional homogeneity'
(FunH), 'uncertainty' (Unc), and percentage of data lost. The
first two indices indicate the percentage of COGs from the
same group/functional category in the cluster (we used defi-
nitions of groups and functional categories from the COGs
database [27]). The Unc is computed as the percentage of
poorly characterized COGs in the cluster. Statistical proper-
ties of the cluster were evaluated using three other indices,
namely 'consistency' (Cons), 'average distance between clus-
ter members' (AveD) and 'in-cluster variance' (Var) (see
Additional data file 1 for computational details). For best
functional parsing of the metabolic map, GrHMax, FunHMax

and ConsMax as well as UncMin, AveDMin and VarMin should be
found. In practice, these measures are highly correlated, for
example, lower AveDMin is, the higher FunHMax is (Table 1 in
Additional data file 1). Moreover, most of these indices were
almost the same in all clustering solutions. The only excep-
tion was the percentage of data lost, which showed about 10%
difference between solutions (Figure 3a).

The other measure of quality of a clustering solution is its sen-
sitivity, which is the proportion of COGs from the same path-
way or functional category, included in the same cluster. This
measure was strongly dependent on the distance and cluster-
ing algorithm (Table 2 in Additional data file 3). Diametric
distance dr2 tends to simultaneously minimize data loss and
recovers the largest number of statistically significant clusters
(Figure 3a and see also Table 1 in Additional data file 3), most
likely because the square of correlation decreases its value,
thus increasing the allowed distance between patterns.

The information content of a pathway Ip = Hr - Hp, where Hp

is the sum over uncertainties of every position in patterns in
a pathway:

(j = 1,..,66, i = 0 or 1). The frequency  stands for patterns

'support' for jth species, [49]. Hr is computed

similarly, but for reshuffled patterns.

Additional data files
The following additional files are included with the online
version of this paper. Additional data file 1 is a figure showing
correlations between the percentage of correctly predicted
pathway and its information content (Additional data file 1).
Additional data file 2 is a list of PP-clusters describing (1)
functional predictions and gene displacements and (2) func-
tionally linked clusters of genes, PP-clusters (Additional data
file 2). Additional data file 3 contains tables describing the

b = 0 1.
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results of clustering experiments: Table 1 shows the values of
classification quality indices for UPGMA/NJ algorithms with
different distance measures and Table 2 the performance of
UPGMA/NJ algorithms with different distance measures
(Additional data file 3). Additional data file 4 is a figure show-
ing the distributions of correlation coefficients between
phyletic patterns. The distributions of 10,527,166 correlation
coefficients and modified correlation coefficients between
original (red bars) and shuffled (blue bars) phyletic patterns
from COGs database are shown (Additional data file 4).
Additional data file 1A figure showing correlations between the percentage of correctly predicted pathway and its information contentA figure showing correlations between the percentage of correctly predicted pathway and its information contentClick here for additional data fileAdditional data file 2A list of PP-clusters describing (1) functional predictions and gene displacements and (2) functionally linked clusters of genes, PP-clustersA list of PP-clusters describing (1) functional predictions and gene displacements and (2) functionally linked clusters of genes, PP-clustersClick here for additional data fileAdditional data file 3Tables describing the results of clustering experimentsTables describing the results of clustering experimentsClick here for additional data fileAdditional data file 4A figure showing the distributions of correlation coefficients between phyletic patternsA figure showing the distributions of correlation coefficients between phyletic patternsClick here for additional data file
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