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Background
After being crowned method of the year 2020 [1], spatial molecular technologies have 
seen significant advances with platforms providing diverse coverage of transcripts (100s 
to genome-wide) and spatial resolution of measurements (sub-cellular to 100s of cells) 
[2–5] through sequencing or imaging technologies. Spatial resolution of molecular 
measurements has enabled the study of diseases in their resident tissue microenviron-
ment, thus, providing a more comprehensive view of disease systems [6]. The bioin-
formatics challenge posed by the increased scale and resolution of data has prompted 
abstraction of sub-cellular measurements to the cellular level [3, 4] by binning detections 
into segmented cellular boundaries [7]. Cellular abstraction enables the >1700 tools 
developed for the analysis of single-cell RNA sequencing (scRNA-seq) data to be applied 
to spatial molecular data [8]. However, this approach disregards spatial information 
and remains underpowered [3, 4]. Dedicated methods that incorporate spatial informa-
tion are being developed [5, 7], but many analysis workflows still impose scRNA-seq 
assumptions.

One such assumption is that differences in the total number of transcripts detected/
sequenced per cell (library size/total detections) represents technical variation that 
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Spatial molecular data has transformed the study of disease microenvironments, 
though, larger datasets pose an analytics challenge prompting the direct adoption 
of single‑cell RNA‑sequencing tools including normalization methods. Here, we dem‑
onstrate that library size is associated with tissue structure and that normalizing these 
effects out using commonly applied scRNA‑seq normalization methods will negatively 
affect spatial domain identification. Spatial data should not be specifically corrected 
for library size prior to analysis, and algorithms designed for scRNA‑seq data should be 
adopted with caution.
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should be normalized out prior to downstream analysis. Normalization for library sizes 
originated from bulk RNA sequencing where samples were sequenced at varying depths 
[9]. The simplest method to account for library size in RNA-seq data is to divide each 
count by the total sequencing depth for that sample and multiply by a scalar to obtain 
counts per million (CPM) [10]. As this does not mitigate the effect of total sequencing 
depth in scRNA-seq experiments, new methods such as sctransform [11] and scran [12] 
have been proposed to reduce the impact of library size differences. In sub-cellular spa-
tial molecular technologies, the unit of measurement is either a transcript detection or 
a sub-cellular spot; therefore, normalization at the cellular level is not as naturally moti-
vated compared to bulk or scRNA-seq. Although cellular binning is not performed in 
Visium data, like other spatial molecular technologies, the proximity of spots/cells to 
neighboring spots/cells implies spatial autocorrelation resulting from biological depend-
ence when spots/cells originate from the same tissue region. Additionally, unlike single-
cell technologies that dissociate cells prior to sequencing, most spatial technologies 
measure the transcriptome while cells are embedded in tissue, and this could lead to dif-
ferences in reagent permeability driven by tissue architecture. This would result in sam-
pling differences across the tissue and subsequently library size differences. These effects 
are not accounted for in scRNA-seq normalization methods that are routinely applied to 
spatial data [2, 13]. The downstream effects of such normalization on some downstream 
analysis tasks have been shown on 10× Visium data but has not been extensively studied 
across other technologies [14].

Results and discussion

Since library size can be a significant source of variability in single cell datasets, lead-
ing to clusters that capture library size differences rather than biological signals, we set 
out to investigate this effect in spatial data. Publicly available data from 25 tissue sam-
ples obtained using four different spatial technologies, including imaging- and sequenc-
ing-based methods, were used to study total detections/library sizes (Additional File 1: 
Supplementary Table  1) [3, 15–17]. We binned transcript detections into a hexagonal 
tessellation to explore total detections across space and visualized the density across 
bins/spots (Fig. 1a-e, Additional File 1: Supplementary Figure 1). We also annotated tis-
sue regions in the datasets (see “Methods”) to assess library size associations with these 
regions (Fig. 1f-j, Additional File 1: Supplementary Figure 2). Visualizing the total detec-
tions/library sizes revealed tissue structure across brain and cancer datasets, including 
the layering of the cortex (darker greens in Fig.  1g-h), white matter (pinks in Fig.  1g-
h), and hippocampus in the mouse brain datasets (brighter greens in Fig.  1g-h), and 
tumor regions in the non-small cell lung cancer (NSCLC) and breast intraductal carci-
noma (IDC) dataset (purple and red regions in Fig. 1i-j respectively). Particularly, tumor 
regions had higher total detections per cell as expected since tumor cells are known to 
be transcriptionally more active than other cell types [14, 18, 19].

Our binning strategy allowed us to investigate total detections/library size without 
delving into cell boundary detection which is still an active area of research. However, 
this meant that each bin contained multiple cells; therefore, we had to relate the total 
detections/library sizes back to the number of cells. Visualizing total detections/library 
sizes against the number of cells revealed a linear dependency across all technologies 
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with pronounced region-specific trends suggesting that cell density is not the only con-
tributing factor to transcript detections (Fig. 1k-o, Additional File 1: Supplementary Fig-
ure 3). We estimated the average total detections/library sizes per cell for each region by 
dividing the total detections/library size of the region by the number of nuclei detected 
and found a clear region-specific effect in each dataset (Fig. 1p-t, Additional File 1: Sup-
plementary Figure 4). Similar brain sub-structures, such as the different neuronal layers 
of the cortex (dark green bars), had similar average total detections/library sizes (Fig. 1q-
r). Likewise, tumor regions had higher total detections per cell (Fig. 1s-t).

To assess the relationship between regions, the number of cells, and total detections/
library sizes, we fitted a Poisson model to the binned data, treating all transcript detec-
tions as a spatial Poisson point process. The model included cell density, tissue region, 
and other technology-specific variables as covariates, and the interactions between all 
covariates were included in the model. The number of cells or the number of spots over-
lapping cells (STOmics) per bin explained the largest variance in library sizes, followed 
by the tissue region, across all technologies (Additional File 2). Even after accounting 
for the number of cells in each bin, there was a significant relationship between spatially 
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Fig. 1 Detection density and total detections/library sizes are associated with biology consistently across 
different spatial molecular technologies, organs, and species. a–d Detection density per bin/spot plot for 
Visium dorsolateral prefrontal cortex (DLPFC), Xenium mouse brain, STOmics mouse brain, and CosMx 
non‑small cell lung cancer (NSCLC) reveal tissue structure. e–h Regions annotated for each bin/spot using 
the Allen Brain Atlas for the mouse brain and manual annotation based on immunofluorescence markers of 
CosMx NSCLC. i–l Number of cells plot against the total detections/library sizes per bin/spot, colored by the 
tissue region, showing the region‑specific relationship between cells and total detections/library sizes. m–p 
Average total detections/library sizes per cell for each region, computed as the sum of detections divided by 
the number of cells for each region, showing that related regions exhibit similar total detections/library sizes 
per cell. As the mouse brain datasets have over 100 regions annotated, color schemes from the Allen Brain 
Atlas are used where only larger structures are colored. (Note: truncated outlier marked by x)
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defined regions and total detections/library sizes (tissue region p-values < 2 ×  10-308, 
Additional File 2), which appears to be technology, species, and organ agnostic, and pre-
sent across both healthy and disease systems.

The presence of region-specific total detections/library size effect implies that normal-
izing out total detections/library sizes could result in loss of information when attempt-
ing to identify spatial domains using clustering. Spatial domain identification in Visium 
data usually involves a standard single-cell clustering pipeline, where sctransform/scran 
normalization is applied [20]. Recent spatially aware domain identification methods 
such as BayesSpace [21] and SpaGCN [22], use the location information in conjunc-
tion with gene expression measurements. To evaluate the impact of normalization on 
these standard workflows without biases in parameter choice, a benchmark was set up 
to explore a large parameter space and test all combinations of parameters for each nor-
malization strategy across 25 samples spanning all four technologies. Three normali-
zation approaches (sctransform [11], scran [12], and RUVIII-NB [19]) were compared 
against not normalizing, but simply log-transforming the raw counts. In total, 18,647 
different combinations were tested (Fig. 2a).

Performance on domain identification, as quantified by the adjusted Rand index 
(ARI), was strongly dependent on the choice of normalization methods (Fig. 2b). Library 

Fig. 2 Normalization of total detections/library sizes results in poorer spatial domain identification using 
clustering approaches. a Schematic of the benchmark performed on 25 samples spanning four spatial 
transcriptomics technologies showing the parameter space explored when using a single‑cell clustering 
pipeline, as well as two spatially aware methods to identify spatial domains. b The adjusted Rand index (ARI) 
obtained when different normalization strategies are applied on the different datasets using three different 
clustering methods: graph‑based clustering, SpaGCN, and BayesSpace. Explicit library size normalization 
using sctransform results in poorer domain identification across most datasets, indicating that library size 
confounds biology in spatial transcriptomics datasets. Choice of normalization methods is dependent on the 
clustering algorithm and dataset type
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size normalization using sctransform resulted in poorer domain identification across 
most datasets and domain identification methods. Since sctransform’s effectiveness in 
removing library size effects results in poorer domain identification, our hypothesis 
of library size confounding biology in spatial transcriptomics datasets is confirmed. 
Though sctransform removes library size effects effectively, their confounding with biol-
ogy results in removal of biological effects as well. Performance following RUVIII-NB, 
scran, and no normalization was primarily dependent on the clustering method: Bayes-
Space and graph-based clustering identified more accurate regions with unnormalized 
and scran normalized data while SpaGCN mostly favored scran normalization. We also 
observed dataset-specific trends where scran and no normalization resulted in better 
domain identification in normal tissues (human and mouse brains), while performance 
was less consistent in the cancer datasets, possibly due to the heterogeneity between 
samples (Additional File 1: Supplementary Figure 5). Next, we investigated the param-
eter combinations that produced the best domains for each of the 25 datasets (Addi-
tional File 1: Supplementary Table 2). Spatially aware clustering methods were the best 
at identifying domains for 21 of the 25 samples (with BayesSpace being the best for 11 of 
these and SpaGCN for 10). The normalization method that was better in most of these 
cases was scran (15/25 sample); however, normalization methods preferentially paired 
with clustering methods as seen in Fig. 2b. Finally, RUVIII-NB normalization produced 
the best domains for 5 of the 9 cancer datasets. Feature selection strategies varied across 
these best-case scenarios; however, dropping features with negative or zero biological 
variance estimates was beneficial for 11 of the 12 samples profiled using targeted panels 
(Xenium and CosMx).

Our analysis of spatial transcriptomic datasets from four different technologies and 
four different tissues shows that library size or total detections per cell significantly differ 
across tissue structures, representing real biology rather than technical variation. Tech-
nical effects such as differences in tissue permeability can explain variation in library 
sizes for technologies such as Visium and STOmics. However, as these differences are 
also driven by tissue architecture, they themselves confound biology and are difficult 
to decouple from truly technical variability. Similar observations have been made in 
scRNA-seq [19] and 10× Visium [14] data; however, this is the first time it has been 
rigorously tested across spatial molecular technologies. Normalizing this effect out will 
negatively impact spatial domain identification.

Conclusion
We recommend carefully selecting when to normalize library sizes in spatial molecular 
data. For instance, library size normalization should not be performed prior to spatial 
domain identification but could be considered for other downstream analytical tasks that 
involve cross-sample comparisons/integration. Similar to a recent study that assessed 
the impact of normalization on differential expression analysis for marker detection [23], 
rigorous studies are needed to ascertain best practices for analyzing spatial transcrip-
tomics datasets. Though not normalizing the data is better than sctransform normaliza-
tion for clustering tasks, there is a need for new normalization methods that account for 
the unique properties of spatial data. We also emphasize caution when adopting ideas 
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and tools from single-cell analysis into spatial molecular data as the assumptions of 
these methods may be violated for spatial data.

Methods
Hexagonal tessellation of sub‑cellular localized data

We computed a hexagonal tessellation such that there were 100 hexagons along each 
axis. Since the areas profiled in the Xenium datasets were larger, the tessellation of these 
datasets contained 200 hexagons along each axis. This was preferred over a standard 
square grid as a hexagonal tessellation is less prone to edge effects [24]. Total detections/
library size as well as the total number of cells were computed in each bin. The number 
of bins along each axis was heuristically selected such that each bin contained approxi-
mately 10 s of cells and 1000 s of detections to maintain comparability between datasets.

Poisson model of binned counts

Points in space represent a Poisson point process therefore binning points will result in 
Poisson distributed count data. We model binned counts as a linear combination of the 
number of cells, the region types, and any technology specific technical covariates such 
as the number of DNA nanoball beads (BGI STOmics) and the field of view (NanoString 
CosMx). Generalized linear models with a log link function are used to perform the fit. 
All possible interactions between covariates were included in the models. A type II anal-
ysis of variance (ANOVA) [25] was performed on the covariates and their interactions 
within each model to assess their significance.

Annotation of regions in spatial datasets

Mouse brain data from the Xenium and STOmics technologies were annotated by regis-
tering accompanying DAPI stained images to the “Nissl” channel of the common coordi-
nates framework v3 (CCFv3) of the Allen Brain Atlas [26] using the Aligning Big Brains 
and Atlases (ABBA) plugin (v0.3.7) in Fiji (v1.53t) [27]. The BigWarp alignment pipeline 
was used to morph the DAPI image to the reference “Nissl” channel. The resultant hier-
archical annotation was compressed such that the deepest layer of non-missing annota-
tion was used to annotate each detection/DNA nanoball spot. This annotation resulted 
in the identification of 149–155 brain regions in the Xenium mouse brain dataset and 
118 regions in the STOmics mouse brain dataset. Some regions have finer-resolution 
region annotations; therefore, each spot was annotated by the finest-resolution anno-
tation available. Existing annotations for the non-small cell lung cancer (NSCLC) data 
were not used as these were derived using the transcriptomic measurements. Instead, 
we reannotated the data manually with QuPath (v0.3.2) [28] using the accompanying 
PanCK, CD3, CD45, and DAPI-stained images, thus producing annotations that were 
independent of the transcriptomics data. A total of six regions were annotated using 
these markers: Tumor, Stroma, Abnormal, Abnormal Epithelium, Necrotic, and Fibrotic. 
Xenium breast cancer data were annotated using the matched histopathology (H&E) 
image provided along with the dataset. The data were annotated for eight region types: 
ductal carcinoma in-situ (DCIS), invasive tumor, normal ducts, immune cells, cysts, 
blood vessels, adipose tissue, and stroma. Hexagonal bins were allocated to regions 
based on the predominant annotation of data points within the bin. Region annotations 
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as well as estimates of cell numbers per spot for the Visium samples were available from 
the spatialLIBD R package [16].

Pre‑processing datasets for benchmarking

All samples were uniformly using the pipeline illustrated in Fig. 2a. Spots/bins lacking 
annotations, as well as those with total detections/library sizes less than 3 were removed. 
Following filtering, four different normalization strategies were applied: log transforma-
tion (no normalization), scran [12], sctransform [11], and RUVIII-NB [19]. Apart from 
RUVIII-NB which required negative control, all other methods were applied on tar-
get genes using default settings. For scran normalization, size factors estimated to be 
smaller than  10-8 were set to  10-8. RUV normalization was performed with the number 
of unwanted factors (K) set to 1. Single-cell housekeeping genes [29] are used as neg-
ative controls, except for datasets with less than 10 housekeeping genes available. For 
these, 10% of the genes were randomly selected as negative controls. Pseudo-replicates 
required by RUVIII-NB were defined by first selecting seed loci that were equidistantly 
spaced (approx. 0.5% of all loci). The 18 spots surrounding each seed locus (2nd degree 
neighborhood) were then considered to be distinct sub-populations and passed on as 
pseudo-replicates to RUVIII-NB. Pearson residuals produced by RUVIII-NB were used 
for downstream analysis.

Next, feature selection was performed by modeling gene variances using the scran 
R/Bioconductor package [30]. The top 1000, 2000, or 3000 highly variable genes were 
selected for datasets with genome-wide measurements (Visium and STOmics). For 
datasets obtained using targeted panels (Xenium and CosMx), either the full panel was 
selected or genes with variance estimates greater than 0 were chosen. Dimensional 
reduction was then performed using principal components analysis (PCA) to reduce 
dimensionality of the data to 50 principal components, thus retaining most of the infor-
mation present in the data. Finally, data processed using all the above combinations were 
used to assess different clustering strategies.

Domain identification benchmark

We evaluated a single-cell inspired graph-based clustering approach, as well as two 
spatially aware clustering methods: BayesSpace [21] and SpaGCN [22]. Shared nearest 
neighbor graphs were constructed for the graph-based approach with neighborhoods of 
size (k) 5, 10, 20, or 30. Next, community detection was performed using the walktrap, 
Louvain [31], or Leiden [32] approaches. Eight resolution parameters were explored for 
the latter two approaches (0.1, 0.225, 0.35, 0.475, 0.6, 0.725, 0.85, and 0.975). BayesSpace 
and SpaGCN were applied using the default settings recommended in their respective 
user guides. Both methods required the expected number of clusters to be specified. As 
domains were annotated in our study, we specified the number of unique spatial domain 
types. Though this information is available for our datasets, it is not always accurately 
known. Therefore, we also assessed performance of methods when the expected num-
ber of clusters is inaccurately over- or under-approximated by 25%. Clustering was 
performed using all combinations of parameters and methods, across all variants of pre-
processed datasets. The Adjusted Rand index (ARI) was computed to evaluate clustering 
performance. The CellBench R/Bioconductor was used to execute the benchmark [33]. 
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