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Abstract 

Many bioinformatics methods seek to reduce reference bias, but no methods exist 
to comprehensively measure it. Biastools analyzes and categorizes instances 
of reference bias. It works in various scenarios: when the donor’s variants are 
known and reads are simulated; when donor variants are known and reads are real; 
and when variants are unknown and reads are real. Using biastools, we observe 
that more inclusive graph genomes result in fewer biased sites. We find that end‑to‑
end alignment reduces bias at indels relative to local aligners. Finally, we use bias-
tools to characterize how T2T references improve large‑scale bias.
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Background
Most sequencing data analyses start by aligning sequencing reads to a reference genome. 
This strategy comes with a drawback called reference bias. The aligner tends to miss 
alignments or report incorrect alignments for reads containing non-reference alleles. 
This can lead to confounded measurements and incorrect results, especially for analyses 
of hypervariable regions [4], allele-specific effects [10, 33, 34, 38], ancient DNA analysis 
[17, 26], or epigenenomic signals [16].

Recent tools seek to reduce this bias by indexing collections of reference genome 
sequences, i.e., pangenomes. By including many known genetic variants in the pange-
nome, such methods remove alignment penalties incurred by known alternate alleles. 
This has spurred research in indexing graphs (e.g., the definition and use of Wheeler 
Graphs [13, 35]) and repetitive collections of strings, e.g., r-index [21] and hybrid indexes 
[37]. These ideas are used in practical tools like HISAT2 [20], VG [14] and VG-Giraffe 
[35]. Mitigating reference bias is also the stated motivation for the Human Pangenome 
Reference Consortium’s project to create a human pangenome [25].

However, the topic of “reference bias” itself  — what it means and how it happens 
— has received comparatively little attention. Studies proposing bias-reducing tools have 
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evaluated and visualized reference bias in divergent ways. There are no standard tools or 
metrics, and no methods exist to trace specific causes of reference bias events.

We present Biastools, a tool for measuring and diagnosing reference bias in data-
sets from diploid individuals such as humans. In its simulate mode, biastools ena-
bles users to set up and run simulation experiments to (a) compare different alignment 
programs and reference representations in terms of the bias they yield, and (b) catego-
rize instances of reference bias according to their cause, which might be primarily due 
to genetic differences, repetitiveness, local coordinate ambiguity due to gaps, or other 
causes. In its predict mode, biastools enables users to analyze real sequencing 
datasets derived from donors with known genetic variants, both quantifying the over-
all level of reference bias and predicting which specific sites are most affected by bias. 
In its scan mode, biastools enables users to analyze real sequencing datasets from 
individuals with no foreknowledge of their genetic variants, identifying regions of higher 
reference bias.

We use biastools to study reference bias in various scenarios, including using 
aligners like Bowtie 2 [22], BWA-MEM [24] and the pangenome graph aligner VG 
Giraffe [35]. Our results support previous studies that found that including more vari-
ants in a pangenome graph reference reduces reference bias [6, 30]. Interestingly, we also 
find that end-to-end alignment modes of popular tools like Bowtie 2 and BWA-MEM (a 
local aligner by default, but with the ability to penalize non-end-to-end alignments) are 
particularly effective in reducing bias at insertions and deletions. By contrast, aligners 
that favor local alignments, with no penalty on “soft clipping,” exhibit more bias around 
gaps. Finally, we found that applying biastools’s scan mode revealed large-scale dif-
ferences in reference bias observed using only the GRCh38 assembly [7] versus when 
using the combined benefits of both the GRCh38 and the T2T-CHM13 [27] assemblies.

Results
Ideally, a read aligner would map each read to its true point of origin with no bias toward 
one haplotype or the other. Also, an ideal method for analyzing read alignments and tal-
lying the reference (REF) and alternate (ALT) alleles covering a given site would do so 
without introducing bias. However, real aligners, reference genomes and assignment 
methods are imperfect, and several factors interact to produce distinct reference-bias 
signatures. We describe how biastools can measure and plot reference bias. We 
focus on bias in the context of diploid individuals (i.e., human) being sequenced using 
high-quality short reads, e.g., from Illumina instruments.

Measuring sources of bias in simulation

We performed a simulation experiment using biastools’s simulate mode, detailed 
in the “Methods” “Biastools workflow” section. We started from a Variant Call Format 
(VCF) file describing HG002’s variants as determined by the Q100 project [31, 32], a col-
laboration between the Telomere-to-Telomere (T2T) consortium, Human Pangenome 
Reference Consortium (HPRC), and Genome in a Bottle (GIAB) project. We generated 
a diploid personalized reference genome for HG002 using bcftools consensus. 
We used biastools --simulate, which in turn uses mason2 [19], to simulate Illu-
mina-like whole genome sequencing (WGS) data to a total of ∼30× average coverage, 
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taking ∼15× evenly from the two haplotypes. We used standard read aligners including 
Bowtie 2 [22], BWA-MEM [24], and Minimap 2 [23] to align to the GRCh38 reference 
genome [7]. We used VG Giraffe [35] to align to various graph pangenomes.

Types of allelic balance

After simulation and alignment, we measured three types of allelic balance at each het-
erozygous (HET) variant site (Fig. 1). We measured simulation balance (SB) as the pro-
portion of simulated reads overlapping the HET that originated from the REF-carrying 
haplotype. SB is computed purely from the simulator output; the simulator annotates 
reads with their haplotype and point of origin. We measured mapping balance (MB) as 
the allelic balance at each HET site considering only the reads that both truly originated 
from the HET (as reported by the simulator) and that overlapped it after read alignment. 
An overlapping read that originated from the REF-carrying haplotype contributes a REF 
allele, and likewise for an ALT-carrying read and ALT allele. MB ignores fine-grained 
details about how individual bases line up to the HET site in the pileup. Note that the 
simulation balance and mapping balance both use information from the simulator.

Finally, we measured assignment balance (AB) as the allelic balance after using an 
assignment algorithm to determine the haplotype of origin for each read overlapping 
the HET site. This does not make use of information from the simulator, and so can be 
measured for real reads as well as simulated ones. Assignment balance depends on the 
particular algorithm used to assign alignments to haplotypes. We tried two distinct algo-
rithms, a “naive” assignment algorithm and a “context-aware” algorithm. The naive algo-
rithm simply examines the nucleotides from each read that align across the HET site 
and computes a ratio according to how many of those sequences matched the REF allele 

Fig. 1 Illustration of the types of balance measurement — SB, MB, and AB — with respect to read simulation, 
read mapping, and halpotype assignment. Note that the mismapped reads are excluded when calculating 
MB, and the reads assigned “Others” are also excluded when calculating AB. Columns indicate distinct types 
of bias event. “Loss∗ ” indicates a bias event due to reads with ALT alleles failing to align. “Loss∗∗ ” indicates a 
bias event due to reads mapping elsewhere than their true point of origin. “Flux” indicates bias from gaining 
mismapped reads from other sites. “Local” indicates that local repeat content, as well as sequencing errors, 
combine to make a gap placement ambiguous
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versus how many matched the ALT allele. That is, the naive algorithm trusts that the 
aligner is correct and precise in how it places each base in the alignment and pileup.

The context-aware algorithm, on the other hand, does not trust the aligner’s decisions, 
instead revisiting and possibly changing those decisions in light of all the alignments 
and the ploidy of the donor. It is a multi-part algorithm that decides whether each read 
is contributing a REF or ALT allele, or whether to exclude the read from consideration 
for lack of context. Assignment algorithms are detailed in the “Methods” “Assignment 
method” section.

Types of reference bias

To categorize instances of reference biases, we computed these combinations of simula-
tion balance (SB), mapping balance (MB) and assignment balance (AB):

• Normalized mapping balance (NMB) ≡ MB - SB. NMB > 0 implies that mapping cre-
ates more bias toward the REF allele compared to simulation, while NMB < 0 means 
mapping creates bias toward ALT.

• Normalized assignment balance (NAB) ≡ AB - SB. NAB > 0 implies that alignment 
and assignment together create more bias toward the REF allele compared to simula-
tion, while NAB < 0 means mapping and assignment create bias toward ALT.

To demonstrate the utility of these measures, we examined the read alignments pro-
duced by Bowtie 2. We measured and plotted allelic balance at HET sites according to 
their NMB (horizontal) and NAB (vertical) (Fig. 2). Since SNVs and gaps exhibited dis-
tinct bias profiles, we plotted them separately. In this plot, HET sites with little or no 
bias will appear close to the origin. We called sites “balanced” and colored them green if 
they were within ±0.1 of 0 for NMB and NAB.

We next categorized HET sites that appeared far from the origin and along the diago-
nal (colored orange), the bulk of which were in the upper-right quadrant. Proximity to 
the diagonal indicates MB and AB are equally distant from SB. We inferred that this bias 
signature was likely introduced in the mapping stage, when reads systematically failed to 
align to the ALT-carrying haplotype. We called this “loss” bias. Most loss events appear 
in the upper right (as opposed to the lower left) because the ALT allele is usually harder 
for the aligner to map across, causing the aligner to fail more often.

We next categorized HET sites that were vertically above or below the origin. These 
sites had near-zero NMB, meaning that mapping did not introduce significant bias. The 
combination of near-zero NBM with non-zero NAB indicates that the reads overlapping 
the site are roughly evenly drawn from the REF and ALT alleles, but that the assignment 
algorithm has a bias in which allele it assigns. For points above the origin, there is a bias 
toward the REF allele after assignment.

We further divided these into “flux” and “local” events. Flux events (colored blue) 
involve reads with low mapping quality, indicating that the read aligner had nearly-
equally-good choices for where to map these reads. Such reads may be placed incor-
rectly, leading to the true evidence for REFs and ALTs being spread (and averaged) over 
many copies of a repeat. Flux events were more common for SNVs and rarer for inser-
tions and deletions.
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Local events (colored purple) are those where the evidence comes from mostly 
high-mapping-quality reads. In these cases, we hypothesized that the bias was caused 
by the assignment step. When using the naive assignment method (Fig. 2a, c), most 
local bias events were caused by short tandem repeats, which created many equally 
good gap placements. Out of 3228 local bias events including SNVs and gaps, 2561 
( 79% ) were at sites annotated by Repeatmasker. One thousand twelve of these sites 
were in Simple repeats (micro-satellites), 302 were in LINEs, and 934 were in SINEs.

When gap placement decisions are not consistent from read to read, this interferes 
with correct tallying of REF and ALT evidence and contributes to bias. This bias can 
potentially be avoided post facto by reconsidering and modifying the base-by-base 
alignments in light of the expected ploidy of the donor and the other alignments. 
This is the goal of past work on “local realignment” or “indel realignment,” sometimes 
implemented in standalone tools [1, 18] or as components of larger variant-calling 
systems [8, 11].

Fig. 2 Normalized mapping balance to normalized assignment balance (NMB‑NAB) plot of a SNV sites with 
naive assignment method, b SNV sites with context‑aware assignment method, c insertion and deletion sites 
with naive assignment method, and d insertion and deletion sites with context‑aware assignment method. 
Each dot represent a variant site in HG002 chromosome 20. The simulated reads are aligned using Bowtie 2 
and default parameters. The balance and bias subcategories are classified based on the position of the dots 
(“Biased‑site classification” section). For visual clarity, sites with no correctly‑mapped REF reads are omitted; 
the full plot including these sites is available as Additional file 1: Fig. S1
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A small number of sites did not belong to any of the above categories, and we called 
these “outliers” (colored gray). These can result from the co-occurrence of multiple of 
the above causes. A visual representation of all these categories is shown in the “Biased-
site classification” section.

Observations on local bias

Comparing Fig.  2 panels a and c (naive assignment) versus panels b and d (context-
aware assignment), we observed that the context-aware method yielded fewer local-bias 
events compared to the naive method, especially for insertions and deletions. This was 
expected, since gap-placement ambiguity can cause the aligner to place a gap in a posi-
tion that differs from its VCF position. The context-aware method avoids this by dis-
regarding the aligner’s gap decisions and scanning reads directly for variant sequences. 
Further, we stratified panels c and d by the length of the gaps (Additional file  1: Fig. 
S2). The three rows from top to bottom show the gaps longer than 10, 20, and 50 bases 
assigned by naive or context-aware method. It can be seen that the longer the gaps, the 
higher the ratio of variants are classified as “local” or “flux” bias in naive assignment. On 
the other hand, the context-aware method successfully classified the majority of the vari-
ants into “balanced” or “loss” in all scenarios.

We also observed that the context-aware method did not totally avoid local bias 
(Fig. 2b, d). Since this method requires that a substring of the read have an exact match 
to the REF or ALT allele at the site (“Assignment method” section), sequencing errors 
can affect the assignment balance either by artificially boosting the evidence for REF or 
ALT (if an error spurious creates a match), or more frequently by attenuating the evi-
dence (if an error disrupts a match). This effect is more severe for longer insertions or 
deletions, since more opportunities exist for a position to mismatch. For long inser-
tions, we expect the shorter REF allele to be less vulnerable to disruption by sequencing 
errors and so to be over-represented. For long deletions, we expect the ALT allele to be 
over-represented.

When multiple variants are situated near each other with respect to the reference, the 
read aligner can make decisions that cause context-aware assignment to fail. This can 
happen when a collection of nearby variants including gaps can be “explained” using 
fewer gaps and mismatches, causing portions of the read to shift with respect to the ref-
erence. An example is presented in Additional file 1: Fig. S3. The shifting is more likely to 
happen in the ALT allele, whereas sequencing errors happen roughly evenly in REF and 
ALT haplotypes.

Visualizing bias for indels

We evaluated reference bias as a function of insertion and deletion length using the bias-
by-allele-length plot (Fig. 3), modeled on a plot made in previous publications [9, 14, 35]. 
Here, the vertical axis is the ratio of alternate alleles observed spanning HET sites. That 
is, the vertical axis is the ratio ALT/(ALT+REF), where ALT and REF refer to the num-
ber of reads supporting the alternate and reference alleles respectively. For SNVs (length 
= 0), all measurements were well centered on 0.5. The naive assignment method (red) 
exhibited substantial bias across indel lengths, whereas both mapping balance (orange) 
and balance from context-aware assignment (green) stayed close to the simulation 
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balance. This occurs for the same reasons that we see more local bias events for the naive 
assignment method in Fig. 2.

Measuring bias across aligners

We performed the above analysis using multiple read aligners, including Bowtie 2 (in 
its default end-to-end alignment mode) [22], BWA-MEM [24], BWA-MEM with option 
“-L 30” (to encourage end-to-end alignment) and the VG Giraffe graph aligner [35]. 
For VG Giraffe, we performed alignment using four different indexes.

• Giraffe-linear: a graph consisting only of the linear reference genome GRCh38 [7].
• Giraffe-major: a graph consisting of the GRCh38 reference but with major alleles 

added. With the addition of the major alleles, the graph contains 1,998,961 polymor-
phic sites.

• Giraffe-pop5: A graph consisting of all the variants from 5 pre-built haplotype 
genomes based on the “RandFlow-LD” pangenome used in the Reference Flow study 

Fig. 3 Bias‑by‑allele‑length plots if we consider only Simulation Balance (blue), Mapping Balance (orange), 
Assignment Balance using context‑aware assignment (green), and the same using naive assignment (red). 
Variant length varies along the x-axis, with positive values standing for insertion and negative values for 
deletions, and 0 for SNVs. The alignment is done by Bowtie 2 on HG002 simulated data. Top: Balance for 
all four measures. Dots represent median of the distribution and the whiskers indicate the first and third 
quartiles. Middle: Zoom‑in on Mapping Balance and context‑aware Assignment Bias with data normalized by 
subtracting median SB in each stratum. Bottom: number of variants with each length. Gaps exceeding 25 bp 
are collapsed into the −25 or 25 strata
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[6]. Each haplotype genome is based on a 1000 Genomes Project (1KGP) super-
population. At each polymorphic site, the ALT allele is chosen with probability equal 
to its allele frequency. Linkage disequilibrium is preserved for each 1000 bp chunk. 
There are total 6,461,708 polymorphic sites across the 5 pre-built haplotype genomes 
combined.

• Giraffe-1KGP: A graph containing all the phase-3 variants from the 1KGP with allele 
frequency greater than 0.01, using GRCh38 as the reference. This graph contains a 
total of 13,511,768 polymorphic sites.

While Giraffe-linear uses the Giraffe graph aligner, the “graph” consists of a single lin-
ear genome in that case. The linear and major indexes serve as baselines to highlight how 
the inclusion of more variation (i.e., for Giraffe-pop5 and Giraffe-1KGP) impacts bias.

These experiments use the same simulated HG002 WGS dataset as in the previous 
section. In all cases, we used the context-aware assignment method to analyze allelic 
balance with respect to Q100 project-called variants for HG002 chromosome 20. 
Table 1 tallies and categorizes reference-bias events at chromosome-20 HET sites using 
the same classification strategy as in Fig. 2. The only category where aligners produced 
substantially different tallies was “loss,” consistent with this category being directly 
related to the mapping of reads. Since Bowtie 2’s default alignment mode is end-to-
end alignment (which does not perform soft clipping) whereas the default mode for all 
other tools was local alignment (allowing soft clipping), we hypothesized that end-to-
end alignment was a less biased strategy for gaps. To test this, we included results for 
BWA-MEM with the -L 30 option, which increases the threshold for clipping from 
its default of -L 5. Specifically, BWA-MEM allows clipping only in cases where the 
increase in alignment score is greater than the number specified with -L. Consistent 
with our hypothesis, BWA-MEM with the -L 30 option achieved the most balanced 
events for gaps compared to all other methods, including the end-to-end aligner, Bow-
tie 2, which achieved the second-most. The difference between the BWA-MEM modes 

Table 1 Number of balanced sites and different categories of biased sites on chromosome 20. The 
simulated WGS reads of HG002 are aligned by 8 different tools. The best results of balanced and Bias 
“Loss” are marked in bold and italic. The second best results are marked in bold

Bowtie 2 BWA-
MEM

BWA-
MEM (-L 
30)

Minimap2 Giraffe-
linear

Giraffe-
major

Giraffe-
pop5

Giraffe-
1KGP

SNV Balanced 52,173 52,133 52,336 52,148 52,267 52,267 52,353 52,402
Bias (loss) 2108 2084 1881 2028 1924 1911 1812 1752
Bias (flux) 495 569 594 581 566 561 548 573

Bias 
(local)

169 177 158 186 183 210 228 211

Outliers 78 60 54 80 83 74 82 85

Gap Balanced 10,386 10,143 10,519 10,213 10,308 10,323 10,336 10,358

Bias (loss) 628 799 435 726 659 630 600 571

Bias (flux) 112 146 150 160 137 143 139 142

Bias 
(local)

122 165 149 161 151 156 177 180

Outliers 22 17 17 10 15 18 18 19
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is illustrated in Additional file  1: Fig. S4. BWA-MEM -L 30 generally performed 
somewhat better than Minimap2 in all categories.

Comparing results for the various Giraffe indexes, we observed that the number of 
biased sites decreased as we moved from the linear reference (Giraffe-linear) to the ref-
erences inclusive of more genetic variation (major, pop5 and 1KGP), with the reduction 
being chiefly due to loss events. The trend holds for both SNVs and gaps. We repeated 
the analysis on chromosome 16, giving similar results as for chromosome 20 (Additional 
file 1: Table S1).

Figure  4 shows bias-by-allele-length plots including each aligner, along with the SB 
baseline (blue). Note that all of the balance measurements are modified to put the ALT 
in numerator for consistency with past studies. Panel a shows mapping balance (MB), 
and b shows assignment balance (AB) using the context-aware algorithm. In all cases, 
the lines tend to diverge more for the more extreme-length insertions and deletions. The 
bias noted for longer insertions seems to be greater than that of longer deletions. Note 
that reads carrying inserted sequence contain fewer bases that align to the reference, 
which in turn makes them harder to align correctly. This is in contrast to reads spanning 
deletions, which still align well to the reference genome, albeit with a deletion-sized gap. 
In addition, reads carrying insertions can sometimes not spanning the whole insertion, 
and have only one end overlapping the reference. BWA-MEM -L 30 stays the closest 
to simulation balance followed by Bowtie2, VG Giraffe, and the default settings of BWA-
MEM is the most biased. Across the different Giraffe indexes, the balance improves from 
the linear to the major, pop5, and 1KGP indexes.

Measuring bias using real reads on well-characterized genome

Biastools can also be applied to study reference bias in real datasets. Here we discuss 
biastools’s usage when reads come from a well-studied individual for which we have 
foreknowledge of HET sites. Since simulation balance (SB) and mapping balance (MB) 
relied on information from the simulator, we do not use them here. We continue to use 
assignment balance (AB) including with the context-aware assignment algorithm.

Visualizing bias

We made the bias-by-allele-length plot shown in Fig.  4c. Since simulation balance is 
not available as a baseline, we used an ALT fraction of 0.5 as the baseline. The trends 
observed were similar to those observed for simulated data (Fig. 4a, b). BWA-MEM with 
the -L 30 option and Bowtie 2 had the most even balance for longer insertions and 
deletions. For VG Giraffe, the indexes that included more variants had less bias than the 
indexes with fewer variants.

Classifying biased sites

Given a set of read alignments, biastools can predict which sites were affected by 
reference bias. To do this, biastools first performs context-aware assignment and 
measures allelic balance at the HET sites. Biastools also measures the mapping qual-
ity of the alignments overlapping each HET site, since low mapping-quality reads indi-
cate possibly mis-mapping due to repeats.
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We hypothesized that a combination of (a) allelic balance and (b) the average map-
ping quality of the overlapping reads could be used to predict if a variant site is affected 
by reference bias. We combined allelic balance (which varies from 0 to 1) with average 
mapping quality (normalized to vary from 0 to 1) using both addition and multiplica-
tion, then used these to rank sites according to their likelihood to be affected by bias. We 
applied these both to the simulated read data aligned by Bowtie 2, and to the real reads 

Fig. 4 Bias‑by‑allele‑length for 8 alignment workflows. We used simulated and real WGS datasets derived 
from HG002. We subsetted to reads aligning to HET sites on chromosome 20. Variants are arranged according 
to their length, with positive values standing for insertions and negative values standing for deletions. 
Zero indicates SNVs. a Fraction of ALT alleles in the simulation (blue) and after mapping of simulated reads 
(other colors). b Fraction of ALT alleles after mapping and context‑aware assignment using simulated reads. 
c Fraction of ALT alleles after mapping and context‑aware assignment using real reads. d The number of 
incidents of each size
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aligned by Bowtie 2. At each HET, we applied the classifier and compared its true/false 
categorization to the categorization obtained using the NMB-NAB analysis detailed in 
the “Biased-site classification”  section. Recall that the NMB-NAB categorization uses 
information about the simulated points of origin to classify sites as balance or as one of 
several bias event categories: loss, flux, local or outlier. In this evaluation, we collapse 
these into a single “biased” category.

While we lack ground-truth information about which HET sites are biased for the real 
reads, we assumed that bias events observed in the HG002 simulation would also occur 
in the real HG002 reads. That is, we transferred the ground-truth bias labels from the 
simulation to the real data. Figure 5 shows the receiver operating characteristic (ROC) 
curve and precision/recall (PR) curve evaluating our two-feature classifier. Panels a and 
b show the resulting curves for SNVs. Panel a shows that the classifier had area-under-
curve (AUC) above 0.95 in all cases, whether we used addition or multiplication to com-
bine features, and whether we evaluated on simulated or real reads. The PR curve for 
SNVs (panel b) had area-under-precision-recall-curve (AUPRC) ranging from 0.87 to 
0.91. Further, the PR curves showed a more pronounced difference whereby classifica-
tion accuracy for real data was lower than for simulated data.

For gaps, however, the ROC (Fig. 5c) and PR (Fig. 5d) curves were noticeably worse 
than for SNVs, with AUC of ROC ranging from 0.83 to 0.89, and AUPRC ranging from 
0.57 to 0.66. That is expected, since the majority of biased SNV sites are loss or flux 
events that are well characterized by our allelic balance and average mapping quality 

Fig. 5 The receiver operating characteristic (ROC) curve and the precision and recall (PR) curve of the 
biastools classifier on Bowtie2 alignment. a ROC curve of SNVs, b PR curve of SNVs, c ROC curve of gaps, d PR 
curve of gaps. The four lines are the simulated (blue and orange) and real data (green and red) based on 
multiplication scoring (mul) and addition scoring (add). auc: area under curve
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features. For gaps, however, a larger proportion of the bias comes from loss or local 
events, and our features are only partially effective at capturing local bias.

Measuring bias using real reads from an uncharacterized genome

While the above experiments used either simulated reads or foreknowledge of HET 
sites, a common scenario is that the reads come from donor individual with unknown 
variants. We hypothesized that biastools could still detect biased regions based on 
three measures: (a) read depth, (b) density of ALT alleles detected, and (c) frequency of 
sites for which the evidence is inconsistent with a diploid state. We expect some or all 
of these measures to become extreme in areas affected by reference bias. For example, 
if a donor has multiple copies of a segmental duplication that exists in a single copy in 
GRCh38, reads from the duplicates will accumulate in a single region on GRCh38, lead-
ing to higher depth and, due to the collapsed evidence, some non-diploid variants.
Biastools’s scan mode computes windowed running statistics over the pileup. 

In each window, it computes a read depth (RD) score, variant density (VD) score, and 
non-diploidy (ND) score, each of which are ultimately transformed to Z scores. The Z 
scores are then combined by taking their sum. Regions with combined score ≥ 5 are 
called “biased” and regions with score in the interval [3, 5] are called “suspicious.” When 
biased regions are close to each other (within 1 kbp), they are combined to make one 
longer biased region. This combining also happens for suspicious reasons. Details are in 
the Methods “Sliding window approach of scan mode” section.

To evaluate scan mode, we ran it on the simulated HG002 read data from “Measur-
ing sources of bias in simulation” section aligned by Bowtie 2 to the full GRCh38 ref-
erence. It reported 72,165 biased regions of average length 872 and 90,368 suspicious 
regions of average length 326 across the genome. While the input to this experiment was 
simulated data, our analysis does not use any information from the simulater, nor does it 
use foreknowledge of HG002’s variants. Focusing on chromosome 20, we compared the 
regions called biased by scan mode with the variant sites that were called biased using 
context-aware assignment as described in “Results” “Measuring sources of bias in sim-
ulation”  section. scan mode called 3384 biased regions on chromosome 20, covering 
4.9% of its bases. Of the SNVs and gaps on chromosome 20 that the biastools classi-
fier (which does use simulation information and foreknowledge of HETs) calls balanced, 
81% and 74% , respectively fell outside of the regions called biased by scan mode. On the 
other hand, 75% of SNV sites and 78% of gap sites called biased by the NMB-NAB analy-
sis fell inside regions called biased by scan mode (Table 2).

In this way, scan mode reproduced the results of the per-site classifier in part, but not 
completely. This is expected since scan mode lacks foreknowledge of HET locations.

Bias near structural differences

As a further demonstration of scan mode, we ran it on the real HG002 Bowtie 2 
alignments used in “Results” “Measuring bias using real reads on well-characterized 
genome”  section. Biastools scan marked 4.6% of the GRCh38 primary assembly 
(considering the 22 autosomes and the two sex chromosomes) as belonging to biased 
regions. Since bias can be caused by missing or incorrectly collapsed sequence in the 
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reference, we hypothesized that the biased regions would have a tendency to be in or 
near HG002’s structural variants (SVs). We examined HG002’s SVs as called by Human 
Genome Structural Variation Consortium (HGSVC) [12] with length over 100 bp, find-
ing 9709 insertions and 5521 deletions. We found that 6183 insertions ( 64% ) and 2690 
deletions ( 49% ) fell inside or within 100 bp of regions called biased by scan mode 
(Table  3). The greater enrichment of insertions in biased regions was expected, since 
reads containing inserted non-reference sequence are more likely to align incorrectly.

Bias due to incomplete reference representations

 We used scan mode to compare two different reference representations and alignment 
strategies. The first used Bowtie 2 to align directly to GRCh38, as we did above. We call 
this the “direct-to-GRC” method. The second used a workflow that additionally makes 
use of the complete telomere-to-telomere (T2T) CHM13 human genome assembly. The 
second method uses Bowtie 2 to align first to the more complete T2T-CHM13 assembly. 
Then, for reads that fail to align unambiguously to T2T-CHM13, it additionally aligns 
those to the GRCh38 assembly. For reads that align successfully to both, the alignment 
with the higher alignment score (to its original target, not necessarily to GRCh38) is cho-
sen. After merging, all alignments are ultimately “lifted” to GRCh38, i.e., translated into 
GRCh38 coordinates. We call the second method — the one that uses both T2T-CHM13 

Table 2 Comparison of the regions found using biastools scan mode versus the bias sites 
detected using simulate mode. The analysis is on chromosome 20, where 3, 384 segments are 
called as biased by scan mode, adding to 4.9% of chromosome 20

Total sites Inside bias region Outside bias region

SNV Balanced 52,173 9915 (19%) 42,258 (81%)

Bias (loss) 2108 1520 (72%) 588 (28%)

Bias (flux) 495 418 (84%) 77 (16%)

Bias (local) 169 142 (84%) 27 (16%)

Outliers 78 61 (78%) 17 (22%)

Bias (all) 2850 2141 (75%) 709 (25%)

Gap Balanced 10,386 2707 (26%) 7679 (74%)

Bias (loss) 628 482 (77%) 146 (23%)

Bias (flux) 112 102 (91%) 10 (9%)

Bias (local) 122 81 (66%) 41 (34%)

Outliers 22 22 (100%) 0 (0%)

Bias (all) 884 687 (78%) 197 (22%)

Table 3 Number of structural variants (SVs) longer than 100 bp called by HGSVC and falling either 
within or outside the biased regions identified by biastools scan. An SV was called as within 
the region of it overlapped any position within 100 nt of the extends of the SV. The biased regions 
consisted of 114,845 total segments, adding to 4.1% of the length of the GRCh38 primary assembly

SV number Inside bias region Outside bias region

Insertion 9709 6183 (64%) 3526 (36%)

Deletion 5521 2690 (49%) 2831 (51%)

Total 15,230 8873 (58%) 6357 (42%)
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and GRCh38 — the “LevioSAM 2” method, since it was first proposed in the LevioSAM 
2 study by Chen et al. [5].

We found that 4.0% of the LevioSAM 2 alignments fell into regions that were classi-
fied as biased by biastools scan (125,498 biased regions, average length 974 bp), 
compared to 4.5% for the direct-to-GRC alignments (130,771 regions, average length 
1071 bp). We used bedtools subtract to find the regions called biased using one 
method (direct-to-GRC or LevioSAM 2) but not the other. Out of the 130,771 regions 
in direct-to-GRC, 27,831 ( 21% ) were improved by more than 25% bases when using 
LevioSAM2. In contrast, 11,447 ( 9% ) bias regions in “LevioSAM 2” were aligned more 
balance in “direct-to-GRC”.

Since the improved performance of the LevioSAM 2 workflow is related to the com-
pleteness of the T2T-CHM13 reference relative to GRCh38, we hypothesized that 
the improvements would tend to be in regions where the T2T-CHM13 assembly is 
known to be superior, such as centromeres. We define that a bias region is near the 
centromere if it is inside the centromeric region or within 500k range extend from the 
centromere. The summation of the extended centromeric regions contains 86,076,358 
bp, which is around 3% of the whole genome. We collect all the bias regions improved 
by 25% in LevioSAM 2, and measure how many improved bases are from the regions 
near centromere, and how many are not. Thirty-eight percent of the improved bases 
are actually near centromeres, which is a high enrichment comparing to 3% (Table 4). 
Furthermore, if we consider only the bias region greater than 1000 bp, the ratio of 
bases near centromere becomes 40% , indicating that the bias region near the cen-
tromere tends to be longer.

Figure  6 illustrates a region near a centromere where the direct-to-GRC method 
yields more reference bias compared to LevioSAM 2. Non-gray colors (blue, red, 
green, orange) in the IGV pileup denote places where alignments carried an ALT 
allele relative to GRCh38. The top pileup shows that direct-to-GRC alignment created 
a dense area of ALT alleles (evident from the density of non-gray coloring). Further, 
the direct-to-GRC alignments tended to cover the region to much higher depth com-
pared to the LevioSAM 2 alignments, evident from the scaling of the top (0–254) and 
bottom (0–60) coverage tracks. These factors indicate that, for direct-to-GRC align-
ment, reads from more than one region of the donor genome have aligned in a “col-
lapsed” fashion to this single region, create extreme values for RD, VD and ND and 
causing biastools’s scan mode to mark the entire region as biased.

The LevioSAM 2 pileup exhibits much less bias, though biastools’s scan mode 
reports some small biased regions here, as can be seen in the bottommost panel. The 
contrast between the combined RD, VD and ND score is illustrated toward the top of 

Table 4 The location of the regions improved by 25% reference bias when using LevioSAM 2 
compared to the direct‑to‑GRC method. A biased region was “Near Centromere” if it locates within 
500 kbp of a region annotated as centromeric by the UCSC genome browser

bases improved Total Near centromere Away from centromere

All regions 6,132,182 2,304,633 (38%) 3,827,549 (62%)

Regions > 1000 bp 5,631,958 2,242,093 (40%) 3,389,865 (60%)
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the screenshot, where the blue curves show the combined score, truncated to remain 
in the interval [0, 10]. The threshold determining biased or not is on 5. Most of the 
regional score in direct alignment (upper track) are actually above 10 while only a few 
region in Leviosam2 (lower track) reach 10.

Computational performance

To test the computational efficiency of biastools, we performed experiments using the 
simulated WGS data on a Linux x86_64 system with single thread (Table 5). While the 
various alignment tools take different amounts of time, Minimap 2 was the fastest. As a 
result, we used Minimap 2, plus the necesary alignment sorting task, as the baseline for 
our measurements. After alignment and sorting, context-aware assignment and genera-
tion of the bias report (sim mode) took 9.24 h while using a peak memory footprint of 
37.90 GB. When run on the real WGS reads (without ground truth information), bias-
tools’ assignment phase took 8.46 h and used a peak memory footprint of 15.39 GB.

Fig. 6 Biastools called bias region of HG002 with two different method. The tracks from top down are: 
combined Z‑score for direct‑to‑GRC alignment, combined Z‑score for Leviosam2 alignment, IGV read 
arrangement of direct alignment, read arrangement of Leviosam2, “Biased region” of direct alignment, 
“Biased region” of Leviosam2. Combined Z scores include read depth, variant density, and non‑diploid 
variant. The scores above 10 are truncated in the panel to show the details between 0 and 10. Note that the 
read coverage tracks use different scales. For direct alignment, the track ranges from 0 to 254, while that of 
Leviosam2 ranges from 0 to 60

Table 5 Time and memory usage for different stage of biastools when processing whole genome 
simulated data. The alignment method is Minimap2, and the sorting is of the alignment is done by 
Samtools sort. All the experiment are done with single thread

Time (hr) Memory (GB)

Alignment and sorting 21.73 12.32

Biastools assignment (sim) 9.25 37.90

Biastools assignment (real) 8.46 15.39

Biastools scan 47.38 368.17

Biastools scan from mpileup 6.42 368.07
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To run biastools_scan --scan, the input file must be in mpileup format. Trans-
forming .bam format to .mpileup with bedtools, then performing the bias-
tools_scan --scan took 47.38 h, while performing biastools_scan --scan 
on an existing mpileup file took 6.42 h. The peak memory usage in either case was 
around 368 GB.

Discussion
We presented biastools, a novel method and tool that directly measures and catego-
rizes instances of reference bias. In a simulation setting, we demonstrated its utility for 
identifying different categories of reference-bias events, and used this facility for com-
paring some well known alignment methods. Using real data, we showed its accuracy 
in a range of situations, including when we either do or don’t have foreknowledge of the 
donor individual’s HET sites.

As the bioinformatics community continues to develop new bias-avoiding methods 
[15] we expect biastools’s ability to measure and categorize bias events will be essen-
tial. Direct measurement of reference bias will lead to clearer interpretation and eval-
uation compared to the alternative of measuring accuracy in a downstream result like 
variant calling. Findings obtained using biastools will help in designing the next gen-
eration of reference representations and alignment algorithms. For instance, our finding 
that end-to-end alignment leads to less bias in some circumstances could indicate that 
future algorithms should favor end-to-end alignments in more situations.

By measuring reference bias at an early point in the alignment process, biastools 
can disentangle reference bias due to the aligner and reference representation from any 
bias caused by downstream tools. This is particularly important since downstream tools 
can themselves be tuned (or trained) to counteract reference bias, sometimes “learn-
ing” the bias, when the more effective measure would be to analyze and remove the bias 
upstream. An example is the DeepVariant variant caller, which can refuse to call variants 
in bias-prone regions of the genome [5].

In the future, it will be important to refine biastools’s models for predicting 
whether a given site is experiencing reference bias. In particular, the model presented 
here in “Results” “Measuring bias using real reads on well-characterized genome” sec-
tion performs well for relatively simple variants like SNVs, but not as well for gaps. 
To improve the utility of biastools, it will be important to include more informa-
tion in this model to allow for more accurate predictions. In particular, a future task is 
to develop models that both identify relevant features (beyond coverage and MAPQ) 
and combine to make a prediction in an automated way, possibly using deep learning. 
Indeed, such models may exist within the larger models already developed for variant 
calling in tools like DeepVariant [29]. To date and to our knowledge, no existing model is 
designed for the specific task of measuring reference bias, which is key to understanding 
how well upstream tools are fulfilling their stated purpose.

Currently, biastools supports only diploid genomes, since most of the work on ref-
erence bias avoidance has focused on human and other diploid genomes. However, 
biastools in principle can be extended to genome with higher ploidy. For instance, 
the simulation and the assignment methods would be essentially the same for a trip-
loid, with the expected allelic balance ratios being 1:2 or 1:1:1. Note that the problem 
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of distinguishing reference bias from sequencing error becomes harder as the ploidy 
increases.

This study focuses on short reads, since their shorter length makes them more prone 
to reference bias. However, biastools’s methods are applicable to long-read align-
ments as well. Reference bias will manifest differently for long reads compared to short 
ones. Since long-read aligners have the benefit of longer sequence length and more 
anchors, scattered pockets of dense ALT alleles are less likely to affect the aligner’s abil-
ity to place the read correctly. In light of this, we expect biastools’s scan mode to be 
particularly well suited to identifying the larger-scale bias events that are likely to domi-
nate the reference bias landscape for long reads.

Conclusions
Biastools is a novel method and tool that directly measures and categorizes instances 
of reference bias. As new reference representations and alignment tools continue to be 
developed, biastools can help to standardize and formally measure the degree to 
which they address the reference-bias problem.

Methods
Biastools workflow

Biastools analyzes, measures and reports instances of reference bias in short-read 
alignments. Biastools focuses on bias with respect to diploid genomes, though 
the constituent methods could be generalized to other ploidies. If genetic variants are 
not known for the donor genome, biastools’s scan mode reports regions that are 
“biased” or “suspicious.” If the donor has known variants, biastools’s predict mode 
performs a more detailed analysis, taking bias measurements at each heterozygous site. 
Biastools’s simulate goes a step further by first running a read simulator, then ana-
lyzing the simulated reads with one or more read alignment workflows. This allows for 
detailed categorization of bias events (e.g., whether they are due to loss, flux, etc), and 
for comparative studies of bias caused by different tools and reference representations.

simulate mode

To obtain a diploid reference from which reads can be simulated, biastools --sim-
ulate first uses bcftools consensus to generate the two FASTA-format haplo-
types for the donor individual from a reference genome and a set of phased variant calls 
in VCF format. biastools --simulate then uses mason2 to simulate Illumina-
like short reads from the autosomes of the two haplotypes. biastools --simulate 
uses different random seeds for the two haplotypes, to avoid correlation between the 
read coverage profiles. Note that mason2 annotates simulated reads with their haplo-
type and point of origin. In our experiments of the “Results” “Measuring sources of bias 
in simulation” and “Measuring bias across aligners”  sections, the individual with high 
quality variant calls was HG002, the VCF file used was from the Q100 project. The VCF 
provides the phased variant information of HG002. We filtered out the variants that had 
been placed in any “FILTER” category, including variants that lacked evidence on one 
haplotype.
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Simulated reads are then aligned to the GRCh38 primary assembly with one or more 
user-specified read alignment workflows. Bowtie 2 and BWA-MEM align directly to 
an index of GRCh38. VG Giraffe aligns to a graph based on GRCh38, and with all read 
alignments ultimately surjected (“lifted”) onto GRCh38. For each variant site, bias-
tools analyzes the site using both its naive and its context-aware assignment methods, 
detailed in the  “Methods” “Assignment method”  section. Given the evidence support-
ing the REF and ALT alleles, three levels of allelic balance are calculated: the simulated 
balance (SB), mapping balance (MB), and assigned balance (AB). SB and MB require 
information about the reads’ true haplotype and point of origin, which are provided by 
the simulator, whereas AB is based only on the results of the context-aware assignment 
assignment method (“Methods” “Assignment method” section). These measures in turn 
allow biastools to categorize HET sites, as detailed in the  “Methods” “Biased-site 
classification” section.

predict mode

This mode, biastools --predict, uses its context-aware assignment method to 
analyze each variant site. Since we lack simulated ground truth, only the AB measure 
is computed. This is sufficient to predict instances of reference bias (see the “Results” 
“Measuring bias using real reads on well-characterized genome” section), and to create 
diagnostic plots like the bias-by-allele-length plot (Figs. 3 and 4).

As presented in the “Results” “Measuring bias using real reads on well-character-
ized genome” section, biastools can predict which HET sites are affected by refer-
ence bias using a simple model. The model uses two inputs computed by biastools 
--predict: (a) the average mapping quality (MAPQ) of all the reads overlapping the 
site, and (b) the allelic balance at the variant site. This model is too simplistic to divide 
instances of bias into categories such as flux and loss. Still, our evaluations of the simple 
model, using simulated data to obtain ground truth for testing, indicates that it performs 
quite well on data derived from HG002 and aligned to GRCh38.

scan mode

biastools_scan --scan first uses samtools mpileup to transform the align-
ments into the column-wise mpileup format. Biastools then scans the mpileup file, 
performing a windowed analysis and seeking regions with unusual degrees of (a) depth 
of coverage, (b) SNV variant density or (c) instances where the evidence is inconsistent 
with a diploid donor genome. The three measurements are combined into a single score 
by adding or multiplying them. Regions having combined score above a threshold are 
marked as “biased.” We cross check the scanning mode with both simulated data and 
real data.

Assignment method

Biastools contains two algorithms (the “naive” and the “context-aware” algorithms) 
for assigning reads to haplotypes. Both examine each read that aligns across a given site 
and assign each read to the reference-allele-carrying (REF) or the alternate-allele-carry-
ing (ALT) haplotype. This problem is made difficult by the presence of sequencing errors, 
ambiguity in placement of alignment gaps, and the presence of repetitive sequence. 
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While both algorithms attempt to assign each read to one haplotype or the other, they 
can fail in the case of some reads, ultimately assigning them to neither haplotype.

Before describing these assignment methods, we first describe how biastools com-
putes two different baselines for understanding allelic balance.

Simulated balance (SB)

SB is computed as the number of ground-truth REF reads simulated from across the site, 
divided by the total number of reads simulated across the site. That is, it is the ratio REF/
(REF+ALT), where REF and ALT are obtained by examining the simulated reads and 
simply counting the number that overlap the site and come from the REF-carrying hap-
lotype and ALT-carrying haplotype.

Mapping balance (MB)

MB is computed as the fraction of reads overlapping the site that both (a) originated 
overlapping the site, and (b) aligned overlapping the site. Information from the read sim-
ulator is used to determine the read’s haplotype and point of origin. Reads that aligned 
overlapping the site but that were actually simulated from elsewhere in the genome are 
not counted in the MB measure. The MB measure differs from the SB measure since 
some reads truly originating from the site will fail to align there.

VCF files can contain nearby variants that are interdependent in a way that prevents 
the sites from varying independently. For example, a deletion could extend through and 
cover an SNV; that is, the deletion removes the SNV site, making the SNV neither REF 
nor ALT. Some VCF files use “./.” to represent such cases. To avoid the complications 
that arise from these cases, we identified instance of overlapping variants and removed 
them from consideration by ignoring all of the polymorphisms involved.

Naive assignment method

Given all of the reads that aligned overlapping a given site, the naive assignment method 
examines which base(s) from the reads align to the variant’s exact reference coordinates. 
From those, it tallies the REF/(REF+ALT) fraction. For insertions and deletions, the 
method only tallies a read if its sequence exactly matches the ALT or REF allele. If the 
sequence is different from both reference and alternative allele, e.g., if the sequence was 
affected by one or more sequencing errors or if the placement of gaps or insertions was 
different from the VCF, the read is classified as “other” and is not counted.

Note that this method uses the exact base-by-base alignment information reported by 
the read aligner. In other words, decisions made by this assignment method are essen-
tially the same as those that would be made by examining the pileup columns corre-
sponding to the variant. The following context-aware method improves upon the naive 
method by reanalyzing the read sequences.

Context‑aware assignment method

This method works by searching for the REF and ALT alleles, together with some of their 
flanking sequence, within the sequences of all the reads that aligned overlapping the var-
iant. As a first step, this method extracts variant information from the VCF, construct-
ing strings that represent the REF/ALT alleles together with their flanking sequence. We 
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use the term “allelic context sequence” to describe the allele together with its flanking 
sequence.” The default flanking sequence length is 5 bp. Note that flanking sequences 
are drawn from the same haplotype as the allele; e.g., if two phased SNV variants are 
within 5 of each other, each will appear – phased appropriately – in the other’s flanking 
sequence.

To determine if a read overlapping a variant site supports the REF or ALT allele, the 
read sequence is scanned for the allelic context sequences for REF and/or ALT. If exactly 
one of the two (REF or ALT) context sequences is found, the read is classified accord-
ingly. The allelic context sequence need not appear in its entirely; it is sufficient for a 
suffix or prefix to appear, as long as a suffix or prefix of the other does not also appear. A 
read may contain context sequences but lack the context to distinguish REF from ALT. 
That is, the read sequence may contain equally good matches for both alleles. This is 
particularly common in regions with tandem repeats. In this case, the read is classified 
as “both” REF and ALT for the purpose of tallying bias. In cases where the read sequence 
contains neither of the allelic sequence contexts, the read is classified as “other”. “Both” 
and “other” reads are excluded from the AB calculation.

Subtleties can arise when many variants are clustered close together, with some vari-
ants (i.e., indels) affecting the coordinates at which others occur. In such cases, the 
evidence for any one of the variants is best understood in the context of the entire 
phased cluster of variants. This type of method has been adopted by multiple previous 
tools when analyzing variant combinations that might involve indels [2, 36]. The con-
text-aware assignment method will cluster variants appearing within a short distance 
(default: 25 bp) together into a “cohort.” The cohort extends in either direction until 
no other variants can be reached (up to the distance) in either direction. For such vari-
ants, the context-aware assignment algorithm will first take the entire (clustered) REF 
and ALT strings and search for them within the sequences of the overlapping reads. A 
read assigned in this way is tallied with respect to all of the variant sites making up the 
cohort. That is, if three phased variants are involved in a cohort, and the REF allele string 
is found in a read, that read counts toward the REF tally for all three variants.

While some overlapping reads can be tallied in this way, some overlapping reads might 
not overlap all or much of the cohort. For reads that cannot be assigned using the entire 
cohort string, the assignment algorithm falls back on the variant-by-variant strategy 
described previously.

Fig. 7 The aligned reads and variants in alignment coordinate and expansion coordinate. For expansion 
coordinate, the expansion can be anchored on the left side of the variant or the right side of the variant
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When comparing the context sequences to the REF and ALT sequences, there may be 
a need to try different anchoring points, especially when gaps and tandem repeats are 
present. This is illustrated in Fig. 7. On the left, the coordinate of read1 is the same as 
reference because its insertion is anchored on both sides and correctly placed. But for 
read2 and read3, the inserted sequence cannot be anchored on one side, causing their 
coordinates to shift with respect to the reference. To deal with this, the context-aware 
method will first try anchoring the read on the left side boundary of the variant. If no 
match is found between context sequence, REF and ALT, the method will try anchoring 
the read on the right side boundary of the variants (Fig. 7). In the same fashion, when 
comparing the read sequence through the cohort of a set of variants, the left and right 
end of the cohort are anchored to comparison. In this way, the aligner’s placement of 
gaps does not affect the comparison as long as the alignment beyond one of the variant 
boundaries is correct.

Note that the context-aware comparison method has limitations in cases where the 
variant calling file provides only partial information. For instance, when true variants 
are missing from the VCF, bias measurements at nearby sites can be inaccurate because 
biastools lacks the accurate flanking sequences needed for context-aware assign-
ment. Similarly, absence of accurate (or any) phasing information can interfere with 
biastools’s ability to establish accurate flanking sequences for assignment.

Repetitive context

When a variant is situated in or near a tandem repeat, it may not be possible to distin-
guish REF and ALT alleles simply by taking a fixed sequence context. For example, in 
Fig. 8a, the REF haplotype contains attc repeated 7 times in tandem. The ALT haplo-
type has the same sequence repeated only 6 times. If we only compare the variant region 
defined in the VCF, which is 1 attc difference, it is easy to mistake a read with one 
attc deletion to reference read if the aligner didn’t put the gap in the exact place.

To cope with the complication, we defined the concept of “effective variant”. When 
building the variant map, if one context sequence (REF or ALT) is the prefix, suffix, or 
substring of the other, the “context-aware” method will keep extending the variant. If 

Fig. 8 Two examples of repetitive context. a The repetitive is extending to the right side, so the effective 
variant is extending to the right end so that the ALT context sequence is no longer a prefix of REF context 
sequence. b The case original ALT context sequence is a substring of REF context sequence. There are two 
choices of effective variant. Biastools would chose the shorter effective variant (choice 2)
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the repetitiveness is on the right side, that is, one context sequence is the other’s prefix, 
the method will extend the variant to the right until the first difference is encountered. 
For example, in Fig. 8a, the effective variant become the whole repetitive region of the 
attcs. Similarly, the method will extend the variant to the left if the repetitiveness is 
on the left, that is, one context sequence is the other’s suffix. Occasionally, the repeti-
tiveness is on both side (Fig. 8b). In these cases, the method chooses the side where the 
extension is shorter. A read that does not cover the entire effective variant will be classi-
fied as “both,” reflecting the fact that we cannot determine the true origin of a read that 
does not cover the whole repetitive region. Reads that partially cover the effective vari-
ant are not evaluated in our simulation experiment, since they are not possible for the 
assignment method to determine the haplotype and only complicated the result when 
being included in analysis. The variant with “effective variant” longer than 70 bp are also 
disregarded in analysis.

Biased-site classification

For simulated reads, we can diagnose the cause of the bias by examining our bias meas-
ures (AB from the two assignment methods) as well as our baseline measures (SB and 
MB). We divide biased sites into three categories (or “events”): loss, flux, and local. Loss 
events are caused by ALT-carrying reads that fail to align to their true point of origin. 
Flux events are caused by reads that aligned to a site but that originated from another 
site on the genome. Local events are caused by the aligner put the reads in roughly cor-
rect place; however, the reads’ haplotype is determined incorrectly by the assignment 
method. It can be due to the assignment method is fooled by the placement of the gaps 
such as the most “local” bias cases in naive assignment. The “local” bias also happens 
when the aligner put the read off certain bases due to the tandem repeats or the uneven 
incidents of sequencing error in the variant region.

We rely on three combined measures to classify the biases. One is the normalized 
mapping balance (NMB), equal to MB - SB. NMB measures bias that manifests due 
to read alignment. Another combined measure is the normalized assignment balance 
(NAB), equal to AB - SB. NAB measures bias that manifests due to either read alignment 
or a failure to correctly tally the evidence present in the overlapping aligned reads, e.g., 
due to ambiguity caused by gaps and tandem repeats. A final measure is the number of 
reads that aligned to the site incorrectly due to having ambiguous alignments.

Our bias categories are defiend based on these three measures. Figure 9 illustrates how 
categories are determined based on the measures. Most sites generally do not exhibit 
reference bias, and so would tend to appear near the origin of the plot, meaning that MB 
and AB are both close to SB. Specifically, any sites falling within the circle about the ori-
gin with radius 0.1 are classified as “balanced.”

The yellow region that surrounds the diagonal y = x line in Fig. 9 (but excluding the 
“balanced” circle around the origin) demarcates the sites that are categorized as “loss” 
events. The boundary is specifically defined by two lines with slopes of 2 and 1/2. Posi-
tioned along the diagonal means that the NMB and NAB are close to each other, indi-
cating that the assignment method reflects the balance of reads mapping to the site. 
However, positioning in the upper-right quadrant means that these sites are biased 
toward the reference, which results from the loss of alternative allele reads. In some rare 
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case the reads carried reference allele are lost, in the case the variant site will situated in 
the lower-left quadrant. The blue region in Fig. 9 are where the variants with discordant 
NMB and NAB located. In most of the cases, the NMB are close to zero, while the NAB 
is positive, meaning that the mapping of the reads are close to the simulation, but the 
assignment is not correct. Both the flux and local biases position in similar place, thus 
we introduce a third measure, number of mismapped reads, to differentiate these two 
categories. For the variant site in the blue region, if there are more than 5 reads coming 
from other place of the genome, then the site is classified as bias “flux”, else it is classi-
fied as “local”. The sites not included in the green, yellow, or blue regions are classified as 
outliers.

Construction of pangenome graphs

To construct the pangenome graph, we used vg autoindex --workflow giraffe 
with the GRCh38 reference and the target VCF file. Then we used vg giraffe with the 

Fig. 9 The illustration of biases categorization with NAB and NMB. Variants positioned within the green circle 
with a radius of 0.1 at the origin are classified as balance. Variants in the yellow region along the diagonal are 
categorized as bias “loss”. The blue region, where |NMB| > 0.1 and excluding the bias “loss” region classifies 
variants as either bias “flux” or bias “local”. The classification between “flux” or “local” is determined by if there 
are more than 5 reads being mismapped to the site. Variants falling outside these categories are classified as 
outliers. NAB: normalized assignment balance, NMB: normalized mapping balance
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index files to align both the simulated and real reads. The option -o BAM was used to 
project the alignment result back to the linear reference GRCh38.

The command we used to filter the 1KGP variants with allele frequency greater than 
0.01 was bcftools view --min-af 0.01. The command leaves only the non-
reference alleles with frequency greater than 0.01 in the population.

Evaluating biased-site predictions

As mentioned in Results, the absence of phasing information in the “truth” VCF can 
create problems for biastools’s algorithms. Before evaluating the performance of 
the prediction model on real read data, we first filtered out the sites potentially being 
affected by incomplete phasing information. To identify these, we classified each HET 
site as “affected” if more than 90% of reads covering the site contained an “other” (i.e., 
neither REF or ALT) allele, or if evidence for one of the two HET alleles was completely 
absent and more than 40% of reads contained an “other” allele. We then omitted the 
affected HETs from further analysis.

Since these real reads have no known point of origin, the measures previously used 
— e.g., NMB, NAB, and number of mismapped reads — are not available. We can still 
evaluate AB for each variant using biastools’s assignment methods. We found that 
the most relevant measures for real read alignment are the average read mapping qual-
ity and the AB of the variant. Mapping quality of the reads is the proxy to tell if there 
are reads from other place align to the site, or if there are reads origin in the site align to 
other place. AB captures whether a variant suffers from biased read loss/gain. AB does 
not capture the reason for the bias; i.e., sites with unbalanced REF-ALT ratio can result 
from random sequencing error or systematic bias. Still, we found that variant sites with 
extreme AB and low average mapping quality were likely to be biased sites.

We found that transforming AB and average mapping quality into Z scores and com-
bining them provided a useful measure of bias. We used two methods to combine the Z 
scores; multiplication and addition.

Note that 42 is the maximum possible score for Bowtie2 and BWA MEM aligner. 
For VG Giraffe, the maximum scoring was adjusted to its maximum of 60. We 
observed that these two combinations performed similarly when predicting bias of 
SNV variants (Fig. 5).

Sliding window approach of scan mode

In scan mode, biastools uses bcftools mpileup to obtain an alignment pileup 
in the target region. Biastools scans the region with a sliding window (default: 400 
bp), finding windowed averages for three measures: read depth, variant density, instances 
of non-diploid pileups. The three measures are combined into a bias score as below:

(1)prediction_score =
avg_MapQ − 42

42
× assigned_balance

(2)prediction_score =
avg_MapQ − 42

42
× 1.5+ assigned_balance
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• The read depth (RD) as a Z score: (window mean RD - total mean RD)/(total RD std). 
Since we are interested only in cases where RD is much greater than average, any Z 
score less than 1 is rounded to 0.

• The variant density (VD) as a Z score (window mean VD - total mean VD)/(total VD 
std). Since we are interested only in cases where density is greater than average, nega-
tive Z scores are truncated to 0.

• The non-diploid (ND) score as a Z score (window mean ND - total mean ND)/(total 
ND std). Since we are interested only in cases where evidence is inconsistent with the 
diploid state, negative Z scores are truncated to 0

The non-diploid (ND) score is calculated from the ratio of nucleotides appearing in each 
individual position in the window. For a given position, any nucleotide appearing with 
greater than 15% frequency is considered as an allele (i.e., is not likely to be a coincidence 
of sequencing errors). Any position with more than one allele is considered a SNV. A site 
is called non-diploid if either (a) more than two alleles are present at the > 15% level, or if 
the most frequent allele has a frequency more than twice that of the second most frequent.

A region is classified as “biased” if the sum of RD, VD, ND score ≥ 5. A region is 
classified as “suspicious” if the sum of RD, VD, and ND score ≥  3  and < 5 . If two 
nearby bias regions are within distance of 1 kbp, the scanning mode will chain them 
into one single long biased region. In a similar fashion, sites with unusual high meas-
ures but not extremely high would be classified as suspicious sites and linked together 
if they are within 1 kbp range.

Note that the transformation to Z scores requires that biastools determine (or 
estimate) the scores’ means and standard deviations in the dataset. The user can chose 
to have these computed automatically using a sampling method, which by default sam-
ples 1/1000th of genome sequence and estimates based on the alignment data in that 
subset. Alternately, the user can specify pre-calculated means and standard deviations.

The final score of the sliding window is:

Comparing two alignment workflows with scan mode

To compare alignments from two alignment workflows, we first obtained a single set 
of average and standard-deviation parameters, derived jointly from the alignments 
generated by both workflows. We found that using independently sampled param-
eters, i.e., obtaining separate average and standard-deviation parameters for each 
workflow, would create an imbalance. For example, since “LevioSAM 2” produced an 
overall less biased set of alignments in our experiment, the average and std values of 
RD, VD, and ND were lower. The biased and suspicious regions reported by bias-
tools scan were therefore less extreme for “LevioSAM 2” than for the more biased 
workflow that aligned directly to GRCh38.

(3)Z_score(score) =
window_avg_score− sampled_avg_score

sampled_std_score

(4)bias_score = trunc(Z_score(RD), 1)+ trunc(Z_score(VD), 0)+ trunc(Z_score(ND), 0)
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To obtain these joint parameters, biastools scan samples from both alignment 
bam files, creating a sample drawn half from one workflow and half from the other. So 
the scan mode can be performed on both bam files with the same scoring.

When comparing the biased regions from the two alignment workflows, regions 
with low or no read depth were excluded, since it was difficult to interpret these as 
being improved by one workflow or the other. An example of a dubious “improve-
ment” is illustrated in Additional file  1: Fig. S5. To classify a region identified as 
“biased” in one workflow as being “improved” by the other workflow, biastools 
scan required that at least 25% of the bases in the region be both well covered (over 
1/5th of the overall average read depth) and not classified as biased.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059‑ 024‑ 03240‑8.

Additional file 1: Figure S1. Full normalized mapping balance to normalized assignment balance (NMB‑NAB) plot. 
Figure S2. Normalized mapping balance to normalized assignment balance (NMB‑NAB) plot stratified by allele 
length. Figure S3. Example of local decision by Bowtie 2 and BWA MEM. Figure S4. Example of local decision by 
default BWA MEM and BWA MEM with option ‑L 30. Figure S5. An example of the low coverage result of LevioSAM 2 
and direct‑to‑GRC methods. Table S1. Number of balanced sites and different categories of biased sites on chromo‑
some 16.

Additional file 2: Review history.

Acknowledgements
This work was carried out at the Advanced Research Computing at Hopkins (ARCH) core facility , which is supported by 
the National Science Foundation (NSF) grant number OAC 1920103.

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in collabora‑
tion with the rest of the editorial team.

Review history
The review history is available as Additional file 2.

Authors’ contributions
ML, SI, NC and BL designed the method. ML and SI wrote the software and performed the experiments. ML and BL wrote 
the manuscript. All authors read and approved the final manuscript.

Funding
ML, SI, NC and BL were supported by NIH grant R01HG011392 to BL.

Availability of data and materials
The VCF file of HG002 from the Q100 project was downloaded from the GIAB HG002 GRCh38 assembly‑based small and 
structural variants draft benchmark sets [28] with the URL https:// ftp‑ trace. ncbi. nlm. nih. gov/ Refer enceS amples/ giab/ 
data/ Ashke nazim Trio/ analy sis/ NIST_ HG002_ Draft Bench mark_ defra bbV0. 012‑ 20231 107/ GRCh38_ HG002‑ T2TQ1 00‑ V1.0_ 
smvar. vcf. gz.
 The real short read sequencing data for HG002 was downloaded from Google brain genomics sequencing dataset for 
benchmarking and development [3] with the URL https:// stora ge. googl eapis. com/ brain‑ genom ics‑ public/ resea rch/ 
seque ncing/ fastq/ novas eq/ wgs_ pcr_ free/ 30x/.
 The software biastools is available at https:// github. com/ maoja nlin/ biast ools with the Zenodo DOI: 10. 5281/ 
zenodo. 10819 028 and https:// pypi. org/ proje ct/ biast ools/ under the MIT license. Scripts for the experiments described in 
this paper are at https:// github. com/ maoja nlin/ biast ools_ exper iment, with the Zenodo DOI 10. 5281/ zenodo. 10818 966.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 13 September 2023   Accepted: 4 April 2024

https://doi.org/10.1186/s13059-024-03240-8
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/NIST_HG002_DraftBenchmark_defrabbV0.012-20231107/GRCh38_HG002-T2TQ100-V1.0_smvar.vcf.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/NIST_HG002_DraftBenchmark_defrabbV0.012-20231107/GRCh38_HG002-T2TQ100-V1.0_smvar.vcf.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/NIST_HG002_DraftBenchmark_defrabbV0.012-20231107/GRCh38_HG002-T2TQ100-V1.0_smvar.vcf.gz
https://storage.googleapis.com/brain-genomics-public/research/sequencing/fastq/novaseq/wgs_pcr_free/30x/
https://storage.googleapis.com/brain-genomics-public/research/sequencing/fastq/novaseq/wgs_pcr_free/30x/
https://github.com/maojanlin/biastools
10.5281/zenodo.10819028
10.5281/zenodo.10819028
https://pypi.org/project/biastools/
https://github.com/maojanlin/biastools_experiment
10.5281/zenodo.10818966


Page 27 of 28Lin et al. Genome Biology          (2024) 25:101  

References
 1. Anson EL, Myers EW. ReAligner: a program for refining DNA sequence multi‑alignments. J Comput Biol. 

1997;4(3):369–83.
 2. Assmus J, Kleffe J, Schmitt AO, Brockmann GA. Equivalent indels‑ambiguous functional classes and redundancy in 

databases. PLoS ONE. 2013;8(5):e62803.
 3. Baid G, Nattestad M, Kolesnikov A, Goel S, Yang H, Chang PC, et al. Google Brain Genomics Sequencing Dataset for 

Benchmarking and Development. Dataset. 2020. https:// conso le. cloud. google. com/ stora ge/ brows er/ brain‑ genom 
ics‑ public/ resea rch/ seque ncing/ fastq/ novas eq/ wgs_ pcr_ free/ 30x. Accessed 15 Apr 2024.

 4. Brandt DY, Aguiar VR, Bitarello BD, Nunes K, Goudet J, Meyer D. Mapping Bias Overestimates Reference Allele Fre‑
quencies at the HLA Genes in the 1000 Genomes Project Phase I Data. G3 (Bethesda). 2015;5(5):931–41.

 5. Chen NC, Paulin LF, Sedlazeck FJ, Koren S, Phillippy AM, Langmead B. Improved sequence mapping using a com‑
plete reference genome and lift‑over. Nat Methods. 2024;21(1):41–9.

 6. Chen NC, Solomon B, Mun T, Iyer S, Langmead B. Reference flow: reducing reference bias using multiple population 
genomes. Genome Biol. 2021;22(1):1–17.

 7. Church DM, Schneider VA, Steinberg KM, Schatz MC, Quinlan AR, Chin CS, et al. Extending reference assembly mod‑
els. Genome Biol. 2015;16:13.

 8. Cooke DP, Wedge DC, Lunter G. A unified haplotype‑based method for accurate and comprehensive variant calling. 
Nat Biotechnol. 2021;39(7):885–92.

 9. Crysnanto D, Pausch H. Bovine breed‑specific augmented reference graphs facilitate accurate sequence read map‑
ping and unbiased variant discovery. Genome Biol. 2020;21(1):184.

 10. Degner JF, Marioni JC, Pai AA, Pickrell JK, Nkadori E, Gilad Y, et al. Effect of read‑mapping biases on detecting allele‑
specific expression from RNA‑sequencing data. Bioinformatics. 2009;25(24):3207–12.

 11. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and 
genotyping using next‑generation DNA sequencing data. Nat Genet. 2011;43(5):491–8.

 12. Ebert P, Audano PA, Zhu Q, Rodriguez‑Martin B, Porubsky D, Bonder MJ, et al. Haplotype‑resolved diverse human 
genomes and integrated analysis of structural variation. Science. 2021;372(6537):eabf7117.

 13. Gagie T, Manzini G, Sirén J. Wheeler graphs: a framework for BWT‑based data structures. Theor Comput Sci. 
2017;698:67–78.

 14. Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, et al. Variation graph toolkit improves read mapping 
by representing genetic variation in the reference. Nat Biotechnol. 2018;36(9):875–9.

 15. Garrison E, Guarracino A. Unbiased pangenome graphs. Bioinform. 2023;39(1):btac743.
 16. Groza C, Kwan T, Soranzo N, Pastinen T, Bourque G. Personalized and graph genomes reveal missing signal in epig‑

enomic data. Genome Biol. 2020;21(1):1–22.
 17. Günther T, Nettelblad C. The presence and impact of reference bias on population genomic studies of prehistoric 

human populations. PLoS Genet. 2019;15(7):e1008302.
 18. Hagiwara K, Edmonson MN, Wheeler DA, Zhang J. indelPost: harmonizing ambiguities in simple and complex indel 

alignments. Bioinformatics. 2022;38(2):549–51.
 19. Holtgrewe M. Mason: a read simulator for second generation sequencing data. Technical Reports of Institut für 

Mathematik und Informatik, Freie Universität Berlin; 2010. TR‑B‑10‑06.
 20. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph‑based genome alignment and genotyping with HISAT2 and 

HISAT‑genotype. Nat Biotechnol. 2019;37(8):907–15.
 21. Kuhnle A, Mun T, Boucher C, Gagie T, Langmead B, Manzini G. Efficient construction of a complete index for pan‑

genomics read alignment. J Comput Biol. 2020;27(4):500–13.
 22. Langmead B, Salzberg SL. Fast gapped‑read alignment with Bowtie 2. Nat Methods. 2012;9(4):357.
 23. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.
 24. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA‑MEM. 2013. arXiv preprint arXiv: 

1303. 3997.
 25. Liao WW, Asri M, Ebler J, Doerr D, Haukness M, Hickey G, et al. A draft human pangenome reference. Nature. 

2023;617(7960):312–24.
 26. Martiniano R, Garrison E, Jones ER, Manica A, Durbin R. Removing reference bias and improving indel calling in 

ancient DNA data analysis by mapping to a sequence variation graph. Genome Biol. 2020;21(1):250.
 27. Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The complete sequence of a human genome. 

Science. 2022;376(6588):44–53.
 28. Olson ND, Zook JM. GIAB HG002 GRCh38 Assembly‑Based Small and Structural Variants Draft Benchmark Sets. Data‑

set. 2023. https:// ftp‑ trace. ncbi. nlm. nih. gov/ Refer enceS amples/ giab/ data/ Ashke nazim Trio/ analy sis/ NIST_ HG002_ 
Draft Bench mark_ defra bbV0. 012‑ 20231 107/. Accessed 15 Apr 2024.

 29. Poplin R, Ruano‑Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, et al. Scaling accurate genetic 
variant discovery to tens of thousands of samples. BioRxiv. 2018:201178.

 30. Pritt J, Chen NC, Langmead B. FORGe: prioritizing variants for graph genomes. Genome Biol. 2018;19(1):220.
 31. Rautiainen M, Nurk S, Walenz BP, Logsdon GA, Porubsky D, Rhie A, et al. Telomere‑to‑telomere assembly of diploid 

chromosomes with Verkko. Nat Biotechnol. 2023;41(10):1474–82.
 32. Rhie A, Nurk S, Cechova M, Hoyt SJ, Taylor DJ, Altemose N, et al. The complete sequence of a human Y chromosome. 

Nature. 2023;621(7978):344–54.
 33. Rozowsky J, Abyzov A, Wang J, Alves P, Raha D, Harmanci A, et al. AlleleSeq: analysis of allele‑specific expression and 

binding in a network framework. Mol Syst Biol. 2011;7(1):522.
 34. Salavati M, Bush SJ, Palma‑Vera S, Mcculloch MEB, Hume DA, Clark EL. Elimination of reference mapping bias reveals 

robust immune related allele‑specific expression in cross‑bred sheep. Front Genet. 2019;10:863.
 35. Sirén J, Monlong J, Chang X, Novak AM, Eizenga JM, Markello C, et al. Pangenomics enables genotyping of known 

structural variants in 5202 diverse genomes. Science. 2021;374(6574):abg8871.

https://console.cloud.google.com/storage/browser/brain-genomics-public/research/sequencing/fastq/novaseq/wgs_pcr_free/30x
https://console.cloud.google.com/storage/browser/brain-genomics-public/research/sequencing/fastq/novaseq/wgs_pcr_free/30x
http://arxiv.org/abs/1303.3997
http://arxiv.org/abs/1303.3997
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/NIST_HG002_DraftBenchmark_defrabbV0.012-20231107/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/NIST_HG002_DraftBenchmark_defrabbV0.012-20231107/


Page 28 of 28Lin et al. Genome Biology          (2024) 25:101 

 36. Sun C, Medvedev P. VarMatch: robust matching of small variant datasets using flexible scoring schemes. Bioinfor‑
matics. 2017;33(9):1301–8.

 37. Valenzuela D, Norri T, ki N, nen E, kinen V. Towards pan‑genome read alignment to improve variation calling. BMC 
Genomics. 2018;19(Suppl 2):87.

 38. Van De Geijn B, McVicker G, Gilad Y, Pritchard JK. WASP: allele‑specific software for robust molecular quantitative trait 
locus discovery. Nat Methods. 2015;12(11):1061–3.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Measuring, visualizing, and diagnosing reference bias with biastools
	Abstract 
	Background
	Results
	Measuring sources of bias in simulation
	Types of allelic balance
	Types of reference bias
	Observations on local bias
	Visualizing bias for indels

	Measuring bias across aligners
	Measuring bias using real reads on well-characterized genome
	Visualizing bias
	Classifying biased sites

	Measuring bias using real reads from an uncharacterized genome
	Bias near structural differences
	Bias due to incomplete reference representations

	Computational performance

	Discussion
	Conclusions
	Methods
	Biastools workflow
	simulate mode
	predict mode
	scan mode

	Assignment method
	Simulated balance (SB)
	Mapping balance (MB)
	Naive assignment method
	Context-aware assignment method
	Repetitive context

	Biased-site classification
	Construction of pangenome graphs
	Evaluating biased-site predictions
	Sliding window approach of scan mode
	Comparing two alignment workflows with scan mode


	Acknowledgements
	References


