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Abstract 

Single-cell sequencing datasets are key in biology and medicine for unraveling insights 
into heterogeneous cell populations with unprecedented resolution. Here, we con-
struct a single-cell multi-omics map of human tissues through in-depth characteriza-
tions of datasets from five single-cell omics, spatial transcriptomics, and two bulk omics 
across 125 healthy adult and fetal tissues. We construct its complement web-based 
platform, the Single Cell Atlas (SCA, www. singl ecell atlas. org), to enable vast interactive 
data exploration of deep multi-omics signatures across human fetal and adult tissues. 
The atlas resources and database queries aspire to serve as a one-stop, comprehensive, 
and time-effective resource for various omics studies.

Keywords: Single-cell omics, Multi-omics, Single Cell Atlas, Human database, Single-
cell RNA-sequencing, Spatial transcriptomics, Single-cell ATAC-sequencing, Single-cell 
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Background
The human body is a highly complex system with dynamic cellular infrastructures and 
networks of biological events. Thanks to the rapid evolution of single-cell technologies, 
we are now able to describe and quantify different aspects of single cellular activities 
using various omics techniques [1–4]. Observing or integrating multiple molecular lay-
ers of single cells has promoted profound discoveries in cellular mechanisms [5–8]. To 
accommodate the exponential growth of single-cell data [9, 10] and to provide com-
prehensive reference catalogs of human cells [11], many have dedicated to single-cell 
database or repository constructions [9, 11–15]. These databases vary in purpose and 
scope: some served as data repositories for raw/processed data retrieval [11, 12, 14]; 
quick references to cell type compositions and cellular molecular phenotypes across tis-
sues [11, 16, 17]; summarized published study findings for global cellular queries across 
tissues or diseases [9, 13, 18]; or simply web-indexed published results [19]. The aim 
of these resources is to provide immediate information sharing among the scientific 
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communities and real-time queries of diverse cellular phenotypes, which, in turn, to 
accelerate research progress and to provide additional research opportunities.

However, majority of these databases often provide simple cellular overviews or sig-
nature profiles largely based on single-cell RNA-sequencing (scRNA-seq) data confined 
to limited multi-omics landscape [9, 11, 13, 20]. The need for a database capable of con-
ducting in-depth, real-time rapid queries of several single-cell omics at a time across 
almost all human tissues has not yet been met. This limitation has motivated us to build 
a one-stop single-cell multi-omics queryable database on top of constructing the multi-
tissue and multi-omics human atlas.

Here, we present the Single Cell Atlas (SCA), a single-cell multi-omics map of human 
tissues, through a comprehensive characterization of molecular phenotypic variations 
across 125 healthy adult and fetal tissues and eight omics, including five single-cell (sc) 
omics modalities, i.e., scRNA-seq [21], scATAC-seq [22], scImmune profiling [23], mass 
cytometry (CyTOF) [24, 25], and flow cytometry [26, 27]; alongside spatial transcrip-
tomics [28]; and two bulk omics, i.e., RNA-seq [29] and whole-genome sequencing 
(WGS) [30]. Prior to quality control (QC) filtering, we have collected 67,674,775 cells 
from scRNA-Seq, 1,607,924 cells from scATAC-Seq, 526,559 clonotypes from scImmune 
profiling, and 330,912 cells from multimodal scImmune profiling with scRNA-Seq, 
95,021,025 cells from CyTOF, and 334,287,430 cells from flow cytometry; 13 tissues from 
spatial transcriptomics; and 17,382 samples from RNA-seq and 837 samples from WGS. 
We demonstrated through case studies the inter-/intra-tissue and cell-type variabilities 
in molecular phenotypes between adult and fetal tissues, immune repertoire variations 
across different T and B cell types in various tissues, and the interplay between multiple 
omics in adult and fetal colon tissues. We also exemplified the extensive effects of mono-
cyte chemoattractant family ligands (i.e., the CCL family) [31] on interactions between 
fibroblasts and other cell types, which demonstrates its key regulatory role in immune 
cell recruitment for localized immunity [32, 33].

Construction and content
An overview of the multi‑omics healthy human map

We conducted integrative assessments of eight omics types from 125 adult and fetal 
tissues from published resources and constructed a comprehensive single-cell multi-
omics healthy human map termed SCA (Fig.  1). Each tissue consisted of at least two 
omics types, with the colon having the full spectrum of omics layers, which allowed us 
to investigate extensively the key mechanisms in each molecular layer of colonic tissue. 
Organs and tissues with at least five omics layers included colon, blood (whole blood 
and PBMCs), skin, bone marrow, lung, lymph node, muscle, spleen, and uterus (Addi-
tional file 2: Table S1). Overall, the scRNA-seq data set contained the highest number of 
matching tissues between adult and fetal groups, which allowed us to study the develop-
mental differences between their cell types. For scRNA-seq data, majority of the sample 
matrices retrieved from published studies have already undergone filtering to eliminate 
background noise, including low-quality cells which are most probable empty drop-
lets. However, some samples downloaded retained their raw matrix form, which con-
tained a significant amount of background noise. Consequently, before proceeding with 
any additional QC filtering, we standardized all scRNA-seq data inputs to the filtered 
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matrix format, ensuring that all samples underwent the removal of background noise 
before further processing (Additional file 2: Table S2). This preprocessing step resulted 
in the removal of 61,774,307 cells out of the original 67,674,775 cells in the downloaded 
scRNA-seq dataset, leaving us with 5,900,468 cells for subsequent QC filtering. Strict 
QC was then carried out to filter debris, damaged cells, low-quality cells, and doublets 
for single-cell omics data [34], as well as low-quality samples for bulk omics data. After 
QC filtering, 3,881,472 high-quality cells were obtained for scRNA-Seq; 773,190 cells for 
scATAC-Seq; 209,708 cells for multimodal scImmune profiling with scRNA-seq data; 

Fig. 1 A multi-omics healthy human single-cell atlas. Circos plot depicting the tissues present in the atlas. 
Tissues belonging to the same organ were placed under the same cluster and marked with the same color. 
Circles and stars represent adult and fetal tissues, respectively. The size of a circle or a star indicates the 
number of its omics data sets present in the atlas. The intensity of the heatmap in the middle of the Circos 
plot represents the cell count for single-cell omics or the sample count for bulk omics. The bar plots on 
the outer surface of the Circos represent the number of cell types in the scRNA-seq tissues (in blue) or the 
number of samples in bulk RNA-seq tissues (in red)



Page 4 of 21Pan et al. Genome Biology          (2024) 25:104 

2,278,550 cells for CyTOF; and 192,925,633 cells for flow cytometry data. For scImmune 
profiling alone, clonotypes with missing CDR3 sequences and amino acid information 
were filtered, leaving 167,379 unique clonotypes across 21 tissues in the TCR repertoires 
and 16 tissues in the BCR repertoires. For RNA-seq and WGS, 163 severed autolysis 
samples were removed, leaving 16,704 samples for RNA-seq and 837 for genotyping 
data.

Single‑cell RNA‑sequencing analysis of adult and fetal tissues revealed cell‑type‑specific 

developmental differences

In total, out of the 125 adult and fetal tissues from all omics types, the scRNA-seq 
molecular layer in the SCA consisted of 92 adult and fetal tissues (Additional file 1: Fig. 
S1, Additional file 2: Additional file 2: Table S1), spanning almost all organs and tissues 
of the human body. We profiled all cells from scRNA-seq data and annotated 417 cell 
types at fine granularity, in which we categorized them into 17 major cell type classes 
(Fig. 2A). Comparing across tissues, most of them contained stromal cells, endothelial 
cells, monocytes, epithelial cells, and T cells (Fig. 2A). Comparing across the cell type 
classes, epithelial cells constituted the highest cell count proportions, followed by stro-
mal cells, neurons, and immune cells (Fig. 2A). For adult tissues, most of the cells were 
epithelial cells, immune cells, and endothelial cells; whereas in fetal tissues, stromal cells, 
epithelial cells, and hematocytes constituted the largest cell type class proportions. Of 
these 92 tissues from the scRNA-seq data, we carried out integrative assessments of 
these tissues (Figs. 2 and 3) to study cellular heterogeneities in different developmental 
stages of the tissues.

For each cell type, we performed differential expression (DE) analysis for each tissue 
to obtain the DE gene (DEG) signature for each cell type. We assessed the global gene 
expression patterns between cell types across the tissues based on their upregulated 
genes (Additional file 2: Table S3) for adult and fetal tissues (Fig. 2C, Additional file 1: 
Fig. S2). In adult tissues, immune cells (i.e., B, T, monocytes, and NK cells) with hema-
tocytes, stromal cells, neurons, endothelial cells, and epithelial cells formed distinct cel-
lular clusters (Fig.  2C, Additional file  1: Fig. S2A), demonstrating highly similar DEG 
signatures within each of these cell type classes, consistent with the clustering patterns 
in the previous scRNA-seq atlas [35]. In fetal tissues, segregation is comparatively less 
distinctive such that only a subgroup of epithelial cells formed a distinct cell type cluster, 
cells from the immune cell type classes as well as hematocytes coalesced to form another 
cluster, and stromal cells formed small clusters between other fetal cell types (Fig. 2C, 
Additional file 1: Fig. S2B), which could represent the similarity in gene expression with 
other cell types during lineage commitment of stromal cell differentiation [36].

We next investigated the underlying gene regulatory network (GRN) of the transcrip-
tional activities of cell types across adult and fetal tissues [37]. We identified active tran-
scription factors (TFs) detected for cell types within each tissue (AUROC > 0.1), and 
based on these TF signatures, we measured similarities between cell types for adult and 
fetal tissues (Additional file 1: Fig. S3). For adult tissues, clustering patterns similar to 
Additional file 1: Fig. S1A were observed (Fig. 2C, Additional file 1: Fig. S3A). In fetal 
tissues, two unique clusters, including immune cells with hematocytes and stromal cells, 
were observed (Additional file 1: Fig. S3B). Higher similarity in transcription regulatory 
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patterns of stromal cells was observed compared to their gene expression patterns. The 
concordance between gene expression and transcription regulatory patterns within 
adult and fetal tissues demonstrated a direct and uniform interplay between the two 
molecular activities. In terms of the varying TF and DEG clustering patterns between 
adult and fetal tissues, the adult cell types demonstrated more similar transcriptional 
activities within the cell type classes than the less-differentiated fetal cell types, which 
shared more common transcriptional activities.

We dissected the correlation pattern of the clusters shown in Fig.  2C by drawing 
inferences from their highly correlated (AUROC > 0.9) cell-type pairs (Fig. 3A). Specifi-
cally, for the immune cluster in adult tissues, monocytes accounted for most of the high 

Fig. 2 scRNA-seq integrative analysis revealed similarity and heterogeneity between adult and fetal tissues. 
A Clustering of the 417 cell types from scRNA-seq data, consisting of 92 tissues based on their cell type 
proportion within each tissue group. Cell types were colored based on the cell type class indicated in the 
legend. The numbers in the bracket represent the cell number within the tissue group. B UMAP of the 
cells present in the 94 adult and fetal tissues from scRNA-seq data, colored based on their cell type class. C 
Phylogenetic tree of the adult (left) and fetal (right) cell types. Clustering was performed based on their top 
regulated genes. The color represents the cell type class. Distinct clusters are outlined in black and labeled
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Fig. 3 In-depth assessment of the integrated scRNA-seq further revealed inter-and intra-group similarities 
between adult and fetal tissues. A Chord diagrams of the highly correlated (AUROC > 0.9) adult and fetal 
cell types. Each connective line in the middle of the diagrams represents the correlation between two cell 
types. The color represents the cell type class. B Top receptor-ligand interactions between cell type classes in 
adult tissues (left) and fetal tissues (right). Color blocks on the outer circle represent the cell type class, and 
the color in the inner circle represents the receptor (blue) and ligand (red). Arrows indicate the direction of 
receptor-ligand interactions. C 3D tSNE of the integrative analysis between scRNA-seq and bulk RNA-seq 
tissues. The colors of the solid dots represent cell types in scRNA-seq data, and the colors of the spheres 
represent tissues of the bulk data. T indicates the T cell cluster, and B indicates the B cell cluster. D Heatmap 
showing the top DE genes in each cell type class of the adult and fetal tissues. Scaled expression values were 
used. Color blocks on the top of the heatmap represent cell type classes. Red arrows indicate the selected cell 
type classes for subsequent analyses. E Top significant GO BP and KEGG pathways for the cell type classes in 
adult and fetal tissues. The size of the dots represents the significance level. The color represents the cell type 
class
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correlations within the immune cell cluster, followed by T cells (Fig. 3A). For fetal tis-
sues, a high number of correlations was observed between the immune cells (i.e., mostly 
monocytes and T cells) and hematocytes (Fig. 3A), which explained the clustering pat-
tern observed in fetal tissues (Fig. 2C). For fetal stromal cells, other than with their own 
cell types, large coexpression patterns were observed with the hematocytes and the 
epithelial cells, and a smaller proportion of correlations with other clusters (Fig.  3A), 
which accounted for the small clusters of stromal cells formed between other cell types 
(Fig. 2C, Additional file 1: Fig. S2B).

To describe possible cellular networking between the cell type class clusters in Fig. 2C, 
we inferred cell–cell interactions [38] based on their gene expression (Additional file 2: 
Table S4), and variations between adult and fetal tissues were observed (Fig. 3B). In adult 
tissues, many cell type classes displayed interactions with the neurons, in which they 
networked with epithelial cells through UNC5D/NTN1 interaction; with stromal cells 
through SORCS3/NGF; with T cells through LRRC4C/NTNG2; etc. (Fig.  3B). Among 
the top interactions of fetal tissues, among the top interactions, monocytes actively net-
work with other cells, such as via CCR1/CCL7 with hematocytes, CSF1R/CSF1 with 
stromal cells, and FPR1/SSA1 with epithelial cells.

We performed a pseudobulk integrative analysis of the cell types of the scRNA-seq 
data from 19 tissues found in both adult and fetal tissues, with the 54 tissues from the 
bulk RNA-seq data (Fig. 3C) to compare single-cell tissues with the corresponding tis-
sues in the bulk datasets. For cell types of scRNA-seq data, adult cell types formed dis-
tinct clusters of T cells, B cells, hematocytes, stromal cells, epithelial cells, endothelial 
cells, and neurons (Fig. 3C). Fetal cell types, by comparison, formed a unique cluster of 
cell types separating themselves from adult cell types. Internally, a gradient of cell types 
from brain tissues to cell types from the digestive system was observed in this fetal clus-
ter. Fusing the bulk tissue-specific RNA-seq data sets with the pseudobulk scRNA-seq 
cell types gave close proximities of the bulk brain tissues with the pseudobulk brain-
specific cell types, such as neurons and astrocytes (Fig. 3C). Bulk whole blood clustered 
with pseudobulk hematocytes, and bulk EBV-transformed lymphocytes clustered with 
pseudobulk B cells. Other distinctive clusters included bulk colon and small intestine 
clustered with pseudobulk colon- and small intestine-specific epithelial cells, and bulk 
heart clustered with pseudobulk cardiomyocytes and other muscle cells (Fig. 3C).

Next, we conducted gene ontology (GO) of biological processes (BPs) and KEGG 
pathway analyses [39–42] of the top upregulated genes of each cell type class cluster 
(Fig. 3D) found in Fig. 2C. Multiple testing correction for each cell type class was per-
formed using Benjamini & Hochberg (BH) false discovery rate (FDR) [43]. At 5% FDR 
and average log2-fold-change > 0.25 (ranked by decreasing fold-change), the top three 
most significant genes of the remaining cell type classes were each scanned through 
the phenotypic traits from 442 genome-wide association studies (GWAS) and the 
UK Biobank [44, 45] to seek significant genotypic associations of the top genes with 
diseases and traits. Notably, for GO pathways, the most significant BPs for B and T 
cells in both adult and fetal tissues were similar (Fig. 3E). In contrast, epithelial cells 
and neurons differ in their associated BPs between adult and fetal tissues. For KEGG 
pathways, adult and fetal tissues shared common top pathways in T cells and in epi-
thelial cells (Fig. 3E). Among the top genotype–phenotype association results of the 
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top genes (Additional file 1: Fig. S4), SNP rs2239805 in HLA-DRA of adult monocytes 
has a high-risk association with primary biliary cholangitis, which is consistent with 
previous studies showing associations of HLA-DRA or monocytes with the disease 
[46–50].

Multimodal analysis of scImmune profiling with scRNA‑sequencing in multiple tissues

To decipher the immune landscape at the cell type level in the scImmune profiling 
data, we carried out an integrative in-depth analysis of the immune repertoires with 
their corresponding scRNA-seq data. The overall landscape of the cell types mainly 
included clusters of naïve and memory B cells, naïve T/helper T/cytotoxic T cells, NK 
cells, monocytes, and dendritic cells (Fig. 4A) and mainly comprised immune reper-
toires from the blood, cervix, colon, esophagus, and lung (Additional file 1: Fig. S5). 
On a global scale, we examined clonal expansions [51, 52] in both T and B cells across 
all tissues. Here, we defined unique clonal types as unique combinations of VDJ genes 
of the T cell receptor (TCR) chains (i.e., alpha and beta chains) and immunoglobin 
(Ig) chains on T cells and B cells, respectively. Integrating clonal type information 
from both the T and B cell repertoires with their scRNA-seq revealed sites of differ-
ential clonal expansion in various cell types (Fig. 4B and C, Additional file 1: Fig. S5). 
In T cell repertoires, high proportions of large or hyperexpanded clones were found 
in terminally differentiated effector memory cells reexpressing CD45RA (Temra) CD8 
T cells [53, 54] and cytotoxic T cells, and a large proportion of them was found in 
the lung (Fig. 4C, Additional file 1: Fig. S5), which interplays with the highly immune 
regulatory environment of the lungs to defend against pathogen or microbiota infec-
tions [55, 56]. MAIT cells [57, 58] have also demonstrated their large or high expan-
sions across tissues, especially in the blood, colon, and cervix (Additional file 1: Fig. 
S5A), with their main function to protect the host from microbial infections and to 
maintain mucosal barrier integrity [58, 59]. In contrast, single clones were present 
mostly in naïve helper T cells and naïve cytotoxic T cells. (Additional file 1: Fig. S5B) 
and were almost homogeneously across tissues (Fig. 4C). This observation ensures the 
availability of high TCR diversity to trigger sufficient immune response for new path-
ogens [60]. For the B cell repertoire in blood, most of these immunocytes remained as 
single clones or small clones, with a small subset of naïve B cells and memory B cells 
exhibiting medium clonal expansion (Additional file 1: Fig. S5B).

Among the top clones (Fig. 4D), TRAV17.TRAJ49.TRAC_TRBV6-5.TRBJ1-1.TRBD1.
TRBC1 was present mostly in Temra CD8 T cells and shared the same clonal type 
sequence with cytotoxic T and helper T cells (Additional file 2: Table S5). This top clone 
was found to be highly represented in the lung, and comparatively, other large clones of 
CD8 T cells were found in the blood (Additional file 1: Fig. S5C). The top ten clones were 
found in Temra CD8 T cells of blood and lung tissues and cytotoxic T cells and helper 
T cells from blood, cervix, and lung tissues (Additional file 1: Fig. S5C). Some of them 
exhibited a high prevalence of cell proportions in Temra CD8 T cells (Fig. 4D). In the 
B cell repertoire of blood, the top clones were found only in naïve and memory B cells, 
with similar proportions for each of the top clones (Fig. 4E).
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Multi‑omics analysis of colon tissues across five omics data sets

To examine the phenotypic landscapes and interplays between different omics meth-
ods and data sets, we carried out an interrogative analysis of colon tissue across five 
omics data sets, including scRNA-Seq, scATAC-Seq, spatial transcriptomics, RNA-
seq, and WGS, to examine the phenotypic landscapes across omics layers and the 
interplays and transitions between omics layers. In the overview of the transcriptome 

Fig. 4 Multi-modal analysis of scImmune profiling with scRNA-seq revealed a clonotype expansion 
landscape in six tissues. A tSNE of cell types from the multi-modal tissues of the scImmune-profiling data. 
Colors represent cell types. Cell clusters were outlined and labeled. B tSNE of cell types from the multi-modal 
tissues of the scImmune-profiling data. Colors indicate clonal-type expansion groups of the cells. Cells not 
present in the T or B repertoires are shown in gray (NA group). C Stacked bar plots revealing the clonal 
expansion landscapes of the T and B cell repertoires across 6 tissues. Colors represent clonal type groups. D 
Alluvial plot showing the top clonal types in T cell repertoires and their proportions shared across the cell 
types. Colors represent clonotypes. E Alluvial plot showing the top clonal types in B cell repertoires and their 
proportions shared across the cell types. Colors represent clonotypes
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landscapes in adult and fetal colons (Fig.  5A and B), the adult colon consisted of a 
large proportion of immune cells (such as B cells, T cells, and macrophages) and epi-
thelial cells (such as mucin-secreting goblet cells and enterocytes) (Fig. 5A). In con-
trast, the fetal colon contained a substantial number (proportion) of mesenchymal 
stem cells (MSCs), fibroblasts, smooth muscle cells, neurons, and enterocytes and a 
very small proportion of immune cells (Fig. 5B).

As there were fewer immune cells observed in the fetal colon as compared to 
the adult colon, we compared the MSC lineage cell types between the two groups. 
Based on their differential gene expression signatures (Fig. 5C) and their TF expres-
sion (Fig. 5D), the highly specialized columnar epithelial cells, enterocytes, for both 
molecular layers correlated well between adult and fetal colons, unlike other cell 
types, which did not demonstrate high correlations between their adult and fetal cells. 
Other than the enterocytes, adult and fetal fibroblasts were highly similar to MSCs in 
both transcriptomic and regulatory patterns (Fig.  5C and D). We modeled pseudo-
temporal transitions of MSC lineage cells, and similar phenomena were observed 
(Fig.  5E and F). Both adult and fetal fibroblasts were pseudotemporally closer to 
MSCs, and the transitions were much earlier than other cells. Analysis across regula-
tory, gene expression, and pseudotemporal patterns showed in both adult and fetal 
colons that fibroblasts were more similar to MSCs phenotypically, as shown in prior 
literature reports [61–63] and recently with therapeutic implications [64, 65]. In addi-
tion, transient phases of cells along the MSC lineage trajectory were observed for 
enterocytes and goblet cells (Fig. 5E and F), which demonstrated that these high plas-
ticity cells were at different cell-state transitions before their full maturation, as evi-
dent in the literature [66, 67]. By contrast, the fetal intestine was more primitive than 
the adult intestine during fetal development, and as a key cell type in extracellular 
matrix (ECM) construction [68], fibroblasts displayed transitional cell stages of cells 
along the pseudotime trajectory (Fig. 5F).

Comparing regulatory elements of these transitions demonstrated similarities and 
differences (Fig. 5G–J, Additional file 1: Fig. S6). For MSC-to-enterocyte transitions 
(Fig. 5G, Additional file 2: Table S6), the leading TFs with significant pseudotempo-
ral changes were labeled. The expression E74 Like ETS transcription factor 3, ELF3, 
which belongs to the epithelium-specific ETS (ESE) subfamily [69], increased during 
the transition for both adult and fetal enterocytes (Fig. 5H, Additional file 2: Table S6) 
and as previously demonstrated is important in intestinal epithelial differentiation 
during embryonic development in mice [69, 70]. Conversely, high mobility group 
box 1, HMGB1 [71], decreased pseudotemporally for both adult and fetal enterocytes 
(Fig. 5H, Additional file 2: Table S6) and has been shown to inhibit enterocyte migra-
tion [72]. The nuclear orphan receptor, NR2F6, a non-redundant negative regulator 
of adaptive immunity, [73, 74], displayed a comparative decline in expression halfway 
through the pseudotime transition for adult enterocytes but continued to increase 
for fetal enterocytes (Fig. 5H, Additional file 2: Table S6). Another TF from the ETS 
family, Spi-B transcription factor, SPIB, also showed differential expression during the 
transition between adult and fetal enterocytes (Fig.  5H), which was up-regulated in 
fetal enterocytes and down-regulated in adult enterocytes, suggesting its potential bi-
functional role in enterocyte differentiation in fetal-to-adult transition.
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Fig. 5 In-depth scRNA-seq analysis revealed distinct variations between adult and fetal colons. A tSNE of 
the adult colon; colors represent cell types. B tSNE of the fetal colon; colors represent cell types. C Heatmap 
showing the correlations of the cell types of the MSC lineage from adult and fetal colons based on their top 
upregulated genes. The intensity of the heatmap shows the AUROC level between cell types. Color blocks on 
the top of the heatmap represent classes (first row from the top), cell types (second row), and cell type classes 
(third row). D Heatmap showing the correlations of the cell types of the MSC lineage from adult and fetal 
colons based on the expression of the TFs. The intensity of the heatmap shows the AUROC level between 
cell types. Color blocks on the top of the heatmap represent classes (first row from the top), cell types 
(second row), and cell type classes (third row). E Pseudotime trajectory of the MSC lineage in the adult colon. 
The color represents the cell type, and the violin plots represent the density of cells across pseudo-time. 
F Pseudo-time trajectory of the MSC lineage in the fetal colon. The color represents the cell type, and the 
violin plots represent the density of cells across pseudotime. G Heatmap showing the pseudotemporal 
expression patterns of TFs in the lineage transition of MSCs to enterocytes in both adult and fetal colons. 
Intensity represents scaled expression data. The top 25 TFs for MSCs or their differentiated cells are labeled. H 
Pseudotemporal expression transitions of the top TFs in the MSC-to-enterocyte transitions for both adult and 
fetal colons. I Heatmap showing the pseudotemporal expression patterns of TFs in the lineage transition of 
MSCs to fibroblasts in both adult and fetal colons. Intensity represents scaled expression data. The top 25 TFs 
for MSCs or their differentiated cells are labeled. J Pseudotemporal expression transitions of the top TFs in the 
MSC-to-fibroblast transitions for both adult and fetal colons
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For MSC-to-fibroblast transitions (Fig.  5I, Additional file  2: Table  S6), TFs such as 
ARID5B, FOS, FOSB, JUN, and JUNB displayed almost identical trajectory patterns 
between adult and fetal fibroblasts (Fig.  5J, Additional file  2: Table  S6). Of these TFs, 
FOS, FOSB, JUN, and JUNB were shown to be absent in the healthy mucosa transcrip-
tional networks [75], in line with their observations in Fig. 5J. By contrast, Bcl-2-asso-
ciated transcription factor 1, BCLAF1, was pseudotemporally up-regulated in fetal 
fibroblasts but downregulated in adult fibroblasts. Prior studies showed that knocking 
out BCLAF1 is embryonic lethal [76, 77] and yet could be oncogenic in colon cancer 
[78], which could explain the trajectory difference of it in fetal and adult. Other cell types 
also displayed varying degrees of similarities and differences (Additional file 1: Fig. S5, 
Additional file 2: Table S6).

In scATAC-Sequencing, we examined the contributions of cis-regulatory elements 
in the adult colon. We identified DA peaks for cell clusters and identified correspond-
ing genes closest to these DA peak regions. Cell type identities were postulated based 
on the gene activities of the scATAC-Seq data (GSEA) [79, 80] (Fig. 6A). Common cell 
types were detected in scATAC-Seq compared to scRNA-seq (Figs. 5A and 6A). We per-
formed sequence motif analysis to detect regulatory sequences unique to each cell type 
based on their leading DA peaks; among the top enriched motifs, many of the Myocyte 
Enhancer Factors such as MEF2B, MEF2C, and MEF2D from cells such as smooth mus-
cle cells and pericytes, were found to be significantly enriched (Fig. 6B), which were also 
up-regulated in the scRNASeq findings shown earlier (Additional file 2: Table S6).

We examined the physical landscape of the leading TFs (found in scRNA-Seq and 
scATAC-Seq) in spatial transcriptomics data from two adult colons [5]. TFs ELF3 and 
NR2F6 were expressed generally in many locations in colonic tissue and displayed simi-
lar expression patterns for both of the adult colons (Fig.  6C and D), consistent with 
significant up-regulation in almost all MSC lineage cell types in the pseudotemporal 
transitions (Additional file 2: Table S6). In contrast, SPIB was not up-regulated in gen-
eral, while displaying higher expression in B cells (Fig. 6C and D), consistent with its role 
in adaptive immunity, as previously discussed. For other leading TFs, such as BCLAF1, 
EPAS1, and PLAG1, there were no clear discrete patterns of expression among the cell 
types.

To examine how cells interact with one another in spatial transcriptomics of the adult 
colon, we performed receptor-ligand interaction analysis [38]. Leading interactions 
included VIP/VIPR2 and ADCYAP1/VIPR2 interactions between neurons and fibro-
blasts, the NCAM1/GFRA1 interaction between neuronal cells, as well as LTB/CD40 
and LY86/CD180 interactions between B cells (Fig. 6E, Additional file 2: Table S7). In 
colon 2, leading interactions occurred between the B cells and between the B cells and 
enterocytes or fibroblasts. These included LTB/CD40, APOE/LRP8, LY86/CD180, and 
VCAM1/ITGB7 between B cells; APOE/VLDLR between B cells (APOE) and entero-
cytes (VLDLR); and CXCL12/CXCR4, FN1/CD79A, CD34/SELL, and ICAM2/ITGAL 
between fibroblasts and B cells (Fig. 6F, Additional file 2: Table S7).

The same type of analysis was performed on both scRNA-seq from both adult and 
fetal colons. In the adult colon in scRNA-seq (Fig. 6G), the fibroblasts comprised the 
leading interactions with cells such as CD8 T cells (CCL8-ACKR2), with (other) fibro-
blasts (CCL13-CCR9), goblet cells (CCL13-CCR3), and mast cells (PROC-PROCR). 
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In the fetal colon, leading interaction pairs were derived mostly from fibroblasts 
and macrophages with other cells (Fig.  6H, Additional file  2: Table  S7), including 
C4BPA-CD40 between fibroblasts (C4BPA) and endothelial cells (CD40); CCL24-
CCR2 between neuronal cells (CCL24) and macrophages (CCR2); CCL13-CCR1 

Fig. 6 Multi-omics analysis of adult and fetal colon tissues revealed distinct variations between adults and 
fetuses as well as across omics. A UMAP of cell types present in the scATAC-Seq of the adult colon. Colors 
represent cell types. B Top enriched motif sequences in cell types of the adult colon scATAC-Seq data. C,D 
Spatial transcriptomic profiles of adult colon sample 1 (C) and sample 2 (D). The top TFs were selected, and 
their spatial expressions were mapped onto the slide images. E,F Top receptor-ligand interactions between 
cell type classes in colon 1 (E) and colon 2 (F) of the spatial transcriptomics data. Color blocks on the outer 
circle represent the cell type class, and the color in the inner circle represents the receptor (blue) and ligand 
(red). Arrows indicate the direction of receptor-ligand interactions. G,H Top receptor-ligand interactions 
between cell type classes in the adult colon (G) and fetal colon (H) of the scRNA-seq data. Color blocks on the 
outer circle represent the cell type class, and the color in the inner circle represents the receptor (blue) and 
ligand (red). Arrows indicate the direction of receptor-ligand interactions
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and MUC7-SELL between goblet cells (CCL13 and MUC7) and macrophages (CCR1 
and SELL); and IL21-IL21R between smooth muscle cells (IL21) and macrophages 
(IL21R). In scRNA-seq of both adult and fetal colons, the active interactions of fibro-
blasts with other cells based on CCL family ligand-receptor interactions seemed to 
suggest its key regulatory role in immune cell recruitment in the colon (via the active 
interaction and activation of monocyte chemoattractants, i.e., the CCL family), con-
sistent with prior publications [32, 33].

Comparing the two omics data sets, both colon samples from spatial transcriptomics 
data shared leading interactions with that of the scRNA-seq from adult and fetal colons 
(Additional file  2: Table  S7). Between spatial colon 1 and the scRNA-seq fetal colon, 
common interaction pairs were found between neuronal cells, enterocytes with neurons, 
and neurons with fibroblasts (Additional file 2: Table S7). For spatial colon 2, 25 of its 
95 top unique interactions were shared with the scRNA-seq adult colon, and 10 were 
shared with the scRNA-seq fetal colon (Additional file 2: Table S7). For the scRNA-seq 
adult colon, 445 of its 852 top unique interactions were found in the scRNA-seq fetal 
colon. For example, CLEC3A-CLEC10A interactions between macrophages (CLEC10A) 
and enterocytes (CLEC3A), goblet cells (CLEC3A), or smooth muscle cells (CLEC3A), 
as well as between macrophages. Among them, the scRNA-seq fetal colon seemed to 
share the greatest number of cell-type-specific interactions with the other three groups 
(Additional file 2: Table S7).

At 1% BH FDR and log2FC > 0.25 for the bulk RNA-seq data in adult transverse colon 
data, we compared these upregulated genes with the top genes in scRNA-seq and the 
top genes in expression quantitative trait loci (eQTL) (eGenes) and splicing QTL 
(sQTL) (sGenes) of WGS of the corresponding transverse colon data (Additional file 1: 
Fig. S6). Comparing the top 10 genes of eGenes and sGenes, no common genes were 
found (Additional file 1: Figs. S7A and S7B). Comparing the overlapping patterns in bulk 
transcriptomics with scRNA-seq data, there was a much higher number of overlaps 
in scRNA-seq with eGenes and sGenes compared to bulk RNA-seq (Additional file 1: 
Fig. S7C). We grouped the overlapping genes according to their cell types in scRNA-
seq (Additional file 1: Fig. S7D). In particular, the goblet cells and enterocytes in eGenes 
were similar in proportion within eGenes for bulk RNA-seq compared to scRNA-Seq. 
Similar phenomena were observed in sGenes (Additional file 1: Fig. S7D).

Utility and discussion
User interface (UI) overview

SCA offers an intuitive, user-friendly interface designed to facilitate seamless naviga-
tion and efficient phenotype retrieval by researchers across eight single-cell and bulk 
omics from 125 healthy adult and fetal tissues. Designed with a focus on user experi-
ence, the UI offers intuitive and simple navigations for users to explore complex layers 
of multi-omics multi-tissue resources. Here is an overview of the SCA UI, (I) Home 
Page: Landing page of the database to serve as the gateway to the comprehensive fea-
tures of the SCA, offering users a starting point to dive into the wealth of multi-omics 
data. (II) About: This section offers a thorough description of the portal, complemented 
by an introductory video summarizing the key features of the database to provide guid-
ance to new users. (II) Overview: Here, we highlight the diversity of omics data available, 
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providing a snapshot of the various omics types and summarizing key information about 
each. (IV) Atlas: Features interactive representations of human adult and fetal anato-
mies, and a gateway for users to explore each tissue in-depth with detailed phenotypes 
specific to each tissue and their corresponding omics. (V) Query: While the Atlas tab is 
to showcase comprehensive features in each tissue, the Query tab is dedicated to explor-
ing key phenotypic features across all tissues for different omics types, such as regulon 
search, receptor-ligand interactions, and clonotype abundance, etc. (VI) Demo: Offers a 
comprehensive walkthrough of the database, using the adult colon transverse tissue as 
an illustrative example, to demonstrate the capability of the platform and how users can 
extract meaningful insights. (VII) Analyze: Provides an extensive suite of tools tailored 
to assist users in performing single-cell analyses across a wide array of omics, along 
with rapid plotting tools that allow for the creation of customizable plots quickly and 
efficiently. (VIII) Download: Provides the option for batch downloads, enabling users 
to conveniently download the data utilized within the database based on their specific 
selections. (IX) Sources: Offers detailed information about the origins of the raw data 
used to construct the database, ensuring transparency and trust in the data provided. (X) 
Discussion: Facilitates a collaborative community space where users can interact, offer 
assistance, pose questions, and share feedback and suggestions, enhancing the collective 
utility of the platform. (XI) News: Keeps users informed about the latest updates, addi-
tions, and enhancements to the database, ensuring the SCA community stays abreast of 
new developments.

Intended uses of the database and envisioned benefits

SCA is crafted to serve as a comprehensive resource in the burgeoning field of single-
cell and multi-omics research. Its primary intention is to facilitate a deeper understand-
ing of the cellular complexity and diversity inherent in healthy adult and fetal tissues 
through simultaneous exploration of multiple omics. Beyond this, SCA aims to serve 
as a robust analysis platform to support post-quantification analysis of high-through-
put single-cell sequencing data. As such, researchers can leverage SCA for comparative 
studies, hypothesis generation, and validation purposes. The integration of multi-omics 
data facilitates a deeper understanding of cellular mechanisms, potentially accelerating 
discoveries in cellular mechanisms, developmental biology, and potential therapeutic 
targets.

Explicitly, SCA enables scientists to quickly derive insights that would otherwise 
require extensive time and resources to uncover, thereby speeding up the cycle of 
hypothesis, experimentation, and conclusion. The database will significantly enhance 
data accessibility and integration, allowing researchers to easily combine data from dif-
ferent omics types and tissues to obtain a holistic view of cellular functions. This inte-
grative approach is crucial for understanding complex biological systems and for the 
development of comprehensive models of human health and disease. By cataloging cel-
lular characteristics across a range of tissues and conditions, SCA empowers precision 
medicine initiatives. It provides a detailed cellular context for phenotypic variations 
and potential markers at the single-cell level and with bulk level for comparative assess-
ments, supporting the development of potential personalized treatment plans based on 
cellular profiles.
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SCA fosters a collaborative research environment by providing a common platform for 
scientists from diverse backgrounds with research specialties across tissues, diseases, and 
omics analysis. It encourages interdisciplinary approaches, connecting researchers from 
diverse fields and promoting the exchange of knowledge and methodologies. This collabo-
rative ethos is expected to drive forward innovations in research and technology.

Benchmarking with existing databases

Here, we evaluated our SCA database against other existing databases [9, 11, 13, 20, 81], 
emphasizing the distinctive attributes that make SCA stand out (Additional file 2: Table S8). 
SCA integrates eight distinct omics types, surpassing the scope of Single Cell Portal (SCP) 
[20], Human Cell Atlas (HCA) [11], GTEx Portal [81], DISCO [9], and Panglaodb [13] in 
providing a wide-ranging multi-omics platform for exhaustive single-cell omics research. 
Data accessibility is publicly available for all these platforms, except that GTEx Portal 
encompassing both public and protected datasets (Additional file 2: Table S8). SCA is note-
worthy for its extensive coverage of eight single-cell and bulk omics over 125 differentiated 
tissues, established a significant lead over the other portals in terms of omics types. Fur-
thermore, SCA sets a new standard with its unmatched capabilities. Other than the typical 
representations of cell type proportions and visualizing basic features in cell types, features 
that are notably limited or absent in SCP, HCA, DISCO, and Panglaodb, such as cell–cell 
interactions, transcription factor activities, the visualization of regulon modules, motif 
enrichments, clonotype abundance, detailed repertoire profiles, etc., are areas unaddressed 
by other databases. SCA is the sole provider of specialized queries targeting various pheno-
types across multiple omics (Additional file 2: Table S8). This specificity of analysis remains 
unparalleled when juxtaposed with other databases in our comparative cohort. Ultimately, 
SCA stands out as a premier, all-encompassing resource for the omics research community.

Future development and maintenance

In an effort to ensure the platform remains relevant, up-to-date, and increasingly valuable 
to the broad spectrum of researchers, we will be implementing annual updates. These will 
incorporate findings from newly published studies and novel phenotypic analyses gathered 
over the year. As we strive to continually enrich our platform, these updates will address 
gaps in tissue representation for each omics type, and simultaneously expand the sample 
size within each tissue. Our commitment to transparency and traceability is reflected in 
our approach to versioning. We will systematically denote improvements to the database, 
including new features and datasets, in an accessible point-form format. Updates will be 
marked by adjustments to the database accession number, with the current version des-
ignated as SCA V1.0.0. In addition to serving as a resource for data and phenotypic fea-
tures, our ultimate aim is for SCA to function as a user-friendly platform, facilitating rapid 
access to multi-omics data resources and enabling cross-comparison of user datasets with 
our own.

Conclusions
Our study establishes a comprehensive evaluation of the healthy human multi-tissue and 
multi-omics landscape at the single-cell level, culminating in the construction of a multi-
omics human map and its accompanying web-based platform SCA. This innovative 
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platform streamlines the delivery of multi-omics insights, potentially reducing costs and 
accelerating research by obviating the need for extensive data consolidation. The big data 
framework of SCA facilitates the exploration of a broad spectrum of phenotypic features, 
offering a more representative snapshot of the study population than traditional single 
omics or bulk analysis could achieve. This multi-omics approach is poised to be instru-
mental in unraveling the complexities of multidimensional biological systems, offering a 
holistic perspective that enhances our understanding of biological phenomena.

Despite its robust capabilities, SCA faces challenges associated with the technologi-
cal limitations of flow cytometry and CyTOF modalities, which restrict the number of 
detectable proteins. These constraints complicate the integration of data from different 
studies. We have consciously chosen not to pursue the imputation of expression values 
across these datasets due to concerns about reliability. Moving forward, we aim to refine 
tissue stratification within the portal by introducing more detailed sample classifica-
tions, such as sampling sites, age groups, genders across tissues, and for fetal tissues, 
different developmental stages. This advancement depends on the acquisition of com-
prehensive data to support more precise and accurate analyses.

SCA is designed not only as a database but as a catalyst for a paradigm shift towards 
a multi-omics-focused research approach. It encourages the scientific community to 
embrace a multi-omics perspective in their research, facilitating the generation of new 
hypotheses and the discovery of novel insights. This platform is expected to foster an 
environment rich in intellectual exploration, propelling forward the development of 
groundbreaking research trajectories. In essence, SCA emerges as a pioneering open-
access, single-cell multi-omics atlas, offering an in-depth view of healthy human tissues 
across a wide array of omics disciplines and 125 diverse adult and fetal tissues. It unlocks 
new avenues for exploration in multi-omics research, positioning itself as a vital tool in 
advancing our understanding of life sciences. SCA is set to become an invaluable asset 
in the research community, significantly contributing to advancements in biology and 
medicine by facilitating a deeper comprehension of complex biological systems.
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Additional file 1:Figure S1. Sample count in fetal and adult groups across tissues and omics types. Figure S2. 
Correlations between cell types based on gene expression signatures revealed distinct cell type class clusters. (A-B) 
Heatmap showing the correlations of the cell types from adult (A) and fetal (B) cell types based on the expression of 
their top upregulated genes. The intensity of the heatmap shows the AUROC level between cell types. Colour blocks 
on the top of the heatmap represent tissues (first row from the top), biological systems (second row), cell types (third 
row) and cell type classes (fourth row). Figure S3. Correlations between cell types based on TF signatures revealed 
similar clustering patterns. (A-B) Heatmap showing the correlations of the cell types from adult (A) and fetal (B) cell 
types based on the expression of the TF signatures of each cell type. The intensity of the heatmap shows the AUROC 
level between cell types. Colour blocks on the top of the heatmap represent tissues (first row from the top), biologi-
cal systems (second row), cell types (third row) and cell type classes (fourth row). Figure S4. Phenotype or disease 
trait associations. Forest plot showing the associations of phenotype or disease traits in selected cell type classes of 
scRNA-seq data for both adult and fetal tissues. The X-axis displays the odds ratio of each trait, and the colors of the 
points represent cell type classes. Figure S5. Landscape of clonal expansion patterns across tissues. (A) tSNE of the 
tissues from the multi-modal tissues of the scImmune-profiling data. Colors indicate clonal type expansion groups of 
the cells. Cells not present in the T or B repertoires are colored gray (NA group). Tissues with too few cells present in 
the T or B repertoires were filtered (i.e., bile duct and kidney) in the main analysis. (B) Stacked bar plots revealing the 
overall clonal expansion landscapes of the T and B cell repertoires. Colors represent clonal type groups. (C) Alluvial 
plot showing the top clonal types in T cell repertoires and their proportions shared across tissues containing these 
clonotypes. Colors represent clonotypes. Figure S6. Pseudotime heatmaps of MSC lineage cell types in the adult 
and fetal colon. (A-B) Pseudotime trajectory of each cell type in the MSC lineage of adult (A) and fetal (B) colons. 
The color represents the cell type, and the violin plots represent the density of cells across pseudotime. Figure S7. 
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Comparison of DE gene overlaps between bulk RNA-seq, scRNA-seq and WGS. (A) Chromosomal positions of the 
top 10 eGenes in colon transverse bulk RNA-seq data. Gene names and their SNP rsid are shown. (B) Chromosomal 
positions of the top 10 sGenes in colon transverse bulk RNA-seq data. Gene names and their SNP rsid are shown. 
(C) Stacked bar plot showing the number of shared DE genes of the bulk RNA-seq data and the scRNA-seq data 
with the genes of the top eQTLs and sQTLs. The color represents the omics type. (D) Stacked bar plot showing the 
number of shared DE genes across the bulk RNA-seq data, the scRNA-seq data, genes of the top eQTLs and sQTLs. 
Colors represent the cell types to which the genes belonged with reference to the DE genes of the cell types in the 
scRNA-seq data. Fig. S8. Comprehensive workflow for scATAC-Seq data analyses in SCA V1.0.0.

Additional file 2:Table S1. Cell counts of the adult and fetal tissue groups at each omics level. Table S2. Filtered 
matrix raw read counts for scRNA-Seq across tissues in both fetal and adult groups. Cell_Count_Filtered_Matrix 
column represents raw read counts initially obtained from published studies or after filtering for the removal of 
background noises. Table S3. Statistics of the upregulated genes from adult and fetal tissues, filtered by average 
Log2FoldChange > 0.25 and adjusted P of 0.05. Clusters represent cell types. Genes were ranked by average log2-
fold-change. Table S4. Top receptor–ligand interaction profiles of the cell types in the 38 matching adult and fetal 
tissues. Interaction analysis was done separately for each tissue, and information on the interaction pairs can be 
viewed from the first column. Table S5: Top clonotypes (VDJ gene combinations) of each cell type present in the T 
and B cell repertoires. Table S6. Top TFs in the pseudotime transitions of adult and fetal colon cell types. Table S7. 
Top receptor-ligand pairs in spatial transcriptomics of adult colons (colon 1 and colon 2) as well as in scRNA-seq 
adult and fetal colons. The first column represents the data type to which the interactions belong. Table ranked 
by decreasing interaction ratios. Table S8. Comparison of SCA with other single-cell omics databases. Green tick 
indicates a yes and a red cross indicates a no. Table S9. List of public resources included in the SCA database portal. 
SCA_PID refers to SCA-designated project identity number (PID).

Additional file 3. Supplementary Methods.

Additional file 4. Review history.
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