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Abstract 

Background: Oncometabolites, often generated as a result of a gene mutation, show 
pro-oncogenic function when abnormally accumulated in cancer cells. Identification 
of such mutation-associated metabolites will facilitate developing treatment strate-
gies for cancers, but is challenging due to the large number of metabolites in a cell 
and the presence of multiple genes associated with cancer development.

Results: Here we report the development of a computational workflow that predicts 
metabolite-gene-pathway sets. Metabolite-gene-pathway sets present metabolites 
and metabolic pathways significantly associated with specific somatic mutations 
in cancers. The computational workflow uses both cancer patient-specific genome-
scale metabolic models (GEMs) and mutation data to generate metabolite-gene-path-
way sets. A GEM is a computational model that predicts reaction fluxes at a genome 
scale and can be constructed in a cell-specific manner by using omics data. The 
computational workflow is first validated by comparing the resulting metabolite-gene 
pairs with multi-omics data (i.e., mutation data, RNA-seq data, and metabolome data) 
from acute myeloid leukemia and renal cell carcinoma samples collected in this study. 
The computational workflow is further validated by evaluating the metabolite-gene-
pathway sets predicted for 18 cancer types, by using RNA-seq data publicly avail-
able, in comparison with the reported studies. Therapeutic potential of the resulting 
metabolite-gene-pathway sets is also discussed.

Conclusions: Validation of the metabolite-gene-pathway set-predicting computa-
tional workflow indicates that a decent number of metabolites and metabolic path-
ways appear to be significantly associated with specific somatic mutations. The com-
putational workflow and the resulting metabolite-gene-pathway sets will help identify 
novel oncometabolites and also suggest cancer treatment strategies.
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Background
Metabolic reprogramming is one of the important hallmarks of cancer and plays a cru-
cial role in cancer progression and development [1]. A wide range of metabolic shifts 
occur in cancer cells as a result of environmental changes and mutations introduced 
to metabolic genes, oncogenes, and tumor suppressor genes. Metabolic phenotypes 
observed from cancer cells include, but are not limited to, aerobic glycolysis where gly-
colysis is upregulated and lactate is produced in the presence of oxygen (normoxia) [2], 
increased glutamine metabolism (glutaminolysis) [3], increased mitochondrial biogen-
esis and activities [4], dysfunctions in mitochondrial metabolism [4], and increased pro-
ton production [5].

Identification of oncometabolites has introduced a new paradigm for cancer metab-
olism studies. Oncometabolites are defined to be metabolites that show pro-onco-
genic function when abnormally accumulated in cancer cells [6]. Currently, three 
different metabolites are conceived as oncometabolites, namely fumarate, succinate, and 
2-hydroxyglutarate (both L and D forms) across different cancer types. These oncome-
tabolites can be generated by both endogenous (e.g., genetic mutations) and exogenous 
factors (e.g., hypoxic condition). Fumarate and succinate are generated by loss-of-func-
tion mutations in fumarate hydratase and succinate dehydrogenase, respectively, while 
D-2-hydroxyglutarate is generated by gain-of-function mutations in isocitrate dehydro-
genase. Meanwhile, promiscuous activity of lactate dehydrogenase and/or malate dehy-
drogenase, along with the reduced expression of L-2-hydroxyglutarate dehydrogenase, 
contributes to the generation of L-2-hydroxyglutarate [6]. These oncometabolites in 
common inhibit α-ketoglutarate-dependent dioxygenases, which causes epigenetic dys-
regulation via hypermethylation of DNA and histone. Various mechanisms by which 
oncometabolites contribute to tumorigenesis still continue to be characterized.

Various metabolic phenotypes of cancers as a result of gene mutations suggest the 
possibility of the presence of additional oncometabolites, or metabolites significantly 
associated with specific somatic mutations. Identification of additional oncometabo-
lites may lead to the development of various treatment strategies for cancers, includ-
ing diagnostic and/or prognostic biomarkers and anticancer drugs [7]. For anticancer 
drugs, ivosidenib and enasidenib were developed on the basis of oncometabolites, 
which inhibit mutated IDH1 [8] and mutated IDH2 [9], respectively, in acute myeloid 
leukemia (AML), thereby suppressing the biosynthesis of D-2-hydroxyglutarate. Iden-
tifying additional oncometabolites is now expected to be better addressed with the 
help of the increasingly available volume of cancer-derived omics data, for example 
RNA sequencing (RNA-seq) data and the use of computational modeling approaches 
that can fully utilize omics data for counterintuitive insights. Genome-scale metabolic 
models (GEMs) can be considered for this challenge, which can simulate a cell-spe-
cific metabolism under varied environmental and genetic conditions [10, 11]. A GEM 
is a stoichiometric computational model that contains comprehensive information on 
metabolic gene-protein-reaction (GPR) associations in a specific cell, and can be sim-
ulated to predict reaction fluxes at a genome scale by using numerical optimization 
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techniques and omics data (e.g., RNA-seq). GEMs have so far been reconstructed for 
more than 6000 organisms for both medical and industrial biotech applications [10]. 
Cancer GEMs have been developed to predict drug targets [12, 13], metabolic angio-
genic targets [14], and oncometabolites [15] and to analyze the metabolic network of 
multiple cancers [16, 17].

In this study, we develop a computational workflow to predict mutation-associated 
metabolites for 25 cancer types by reconstructing 1056 patient-specific GEMs using 
the corresponding RNA-seq data released by the Pan-Cancer Analysis of Whole 
Genomes (PCAWG) Consortium of the International Cancer Genome Consortium 
(ICGC) and The Cancer Genome Atlas (TCGA) (https:// dcc. icgc. org/ pcawg) [18] 
(Fig. 1). The computational workflow developed in this study involves the simulation 
of cancer patient-specific GEMs that predicts so-called metabolite-gene-pathway sets 
(MGPs) across the multiple cancer types. MGPs indicate metabolites and metabolic 
pathways that appear to be significantly associated with specific somatic gene muta-
tions. The computational workflow and the resulting MGPs will lay the groundwork 
for further extended studies on oncometabolites and cancer treatment strategies.

Fig. 1 Computational workflow for the prediction of metabolite-gene-pathway sets (MGPs). Computational 
workflow for predicting MGPs using cancer patient-specific genome-scale metabolic models (GEMs). This 
workflow is repeated for each metabolite against a list of mutated genes in cancers. The computational 
workflow requires RNA-seq data and mutation data for each cancer sample. Flux-sum value for a target 
metabolite is first predicted using a cancer patient-specific GEM that is generated using RNA-seq data 
(step 1). Next, a metabolite is paired with a gene if flux-sum distributions of the metabolite appear to be 
significantly different upon mutation of the gene (step 2). Metabolite-gene (MG) pairs predicted from 
the previous step are connected with metabolic pathways that biosynthesize a target metabolite if these 
pathways show significantly different “target flux-sum” values upon mutation of a target gene (step 3). MG 
pairs from the previous step are removed if such target pathways are not found. Finally, MGPs are selected by 
identifying target genes in each target pathway that show target flux-sum values significantly different from 
those of other target genes in the same pathway (step 4). For this, for each target gene in a target pathway, 
the mean of its target flux-sum values is calculated, and converted to the modified Z-score. The selected 
MGPs should have their modified Z-score satisfying the threshold of “3.5”

https://dcc.icgc.org/pcawg
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Results
Reconstruction of 1056 cancer patient‑specific GEMs across 25 cancer types

To develop the computational workflow for the prediction of MGPs across multiple can-
cer types, cancer patient-specific GEMs were first reconstructed using the PCAWG and 
TCGA RNA-seq data. A previously developed generic human GEM “Recon 2M.2” [12] 
was integrated with the PCAWG and TCGA RNA-seq data, which attempted to recon-
struct GEMs for 1056 cancer patients that represent 25 cancer types (Fig. 2a). Here, in 
this study, samples from CNS-GBM and CNS-Oligo were combined to obtain a greater 
number of IDH1 mutants from both gliomas that have been relatively well studied for 
the IDH1 mutation-associated oncometabolites [19, 20]. The reconstructed GEMs for 
7 Eso-AdenoCA and 6 TCGA-LAML samples were discarded in this study because 
they did not complete up to 24 out of 182 metabolic tasks (“Methods” and Additional 
file 1: Fig. S1), whereas patient-specific GEMs from other cancer types successfully com-
pleted all the metabolic tasks. All the reconstructed GEMs were further evaluated using 
MEMOTE (metabolic model tests) [21], which, as a result, showed a high level of con-
sistency: average scores of 95% for “Mass Balance” (i.e., equal masses of reactants and 
products), 93% for “Charge Balance” (i.e., equal net charges of reactants and products), 
and 98% for “Metabolite Connectivity” (i.e., each metabolite being part of at least one 
reaction). The resulting 1043 patient-specific GEMs across the 24 cancer types con-
tained, on average, information on 72 metabolic pathways, 3829 reactions, and 1214 
unique metabolites (Fig. 2b, Additional file 2: Table S1 and Additional file 3: Table S2). 
Liver-HCC GEMs appeared to have the greatest average number of reactions (i.e., 3964 

Fig. 2 Overview of reconstructing cancer patient-specific genome-scale metabolic models (GEMs). a 
Reconstruction of 1056 patient-specific GEMs for 25 cancer types by using the PCAWG and TCGA RNA-seq 
data. The number of samples for each cancer type is presented in a parenthesis next to the cancer type 
abbreviations. The presented cancer types are as follows: Biliary-AdenoCA, biliary adenocarcinoma; 
Bladder-TCC, bladder transitional cell carcinoma; Breast-AdenoCA, breast adenocarcinoma; Breast-LobularCA, 
breast lobular carcinoma; Cervix-AdenoCA, cervix adenocarcinoma; Cervix-SCC, cervix squamous cell 
carcinoma; CNS-GBM/Oligo, central nervous system glioblastoma or oligodenroglioma; ColoRect-AdenoCA, 
colorectal adenocarcinoma; Eso-AdenoCA, esophagus adenocarcinoma; Head-SCC, head-and-neck 
squamous cell carcinoma; Kidney-ChRCC, kidney chromophobe renal cell carcinoma; Kidney-RCC, kidney 
renal cell carcinoma; Liver-HCC, liver hepatocellular carcinoma; Lung-AdenoCA, lung adenocarcinoma; 
Lung-SCC, lung squamous cell carcinoma; Lymph-BNHL, lymphoid mature B-cell lymphoma; 
Ovary-AdenoCA, ovary adenocarcinoma; Prost-AdenoCA, prostate adenocarcinoma; Skin-Melanoma, skin 
melanoma; SoftTissue-Leiomyo, leiomyosarcoma of soft tissue; SoftTissue-Liposarc, liposarcoma of soft tissue; 
Stomach-AdenoCA, stomach adenocarcinoma; TCGA-LAML, acute myeloid leukemia; Thy-AdenoCA, thyroid 
low-grade adenocarcinoma; and Uterus-AdenoCA, uterus adenocarcinoma. b Number of reactions (pink) and 
metabolites (purple) across the 1043 GEMs. The model statistics for 1056 GEMs, including the discarded GEMs 
not presented herein, are available in Additional file 1: Fig. S1. c t-SNE plot of the reaction contents of the 
1043 cancer patient-specific GEMs. Same colors are used as presented in a 
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reactions on average), while TCGA-LAML GEMs showed the smallest average number 
of reactions (i.e., 3448 reactions on average); this difference in the model size is likely 
attributed to unique metabolic activities associated with each cancer type (Fig. 2b). To 
further confirm that the cancer type-specific GEMs reflect different tissues of origin, 
reaction contents of the 1043 reconstructed GEMs were subjected to t-distributed sto-
chastic neighbor embedding (t-SNE) [22], which clearly showed that the GEMs from 
the same cancer type tend to be better clustered than those from different cancer types 
(Fig. 2c). Distinct clustering of cancer type-specific GEMs was further substantiated by 
using the Jaccard index (Additional file 1: Fig. S2). This result partly demonstrates the 
biological quality of the patient-specific GEMs reconstructed in this study. Further anal-
ysis of these GEMs is available in Additional file 1: Fig. S3.

Computational workflow for predicting metabolite‑gene‑pathway sets (MGPs)

Using the 1043 patient-specific GEMs and the mutation data from the PCAWG whole 
genome sequencing (WGS) data and TCGA whole exome sequencing (WES) data for 24 
cancer types, MGPs were predicted using a computational workflow that consists of four 
steps (Fig. 1). This workflow is applied to a metabolite and generates MGPs as an out-
put. Therefore, this workflow is repeated for entire metabolites of each patient-specific 
GEM across the 24 cancer types, except for currency metabolites (e.g., ATP and H+; 
Additional file 4: Table S3). This workflow begins with the calculation of so-called flux-
sum value [23] of each metabolite (step 1 in Fig. 1). Flux-sum of a metabolite is defined 
to be the total sum of all the fluxes necessary for the generation or consumption of that 
metabolite, essentially representing its turnover rate under a pseudo-steady state condi-
tion. Biologically, a metabolite with a higher turnover rate is in high demand by serv-
ing as key intermediate or essential end product for cellular function. Therefore, the 
flux-sum can be seen as a measure, which quantifies the intracellular importance of that 
metabolite. Flux-sum approach was used to examine the robustness of bacterial metabo-
lism [23], predict antibacterial targets [24, 25], and redesign bacterial metabolism for the 
enhanced chemical production [26]. Beyond bacteria, this approach has been used to 
reveal metabolic reprogramming of rice under salinity stress [27], predict Warburg-like 
effects in mouse hepatocyte deficient in a microRNA called miR-122a [28], and predict 
oncogenes in head-and-neck squamous cell carcinoma [29]. Also, a variant of the flux-
sum approach, using an artificial sink reaction to calculate a metabolite’s production 
rate, was used for cancer studies [13, 30]. To justify the use of the flux-sum approach 
to predict mutation-associated metabolites, we examined the capability of flux-sum val-
ues to distinguish metabolic differences between normal and cancer samples by using 
reported metabolome data [31]. The metabolome data represent 5 distinct cancer types, 
and the flux-sum values were mostly successful in distinguishing the two groups (Addi-
tional file 1: Fig. S4).

In the second step, a metabolite was paired with a gene if flux-sum distributions of the 
metabolite appeared to be significantly different upon mutation of the gene (step 2 in 
Fig. 1). For convenience, a metabolite and a mutated gene involved in MGP candidates 
are referred to as “target metabolite” and “target gene” hereafter, respectively. For this 
metabolite-gene (MG) pairing, PCAWG and TCGA mutation data were prepared, which 
covered a total of 930 samples, each having 0–586 mutated genes and representing 18 
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cancer types (“Methods”; Additional file 1: Fig. S5 and Additional file 5: Table S4). At this 
stage, as a result, a unique list of 31,521 MG pairs was generated across the 18 cancer 
types. In this unique list, a compartment for a metabolite was not considered; for exam-
ple, two pairs, IDH1 mutant with akg_c and akg_m (α-ketoglutarate in cytoplasm and 
mitochondria, respectively), were counted as one.

Next, MG pairs predicted from the previous step were connected with metabolic path-
ways that biosynthesize a target metabolite if these pathways show significantly differ-
ent “target flux-sum” values upon mutation of a target gene (step 3 in Fig. 1). Here, the 
target flux-sum value refers to the summation of all the fluxes from a metabolic pathway 
that contributes to the biosynthesis of a target metabolite. Also, a contributing metabolic 
pathway considered in MGP candidates is referred to as a “target pathway.” MG pairs 
from the previous step were removed if target pathways were not found. Information 
from this step was thought to help understand the mechanism behind the association 
between a target metabolite and a target gene. Indeed, among the MG pairs predicted 
from the second step, there were pairs that showed a statistical significance (P value < 
0.05; “Methods”) between a target metabolite and a target gene at a genome-scale level, 
but with no such significance at a pathway level. For example, 2-oxoglutarate was pre-
dicted to be significantly affected by COL6A3 mutation in CNS-GBM/Oligo at a genome 
scale (in the step 2), but no such significance was observed between 2-oxoglutarate and 
COL6A3 mutation at individual 2-oxoglutarate biosynthetic pathways, including ala-
nine and aspartate metabolism; citric acid cycle; glutamate metabolism; glycine, ser-
ine, alanine and threonine metabolism; urea cycle; transport reactions; and additional 
unassigned reactions. Therefore, “2-oxoglutarate-COL6A3” pair was not selected for 
an MGP from this workflow. Additionally, MG pairs associated with exchange/demand 
reactions, transport reactions (except for those associated with essential amino acids), 
or unassigned reactions were not considered because they provide limited information 
on explaining the biological link between a target metabolite and a target gene (Addi-
tional file 3: Table S2); in GEMs, transport reactions are usually annotated with genes 
at a lower confidence than typical metabolic genes. As a result, 17,656 MGP candidates 
were generated from this step.

Finally, MGPs were selected by identifying target genes in each target pathway that 
show corresponding target flux-sum values significantly different from target flux-sum 
values of other target genes in the same pathway (step 4 in Fig.  1). For this, for each 
target gene in a target pathway, the mean of its target flux-sum values was calculated, 
and converted to the modified Z-score (“Methods”). The resulting modified Z-scores 
would subsequently reveal target genes that show atypical target flux-sum values despite 
being in the same target pathway for MGP candidates. For example, 42 MGP candidates 
involving 42 target genes, all predicted to be associated with 5,10-methenyltetrahydro-
folate in Lymph-BNHL, were collected for folate metabolism. Despite their involvement 
in folate metabolism, only two target genes, BTK and EP300, encoding Bruton’s tyros-
ine kinase and histone acetyltransferase p300, respectively, appeared to have the mean 
flux-sum values significantly different from the other 40 target genes according to the 
modified Z-scores. Therefore, BTK and EP300 were selected to be final target genes for 
the target metabolite “5,10-methenyltetrahydrofolate” and folate metabolism in Lymph-
BNHL. If fewer than three MGP candidates are available for a target pathway, all the 
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MGP candidates are considered to be significant. From this step, 4335 MGPs were gen-
erated as final sets for the 18 cancer types (Additional file 6: Dataset S1).

Evaluation of the MGP‑predicting computational workflow using AML and renal cell 

carcinoma samples

The computational workflow predicting MGPs was first evaluated using multi-omics 
data from the 17 AML and 21 renal cell carcinoma (RCC) samples. Here, the multi-
omics data include mutation data (from either targeted gene sequences or WES data), 
transcriptome (RNA-seq), and metabolome data; they were experimentally obtained in 
this study for the AML samples (“Methods” and Additional file 7: Dataset S2 and Addi-
tional file 8: Dataset S3) and the RCC samples (“Methods” and Additional file 9: Data-
set S4 and Additional file 10: Dataset S5). This evaluation was in particular focused on 
whether the computational workflow would generate biologically meaningful MG pairs 
included in the final MGPs predicted from the 17 AML samples and the 21 RCC sam-
ples (Fig.  1). As with the PCAWG data, 17 AML patient-specific GEMs and 21 RCC 
patient-specific GEMs were first reconstructed using the corresponding RNA-seq data 
(Additional file 1: Fig. S6a,b). It should be noted that one AML patient-specific GEM was 
discarded in this study because it did not satisfy all the metabolic tasks (i.e., the incapac-
ity to use L-lysine in mitochondria), and among the 21 RCC samples initially collected, 
RNA-seq data was not properly generated for the sample “P28” due to the too low RNA 
sample purity, and therefore, 20 RCC patient-specific GEMs were generated as a result. 
Subsequently, the reconstructed 16 AML GEMs and 20 RCC GEMs were subjected to 
the computational workflow (Fig.  1). In this evaluation, seven mutated somatic genes 
were considered for the 16 AML samples (Fig.  3a), and another six mutated somatic 
genes were considered for the 20 RCC samples (Fig. 3e), based on bioinformatic analysis 
of DNA sequencing data (“Bioinformatics analysis of DNA sequences” in Methods) and 
consideration of additional criteria that were also applied to the PCAWG and TCGA 
data (“Preparation of mutation data from PCAWG WGS data and TCGA WES data” in 
“Methods”).

With 355 unique metabolites with flux-sum values from the 16 AML GEMs, 
60 MGPs involving 59 MG pairs were predicted from the computational workflow 
(Fig.  3a). Five target metabolites (i.e., citrate, L-lysine, L-phenylalanine, phosphoe-
nolpyruvate and L-threonine) that belong to six MG pairs out of the final 59 MG pairs 
were detected in the 17 AML metabolome data (Fig. 3b, c). Next, biological signifi-
cance of the target metabolites detected in the AML metabolome data was examined 
whether these target metabolites would show significantly different concentrations, 
depending on mutation of a target gene across the AML samples. The significance of 
a metabolite is presented in terms of the area under the receiver operating charac-
teristic (ROC) curve (AUC), a metric often used as a discriminating power for bio-
markers [32], by using MetaboAnalyst [33] (Methods). Among the final six MG pairs 
supported with the metabolome data, target metabolites paired with DNMT3A, IDH, 
IDH2, or NRAS showed AUC values greater than 0.7 [34, 35] (Fig. 3c). Here, it should 
be noted that the samples having the IDH1 or IDH2 mutation were also considered 
together, presented as “IDH,” in order to examine the overall effects of mutations in 
both IDH1 and IDH2. AUC values of the target metabolites in these four MG pairs 
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also appeared to be mostly higher than AUC values of 60 metabolites detected in the 
metabolome data (Fig. 3d). Evaluation of the empirical statistical significance suggests 
that the probability of four out of six MG pairs receiving AUC > 0.7 is extremely low 
(empirical P value = 0.044; Additional file 1: Fig. S6c). These results revealed that the 
computational workflow played a role in selecting biologically more meaningful MG 
pairs in the final MGPs.

Similar conclusion was also derived from evaluation of the computational work-
flow using the RCC samples. By applying the computational workflow to the 20 RCC 
GEMs, 70 MGPs including 69 MG pairs were initially predicted (Fig.  3e); 14 target 
metabolites involved in 15 out of the final 69 MG pairs were detected in the 21 RCC 
metabolome data, which allowed the same evaluation as the MG pairs from the AML 
samples (Fig.  3f, g). As a result, eight out of the 15 MG pairs showed AUC values 
greater than 0.7 (Fig. 3g). As with the AML samples, empirical statistical significance 
was observed for eight out of the 15 MG pairs, which showed AUC > 0.7 (empirical P 
value = 0.018; Additional file 1: Fig. S6d). Also, the target metabolites in these eight 
MG pairs mostly showed greater AUC values than 104 metabolites detected in the 
metabolome data (Fig. 3h).

It should be noted that no significant difference was observed in AUC values 
between metabolites from the metabolome data, which were available in the cancer 

Fig. 3 Analysis of metabolite-gene (MG) pairs from metabolite-gene-pathway sets (MGPs) predicted for the 
16 AML samples and 20 RCC samples. a Number of MGPs predicted for the seven mutated genes from the 16 
AML samples. It should be noted that samples having IDH1 or IDH2 mutation were also considered together, 
presented as “IDH,” in order to examine the overall effects of mutations in IDH1 and IDH2. b Classification of 
the detected peaks from relative quantification of metabolites from the 17 AML samples. c AUC values of 
target metabolites from the final six MGPs, which were predicted from the computational workflow and 
supported with the AML metabolome data (Fig. 1). AUC values of target metabolites were predicted using 
MetaboAnalyst [33]. The black dashed line indicates the AUC value of 0.7. d AUC values for target metabolites 
from the final six MGPs (red dots) and 60 metabolites from the AML metabolome data; these 60 metabolites 
include those not predicted as a target metabolite for MGPs and are paired with each of the presented target 
genes (box plots). These 60 metabolites correspond to the peaks in the metabolome data that are annotated, 
and also present in the GEMs in b. e–h Same analyses (a–d) conducted for the 21 RCC samples. In e, MGPs 
were predicted for the six mutated genes from the 20 RCC samples. Samples having NOTCH1 or NOTCH2 
mutation were considered together as “NOTCH,” and samples having ERBB2, ERBB3, or ERBB4 mutation were 
considered together as “ERBB” in order to collect the sufficient number of samples to generate AUC values. 
In h, AUC values for target metabolites from the final 15 MGPs (red dots) and 104 metabolites from the RCC 
metabolome data are presented. These 104 metabolites include those not predicted as a target metabolite 
for MGPs and are paired with each of the presented target genes (box plots)
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patient-specific GEMs, and those not available in the GEMs (Additional file  1: Fig. 
S6e, f ); this suggests that metabolites in the GEMs are not necessarily more signifi-
cantly associated with mutations than metabolites absent in the GEMs. Finally, the 
computational workflow also generated biologically valid MG pairs with empirical 
statistical significance (empirical P value = 0.042) from transcriptome and metabo-
lome data generated for 67 breast cancer samples [36] (Additional file 1: Fig. S7). The 
predicted MG pairs include mevalonate pathway-associated metabolites (i.e., (R)-
mevalonate, (R)-5-phosphomevalonate, and isopentenyl diphosphate), which were 
supported by the literature [37, 38].

MGPs predicted for the 18 cancer types

A total of 4335 MGPs from the computational workflow across the 18 cancer types were 
next evaluated. Overall, Lymph-BNHL generated the greatest number of MGPs (534 
MGPs), followed by Liver-HCC (368 MGPs), Breast-AdenoCA (364 MGPs), and Lung-
SCC (356 MGPs) (Fig. 4a). These cancer types also had the greatest number of mutated 
genes among the 18 cancer types except for Breast-AdenoCA: 244, 231, and 221 mutated 
genes for Lymph-BNHL, Liver-HCC, and Lung-SCC, respectively (Additional file  5: 
Table  S4). There were also cancer types that had a relatively high number of mutated 
genes despite a small number of samples (e.g., Lung-SCC and LungAdenoCA in Fig. 4a), 
and the opposite (i.e., greater number of samples than mutated genes; e.g., Ovary-Ade-
noCA, Kidney-RCC, CNS-GBM/Oligo and TCGA-LAML in Fig. 4a) was also observed. 
Regarding the number of MGPs predicted, Lymph-BNHL showed a substantially greater 
number than Liver-HCC although these two cancer types had similar numbers of sam-
ples and mutated genes (Additional file 5: Table S4). Moreover, Breast-AdenoCA showed 
a similar number of MGPs as Liver-HCC although Liver-HCC had almost twice the 
number of mutated genes than Breast-AdenoCA. These statistics suggest that the result-
ing MGPs were not necessarily biased by the number of samples and mutated genes. 
Interestingly, oncogenes and tumor suppressor genes appeared to be slightly more asso-
ciated with the MGPs than other target genes across the 18 cancer types (Additional 
file 1: Fig. S8).

Next, the predicted 4335 MGPs were categorized into eight different submetabolisms 
according to the target pathways to gain better insights into these MGPs. As a result, in 
each cancer type, MGPs were mostly shown to belong to amino acid metabolism (38.5% 
of MGPs on average for the 18 cancer types), followed by carbohydrate metabolism 
(19.1%) and lipid metabolism (18.9%) (Fig.  4b). The results are overall consistent with 
the knowledge of cancer metabolism: for example, increased intracellular concentra-
tion of L-leucine associated with KRAS mutation in amino acid metabolism [39], and 
generation of D-2-hydroxyglutarate (carbohydrate metabolism) [19] and altered choles-
terol homeostasis (lipid metabolism) [40] as a result of the IDH1 mutation. Interestingly, 
the percentage of the predicted MGPs associated with lipid metabolism was remarka-
bly different between two sarcomas, SoftTissue-Liposarc and SoftTissue-Leiomyo, and 
this different metabolic composition appeared to be consistent with their biology [41]; 
SoftTissue-Leiomyo (leiomyosarcoma) occurs in smooth muscle [42], whereas SoftTis-
sue-Liposarc (liposarcoma) appears in adipocytes [43]. Cell growth of the liposarcoma 
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Fig. 4 Overview of the predicted MGPs across 18 cancer types. a Number of samples and mutated genes 
considered in this study, and the number of predicted MGPs for each cancer type. b Percentages of 
submetabolisms (on the basis of KEGG pathways) where MGPs were predicted for each cancer type. Colors 
in bar graphs indicate submetabolisms that are presented in d. c, d Ten target genes associated with the 
greatest number of MGPs where c the number of cancer types and d the number of submetabolisms are 
presented for each target gene. e Distribution of target metabolites associated with the MGPs predicted 
for the 18 cancer types across the genome-scale human metabolic pathways. Target metabolites and 
submetabolisms related to target pathways in the MGPs are presented in the metabolic map without target 
genes. Frequency, shown with different colors between blue and red, refers to the number of cancer types 
where a target metabolite appeared
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is highly affected by fatty acid biosynthesis, which has been suggested as a therapeutic 
target [44].

A closer look into the target genes involved in the predicted MGPs across the 18 cancer 
types further showed that seven out of the top ten target genes were cancer driver genes: 
TP53, IDH1, BRAF, PBRM1, PIK3CA, CREBBP, and FAT1 [45] (Fig.  4c). The MGPs 
associated with these target genes appeared to be involved in multiple cancer types 
with the exception of BRAF-associated MGPs. BRAF-associated MGPs were predicted 
to occur solely in Thy-AdenoCA, and also, IDH1-associated MGPs mostly appeared in 
CNS-GBM/Oligo. As expected, these driver genes all appeared to be associated with 
multiple submetabolisms through MGPs with the three most representative submetab-
olisms being amino acid metabolism, carbohydrate metabolism, and lipid metabolism 
(Fig.  4d). Representative target metabolites from these three submetabolisms (Fig.  4e) 
were 4-aminobutanal and 2-oxoglutarate (predicted in 15 out of 18 cancer types), and 
4-aminobutanoate, L-lysine, putrescine, (3R,5S)-1-pyrroline-3-hydroxy-5-carboxylate, 
and trans-4-hydroxy-L-proline (14 out of 18 cancer types) from amino acid metabolism; 
D-fructose 6-phosphate and 6-phospho-D-gluconate (13 out of 18 cancer types), and 
acetyl-CoA, glyceraldehyde 3-phosphate, and 2-oxoglutarate (12 out of 18 cancer types) 
from carbohydrate metabolism; and decanoyl-CoA, dodecanoyl-CoA, and octanoyl-
CoA (12 out of 18 cancer types) from lipid metabolism. Taken together, MGPs predicted 
from the 18 cancer types overall appeared to be in good agreement with the existing 
knowledge of cancer metabolism.

It has been known that the same gene mutation can show different metabolic effects 
in different cancer types [46]. To examine this idea, the MGPs predicted to be associated 
with PBRM1, PIK3CA, CREBBP, or FAT1 were further examined (Additional file 1: Fig. 
S9). Indeed, the different metabolic effects of the same gene mutation were observed, 
depending on a cancer type, for these four target genes. For example, PBRM1-associated 
MGPs predicted for Kidney-RCC and Liver-HCC showed that histidine metabolism and 
fatty acid biosynthesis in Kidney-RCC appeared to be affected by PBRM1 mutation in 
contrast to pentose phosphate pathway for Liver-HCC (Additional file 1: Fig. S9a). Some 
of these predicted MGPs were supported by previously reported experimental evidences, 
including deregulation of histidine metabolism in Kidney-RCC with PBRM1 mutation 
[47], and decreased availability of cholesterol upon PIK3CA mutation in human breast 
epithelial line (MCF10A) [48]. Thus, it is expected that the MGPs predicted herein can 
serve as a reference for further examining the different metabolic effects of gene muta-
tions that have not been experimentally validated.

The novel MGPs predicted across the multiple cancer types may also have a thera-
peutic potential as supported by following examples. First, a MGP “L-leucine-BRCA1-
transport, extracellular” was predicted for Ovarian-AdenoCA. L-Leucine activates 
mTOR pathway [49], which has been suggested as a therapeutic target for BRCA1-defi-
cient cancer [50]. Thus, L-leucine restriction in the diet may help treat ovarian cancer 
with BRCA1 mutation by less activating mTOR pathway. Next, two MGPs, “phospho-
enolpyruvate-PIK3CA-glycolysis/gluconeogenesis” and “fumarate-PIK3CA-citric acid 
cycle,” were predicted for Breast-AdenoCA, and may provide hypotheses for overcoming 
trastuzumab resistance in breast cancer with PIK3CA mutation [51]. One study showed 
that trastuzumab resistance might be treated by targeting altered glucose metabolism 
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[52], and, in accordance with the two MGPs, both phosphoenolpyruvate and fumarate 
were reported to be more available in trastuzumab-resistant gastric cancer [53]. Thus, 
controlling the availability of phosphoenolpyruvate and/or fumarate may contribute to 
treat trastuzumab-resistant breast cancer with PIK3CA mutation. Another three MGPs 
paired with VHL, a cancer driver gene frequently mutated in RCC [54], support the inhi-
bition of indoleamine 2,3-dioxygenase 1 (IDO1) as a drug target, which was previously 
attempted [55]. IDO1 converts L-tryptophan to N-formyl-L-kynurenine in tryptophan 
metabolism, and the three predicted MGPs are: “N-formyl-L-kynurenine-VHL-trypto-
phan metabolism” and “anthranilate-VHL-tryptophan metabolism” for the RCC sam-
ples collected in this study, and “N-formylanthranilate-VHL-tryptophan metabolism” 
for Kidney-RCC. IDO1 inhibition can stabilize tryptophan metabolism that is often 
upregulated in RCC, and causes immunosuppression [54]. Finally, two MGPs, “reduced 
glutathione-KEAP1-glutamate metabolism” from Lung-AdenoCA and “L-leucine-
KRAS-transport, extracellular” from ColoRect-AdenoCA, are well aligned with previous 
drug target suggestions: inhibition of glutaminase in lung adenocarcinoma with KEAP1 
mutation [56], and inhibition of LAT1 (or SLC7A5) encoding “solute carrier family 7 
member 5” in colorectal cancer with KRAS mutation [57], respectively. These evidences 
suggest that the predicted MGPs are not only consistent with the knowledge of cancer 
metabolism, but also provide reasonable treatment strategies, especially drug targets.

MGPs predicted for CNS‑GBM/Oligo

Finally, MGPs predicted for CNS-GBM/Oligo were further analyzed in comparison with 
the reported studies on these cancers. This comparative analysis would reveal specific 
MGPs that agree with previous findings as well as novel MGPs that can be validated in 
future. First, generation of D-2-hydroxyglutarate as a result of the IDH1 mutation has 
been well studied in gliomas [19]. Indeed, this finding was well captured by the MGPs 
predicted for the CNS-GBM/Oligo (Fig. 5a), which included “akg-IDH1-citric acid cycle” 
and “akg-IDH1-glutamate metabolism” from the computational workflow. It should 
be noted that “akg” a direct precursor of D-2-hydroxyglutarate, was paired with IDH1 
because D-2-hydroxyglutarate is not reflected in the generic human GEM. In glioblas-
toma cells having the IDH1 mutant, pyruvate [58], glutamate [58], lactate [59], and cho-
line [60] were also found to show different intracellular concentrations, or biosynthetic 
reactions for these metabolites were shown to have different activities, compared to the 
counterpart cells having the wild-type IDH1 (Fig. 5a). These previous findings except for 
citrate were all consistent with the MGPs predicted for CNS-GBM/Oligo.

Next, to understand the volume of previous studies on target genes associated with 
the MGPs predicted for CNS-GBM/Oligo, papers on 13 target genes from the predicted 
MGPs were retrieved from PubMed (as of May 2021; Fig. 5b). This paper retrieval was 
implemented twice, once with an additional keyword of “glioma” and the second round 
with “cancer.” The paper retrieval showed that the previous studies on gliomas appeared 
to be largely focused on four target genes (CIC, EGFR, IDH1, and TP53), all cancer driver 
genes [45], among the 13 target genes (Fig. 5b). This overall pattern was also observed in 
papers on various cancers in general. Thus, further in-depth analysis of the MGPs was 
conducted with focus on these four target genes.
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Fig. 5 MGPs predicted for CNS-GBM/Oligo. a IDH1-associated target metabolites (red stars) in the MGPs 
predicted for CNS-GBM/Oligo, and those with experimental evidence from previous studies (yellow stars). 
This map shows the overall consistency between the IDH1-associated target metabolites predicted and 
the reported studies. Red lines indicate reactions in a target pathway involved in the predicted MGPs. Black 
and grey lines indicate reactions available and those unavailable in the generic human GEM Recon 2M.2, 
respectively. b Number of the retrieved papers on 13 target genes in the MGPs predicted for CNS-GBM/
Oligo and various cancers in general. Pink and grey circles indicate target genes known to be cancer driver 
genes and passenger genes, respectively. The size of each circle indicates the number of the MGPs predicted 
for CNS-GBM/Oligo. c Distribution of previous relevant studies for each MGP predicted for CNS-GBM/Oligo. 
Different colors of the cell represent different levels of consistency between the predicted MGPs and the 
reported studies, as defined in the table in the upper right-hand corner. White cells indicate that no MGPs 
were predicted for that particular combination of a gene, a metabolite, and a pathway. If a metabolite 
belongs to two or more pathways, an asterisk (*) is added at the end of its name below the heatmap; if a 
metabolite belongs to two metabolic pathways, that metabolite with the second appearance is labeled with 
a single asterisk, and two asterisks for that metabolite with the third appearance
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For the predicted 115 MGPs that are associated with mutation of at least one of these 
four cancer driver genes, 79 MGPs (69%) were supported by previous studies to a varying 
degree with respect to a cancer type and the three MGP components, namely mutated 
gene, metabolite, and pathway (Fig.  5c). Among the four cancer driver genes, MGPs 
predicted for IDH1 mutant showed the highest literature coverage (80.4%; 45 out of the 
56 predicted MGPs supported by previous studies), followed by TP53 mutant (78.6%; 
11 out of the 14 MGPs supported), CIC mutant (48.1%; 13 out of the 27 MGPs sup-
ported), and EGFR mutant (55.6%; 10 out of the 18 MGPs supported). The highest cov-
erage of the MGPs involving IDH1 was expected because of this enzyme’s involvement 
in the generation of D-2-hydroxyglutarate that has been relatively well-studied. The 
IDH1 MGPs were predicted to largely affect amino acid-related pathways, in particular 
glutamate metabolism, which is consistent with the previous studies on this enzyme in 
cancer cells (Fig. 5c). High coverage of the TP53 MGPs also recapitulates the metabolic 
regulation exerted by this gene; the affected target pathways include fructose and man-
nose metabolism as well as lysine metabolism (Fig. 5c). In contrast to IDH1 and TP53, 
CIC, and EGFR, encoding capicua transcriptional repressor and epidermal growth factor 
receptor, respectively, showed relatively lower coverage for their MGPs predicted (grey 
cells in Fig. 5c), which suggests future research opportunities. Despite the small number 
of supporting papers, several MGPs predicted for CIC and EGFR seem to be reasonable 
in consideration of the biological role of these target genes. For example, three MGPs 
were predicted to affect fatty acid oxidation upon mutation of the EGFR gene, which can 
be easily inferred from a previous finding that EGFR is known to regulate lipid biosyn-
thesis in glioblastoma [61].
IDH genes are also frequently mutated in AML, and hence, their mutation affects 

AML metabolism [62]. To this end, IDH-associated MGPs predicted for CNS-GBM/
Oligo and TCGA-LAML were compared to examine the metabolic effects of IDH muta-
tion in these two cancer types (Additional file 1: Fig. S10). As expected, α-ketoglutarate, 
a precursor of D-2-hydroxyglutarate, was predicted as a target metabolite in the MGPs 
from both CNS-GBM/Oligo and TCGA-AML. However, overall, the predicted MGP 
profiles were very different in these two cancer types. Metabolites involved in pentose 
phosphate pathway were observed only in the MGPs from TCGA-AML, and all the 
other target metabolites were specifically observed in the MGPs from CNS-GBM/Oligo, 
including those in tryptophan metabolism. A total of seven MGPs associated with IDH1 
and tryptophan metabolism were predicted for CNS-GBM/Oligo; these predictions are 
consistent with the reported increased level of kynurenine in tryptophan metabolism 
[63].

Prediction of MGPs by using another generic human GEM Human1

Finally, the MGP-predicting computational workflow was evaluated by using another 
recently released generic human GEM, called Human1 [17], to understand whether 
the use of a different human GEM would affect the MGPs to be predicted. This evalu-
ation was conducted for the same multi-omics data from the AML and RCC samples 
that were examined using Recon 2M.2 (Fig. 3). Accordingly, 17 AML patient-specific 
GEMs and 20 RCC patient-specific GEMs were first reconstructed by using Human1 
as a template model. Next, MGPs for the AML and RCC samples were predicted 
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using the computational workflow; for the AML samples, 202 MGPs including 198 
MG pairs were predicted (Fig.  6a), and for the RCC samples, 156 MGPs including 
143 MG pairs were predicted (Fig. 6e). Seven out of the 198 MG pairs for the AML 
samples (Fig. 6b) and 14 out of the 143 MG pairs for the RCC samples (Fig. 6f ) were 
supported with the corresponding metabolome data; five target metabolites from the 
AML samples (Fig. 6c) and eight target metabolites from the RCC samples (Fig. 6g) 
showed AUC values greater than 0.7. Empirical statistical significance was again 
observed for the MG pairs although a different template model was used (empirical 
P value = 0.016 for AML, and empirical P value = 0.010 for RCC; Additional file 1: 
Fig. S11). Overall, AUC values of these target metabolites appeared to be substantially 
greater than those of other metabolites from the AML and RCC metabolome data (61 
and 111 metabolites, respectively; Fig. 6d, h). As a conclusion, implementation of the 
computational workflow using Human1 also generated biologically meaningful MG 
pairs in the final MGPs. However, as expected, use of the two different generic GEMs 
generated different profiles of the MGPs; for example, for the AML samples, the 
use of Recon 2M.2 predicted more MGPs with IDH than Human1 (Figs. 3a and 6a). 
Greater similarities were observed between Recon 2M.2 and Human1 for the RCC 
samples as the target metabolites with AUC values greater than 0.7 were commonly 
associated with IGF1R, NOTCH, PBRM1, SETD2, or VHL (Figs. 3h and 6h).

Fig. 6 Analysis of MG pairs from MGPs predicted using Human1 for the 16 AML samples and the 20 RCC 
samples. The same analysis was performed by using Human1 as a template model for the data presented 
in Fig. 3. a Number of MGPs predicted for the seven mutated genes from the 16 AML samples. As in Fig. 3a, 
the samples having IDH1 or IDH2 mutation were also considered together, presented as “IDH.” b Classification 
of the detected peaks from relative quantification of metabolites from the 17 AML samples. c AUC values 
of target metabolites from the final seven MGPs. The black dashed line indicates the AUC value of 0.7. d 
AUC values for target metabolites from the final seven MGPs (red dots) and 61 metabolites from the AML 
metabolome data; these 61 metabolites include those not predicted as a target metabolite for MGPs and are 
paired with each of the presented target genes (box plots). These 61 metabolites correspond to the peaks 
in the metabolome data that are annotated, and also present in the GEMs in b. e–h Same types of data 
presented in a–d for the 21 RCC samples. In e, MGPs were predicted for the six mutated genes from the 20 
RCC samples. As in Fig. 3e, the samples having NOTCH1 or NOTCH2 mutation were considered together as 
“NOTCH,” and the samples having ERBB2, ERBB3, or ERBB4 mutation were considered together as “ERBB.” In 
h, AUC values for target metabolites from the final 14 MGPs (red dots) and 111 metabolites from the RCC 
metabolome data are presented. These 111 metabolites include those not predicted as a target metabolite 
for MGPs and are paired with each of the presented target genes (box plots)
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To investigate MGPs predicted by using Human1 in greater detail, we additionally 
reconstructed 956 patient-specific GEMs by using Human1 and predicted MGPs across 
18 cancer types (Additional file 11: Dataset S6). This time, we have 956 patient-specific 
GEMs, not 1056, because the patient-specific GEMs were reconstructed only for the 
cancer types, for which MGPs were generated by using Recon 2M.2 as a template model. 
In this analysis, three TCGA-LAML samples were discarded because of the failure to 
generate the patient-specific GEMs. As a result, around three times a greater number 
of MGP were predicted across 18 cancer types when Human1 was used as a template 
model (Additional file 11: Dataset S6).

The differences in the resulting MGPs, depending on the use of Recon 2M.2 or 
Human1, are largely attributed to the differences in these two generic human GEMs. 
First, Human1 contains about 2.2 times greater number of reactions and 2.4 times 
greater number of unique metabolites than Recon 2M.2. Human1 encompasses nearly 
96.6% reactions of Recon 2M.2 (Additional file 1: Fig. S12a). The patient-specific GEMs 
created using Human1 still contain about twice more reactions than those built using 
Recon 2M.2 for the same patient-specific RNA-seq data (Additional file  1: Fig. S12b). 
This reaction coverage of 96.6% went down to 76.6% for the patient-specific GEMs that 
were generated using the two generic GEMs (left box plots for each cancer type in Addi-
tional file  1: Fig. S12c). This coverage further dropped to an average of 69.1% for the 
flux-carrying reactions (right box plots for each cancer type in Additional file  1: Fig. 
S12c). Such inherent differences should explain the different sets of the MGPs gener-
ated by using Recon 2M.2 and Human1. However, interestingly, both generic GEMs led 
to the prediction of biologically important MGPs (Figs.  3 and 6). Even if Recon 2M.2 
covers human metabolism less than Human1, it predicted biologically important MGPs 
that Human1 did not. Likewise, using Human1 predicted biologically important MGPs 
that Recon 2M.2 could not predict. We believe that the comprehensive lists of MGPs 
derived from each model can complement each other effectively, and should be consid-
ered together.

Discussion
In this study, we investigated the possible presence of metabolites that are signifi-
cantly associated with specific somatic mutations in multiple cancer types by using 
GEMs and mutation data. For this, RNA-seq data from PCAWG and TCGA repre-
senting 25 different cancer types as well as the AML and RCC samples were first used 
to reconstruct cancer patient-specific GEMs. Subsequently, the computational work-
flow involving the GEMs and the mutation data of the cancer patients was developed 
that generates so-called MGPs that present metabolites and contributing metabolic 
pathways that are significantly associated with somatic mutations in cancers. This 
computational workflow was first validated by using the multi-omics data (i.e., muta-
tion data, RNA-seq data, and metabolome data) from the 17 AML and 21 RCC sam-
ples; the same analysis was also conducted for breast cancer samples by using their 
multi-omics data previously reported [36]. The MGPs predicted for 18 cancer types 
were analyzed in regard to their metabolic effects and therapeutic potential. Further-
more, the MGPs predicted for CNS-GBM/Oligo were extensively compared with find-
ings from the reported studies. This validation process showed that the computational 
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workflow developed in this study generates reliable MGPs, which can serve as candi-
date targets for further in-depth studies. Finally, the computational workflow was also 
demonstrated by using another generic human GEM Human1, which generated a dis-
tinct set of biologically meaningful MGPs.

Despite our efforts, the computational workflow developed in this study can be further 
updated by addressing several challenges. First is to collect a greater number of sam-
ples, preferably for more diverse cancer types, which would allow more rigorous valida-
tion of the predicted MGPs. A major challenge here is to collect a balanced number of 
cohorts, each having specific gene mutations of interest, to obtain various metabolites 
associated with each of these mutations. Each cohort will obviously have a highly varied 
mutational landscape, which would involve the unforeseen effects of complex gene-gene 
interactions and mutation types on metabolite profiles. Another challenge is to generate 
multi-omics data (e.g., mutation data, RNA-seq data and metabolome data) for a greater 
number of samples from various cancer types. This will allow more rigorous validation 
of the predicted MGPs, and systematic analysis of cancer type-specific metabolism. 
For example, for a given MGP, the role of a metabolite and its associated mutations in 
a cancer cell can be better studied from multi-omics data. If a metabolite is essential for 
survival of a cancer cell, it can be evaluated as a new therapeutic target. There is also a 
chance that a metabolite in a MGP is not essential to the cancer cell. In either scenario, 
we believe that the predicted MGPs have the potential to function as a biomarker. For 
these reasons, this computational workflow is not intended for an immediate clinical 
application, for example detecting a cancer biomarker in a person. Rather, it is hoped 
that the computational workflow and its resulting MGPs serve as the groundwork for 
identifying novel oncometabolites, and for facilitating the development of various treat-
ment and diagnosis strategies.

Conclusions
In this study, we developed the computational workflow that uses GEMs and muta-
tion data of the cancer patients in order to predict metabolites and metabolic pathways 
that are significantly associated with specific somatic mutations in cancers. By using 
RNA-seq data from PCAWG and TCGA, 4335 MGPs were predicted for the 18 cancer 
types. First, the computational workflow was validated by using the multi-omics data 
(i.e., mutation data, RNA-seq data, and metabolome data) from the 17 AML and 21 
RCC samples that were collected in this study. Comparison of the resulting MG pairs 
with the multi-omics data revealed a decent number of metabolites that showed signifi-
cant changes in their concentration as a result of specific gene mutations. The MGPs 
predicted for 18 cancer types were also thoroughly examined in comparison with the 
reported studies, in particular whether they are overall consistent with the knowledge of 
cancer metabolism and the therapeutic potential previously suggested. Further rigorous 
analysis was made on the MGPs predicted for CNS-GBM/Oligo. Overall, the validation 
studies showed that the predicted MGPs are biologically meaningful, which can serve as 
candidate targets for further in-depth studies. The computational workflow developed in 
this study can also be considered for other cancer types not covered in this study upon 
availability of the relevant datasets (i.e., mutation data and RNA-seq data).
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Methods
Generation of personal GEMs using RNA‑seq data

A previously developed generic human GEM Recon 2M.2 [12] was transformed into 
a context-specific (personal) GEM through the integration with personal RNA-Seq 
data from the acute myeloid leukemia (AML) samples, the renal cell carcinoma (RCC) 
samples, TCGA, PCAWG, or GTEx. Task-driven Integrative Network Inference for 
Tissues (tINIT) method, along with a rank-based weight function, was used to gen-
erate personal GEMs [11, 12, 64]. A total of 182 metabolic tasks were evaluated for 
the resulting personal GEMs. All the resulting personal GEMs were evaluated using 
MEMOTE [21]. Another generic human GEM Human1 [17] was also used to generate 
the cancer patient-specific GEMs by using the same RNA-seq data mentioned above.

Visualization of cancer patient‑specific GEMs

Metabolic reaction contents of the resulting 1043 cancer patient-specific GEMs were 
visualized using t-SNE to cluster the GEMs according to their cancer type. To imple-
ment t-SNE and calculate Jaccard indices, an input binary vector was prepared for 
each GEM, indicating the presence and absence of a reaction as “1” and “0,” respec-
tively. For t-SNE hyperparameters, “number of principal components” and “perplex-
ity” were set to be “30” and “20,” respectively.

Calculation of flux‑sum values of metabolites

Flux-sum values for each metabolite were calculated for each personal GEM recon-
structed in this study. For this, intracellular fluxes were first predicted by minimiz-
ing the distance between transcript expression level (or gene expression level for 
TCGA-LAML data) from RNA-seq data and target reaction fluxes to be calculated 
in an objective function; target reactions in the objective function were determined 
through transcript-protein-reaction associations (or GPR associations for TCGA-
LAML data), and the least absolute deviation method was implemented for this dis-
tance minimization as previously described [12]. Next, flux-sum (Fi) of metabolite i 
in each GEM was calculated according to a previously defined mathematical formula-
tion [23]:

where Sij refers to the stoichiometric coefficient of metabolite i involved in reaction j at 
a reaction rate vj, and Pi for a set of reactions producing metabolite i. Reactions consum-
ing metabolite i were not considered when predicting MGPs.

Preparation of AML and RCC samples

Both bone marrow samples and RCC samples (primary kidney cancer samples) 
were collected at Seoul National University Hospital. Bone marrow samples were 
obtained from 17 patients diagnosed with acute myeloid leukemia (AML) from 2016 
to 2019 (Additional file 7: Dataset S2). RCC samples were obtained from 21 patients 

(1)Fi =
j∈Pi

Sijvj
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diagnosed with RCC from 2016 to 2021 (Additional file  9: Dataset S4). These sam-
ples were subjected to targeted gene sequencing or whole exome sequencing (WES) 
as described below.

Targeted sequencing of AML and RCC samples

Mutation data for the AML and RCC samples were partly obtained from the targeted 
gene sequencing. For the AML samples (except for the samples P1, P4, P11, and P18 in 
Additional file 7: Dataset S2), mutation data were obtained from SNUH FIRST Hemic 
Treatment Panel, which is a targeted gene panel consisting of 76 genes that are recur-
rently mutated in myeloid neoplasms; these 76 genes were sequenced using next-gen-
eration sequencing. Fifty nanograms of DNA collected from bone marrow samples 
from patients with hematologic malignancy was used for targeted sequencing. Library 
preparation was performed according to  SureSelectQXT Target Enrichment system (Agi-
lent Technologies). Finally, paired-end 150 bp sequencing was conducted using Next-
Seq 550Dx system (Illumina). For the RCC samples (P21, P22, P25, P26, P30, P33, P37, 
P38, and P39 in Additional file 9: Dataset S4), mutation data were obtained from SNUH 
FIRST Cancer Panel that covers information on 148 genes. For these samples, 50–200 ng 
of DNA was collected from the RCC samples, and the same sequencing protocol above 
was also implemented.

Whole exome sequencing of AML and RCC samples

Mutation data for the AML and RCC samples were additionally obtained from WES. 
Four AML samples (P1, P4, P11, and P18 in Additional file 7: Dataset S2) and 12 RCC 
samples (P23, P24, P27, P28, P29, P31, P32, P34, P35, P36, P40, and P41 in Additional 
file 9: Dataset S4) were subjected to WES. For exome sequencing, 50-Mb targeted exons 
were captured using SureSelect Human All Exon V5 (Agilent Technologies). Hundred 
bp paired-end sequence reads of the captured exons were generated using HiSeq 2000 
Sequencing System (Illumina) according to the manufacturer’s instructions.

Bioinformatics analysis of DNA sequences

The WES data, the SNUH FIRST Hemic Treatment Panel data, and the SNUH FIRST 
Cancer Panel data were analyzed using SNUH First Panel Analysis Pipeline. First, the 
FASTQ files were subjected to quality control, and only those that met the criteria were 
further analyzed. Pair-end alignment to the human genome reference hg19 was per-
formed using Burrows-Wheeler Alignment (BWA) 0.7.17 [65] and Genome Analysis 
Toolkit (GATK) Best Practices [66]. After finishing the alignment step, an “analysis-
ready” BAM files were generated, and SNV and InDel were detected using GATK Uni-
fiedGenotyper 4.1.9 [66], SNVer 0.5.3 [67], and LoFreq 2.1.2 [68]. Detected variants were 
annotated using SnpEff 5.0 [69] with RefSeq, COSMIC, dbSNP, ClinVar, and gnomAD as 
reference databases.

RNA‑seq analysis of AML and RCC samples

Total RNA was isolated from each AML and RCC sample using PAXgene Blood RNA 
Kit (Qiagen). RNA integrity and concentration for library preparation were determined 
by using 2100 Bioanalyzer (Agilent Technologies). TruSeq Stranded mRNA (Illumina) 
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was used to prepare RNA-seq libraries. RNA-seq libraries were quantified with KAPA 
Library Quantification Kit (Kapa Biosystems) according to the manufacturer’s library 
quantification protocol. The 151-bp paired-end sequencing of these libraries was per-
formed using NovaSeq 6000 Sequencing System (Illumina). FastQC 0.10.1 [70] was used 
to evaluate the quality of raw reads. RNA-seq reads were aligned to the human genome 
reference hg19 using Spliced Transcripts Alignment to a Reference (STAR) 2.7.0f [71]. 
Uniquely aligned reads were counted using featureCounts 1.6.2 [72]. Finally, expression 
levels of each transcript were estimated in transcripts per million (TPM).

Metabolome analysis of AML and RCC samples

Metabolome analysis was conducted at Human Metabolome Technologies (HMT) by 
using capillary electrophoresis time-of-flight mass spectrometry measurement for the 
relative quantification of metabolites (Additional file 8: Dataset S3 for the AML samples 
and Additional file  10: Dataset S5 for RCC samples). The AML and RCC samples for 
metabolome analysis were prepared in accordance with instructions from HMT. For the 
AML samples, 354 peaks, covering 243 peaks from Cation mode and 111 peaks from 
Anion mode, were detected, and among them, 185 peaks were annotated on the basis of 
HMT’s standard library and “Known-Unknown” peak library (Additional file 8: Dataset 
S3). For the RCC samples, 363 peaks, covering 243 peaks from Cation mode and 120 
peaks from Anion mode, were detected; the 363 peaks were annotated using the same 
libraries as the AML samples (Additional file 10: Dataset S5).

The resulting metabolome data were further processed and analyzed using Metabo-
Analyst 5.0 (http:// www. metab oanal yst. ca) [33]. First, a metabolite was not considered 
in this study if its corresponding data appeared to be missing in more than 20% of the 
AML and RCC samples [73]. For the remaining metabolites, their missing values were 
imputed by using k-nearest neighbors with k = 10 using “KNN (feature-wise) method” 
provided by the MetaboAnalyst. Upon this initial processing, 154 peaks survived from 
354 peaks for the 17 AML samples, and 200 peaks survived from 363 peaks for the 21 
RCC samples. The relative quantification data for each metabolite were additionally 
subjected to three types of normalization, including sample normalization via “normali-
zation by sum,” data transformation via “generalized logarithm,” and data scaling (i.e., 
autoscaling) via “mean centering” together with “division by the standard deviation.” 
Finally, “Classical univariate ROC curve analysis” was used to generate AUC values for 
metabolites as a function of a gene mutation in the 17 AML samples and the 21 RCC 
samples. For the 17 AML samples, a total of 94 peaks were excluded, including 69 unan-
notated peaks, two co-eluted peaks, nine annotated peaks absent in Recon 2M.2, and 14 
peaks annotated as currency metabolites (Fig. 3b). For the 21 RCC samples, a total of 96 
peaks were excluded, including 11 unannotated peaks, 12 co-eluted peaks, 55 annotated 
peaks absent in Recon 2M.2, and 18 peaks annotated as currency metabolites (Fig. 3f ).

Preparation of RNA‑seq data from PCAWG, TCGA, and GTEx

A total of 1056 cancer patient-specific RNA-Seq data and their corresponding muta-
tion data across 25 cancer types were obtained from Pan-Cancer Analysis of Whole 
Genomes (PCAWG) Consortium of the International Cancer Genome Consortium 
(ICGC) and The Cancer Genome Atlas (TCGA) [18]. For these cancers, 990 samples 

http://www.metaboanalyst.ca
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from 673 personal RNA-Seq data for five matched tissues (i.e., bladder, breast, kidney, 
ovary, and prostate) were also obtained from The Genotype-Tissue Expression portal 
(GTEx V8 [74]).

Preparation of mutation data from PCAWG WGS data and TCGA WES data

For the 943 cancer patient-specific WGS data from PCAWG and 113 cancer patient-
specific WES data from TCGA, following genes were discarded in this study: muta-
tions covered by fewer than seven alternative reads in a sample; synonymous mutations; 
genes having mutations that occur in fewer than three samples in a cancer type; wild-
type genes in fewer than three samples in a cancer type; and “subset” gene mutations 
(Additional file  1: Fig. S13). Summary of cancer samples and mutations considered in 
this study is available in Additional file 5: Table S4.

Processing flux‑sum values for predicting MGPs

In the second step of the computational workflow predicting MGPs, flux-sum profiles of 
cancer patient-specific GEMs were categorized into wild-type and mutant groups for a 
mutated gene in a cancer type. To obtain flux-sum values that are significantly different 
between the wild-type and mutant groups, flux-sum values (Fi) were normalized using 
quantile normalization method [75] for each cancer type. If a normalized flux-sum value 
( F∗

i  ) appears to be non-zero for a metabolite despite the original flux-sum value being 
zero, zero value was used for that metabolite. Flux-sum values of a metabolite between 
the wild-type and mutant groups were considered significantly different if P value from 
the two-sided Wilcoxon rank-sum test was less than 0.05, which, as a result, allowed 
pairing a metabolite with a mutated gene for MGP candidates.

In the third step of the computational workflow for selecting “target pathways” that 
significantly contribute to the biosynthesis of a “target metabolite,” “target flux-sum 
values” were first adjusted in accordance with the normalized flux-sum values of target 
metabolites in order to preserve the relative ratio of target flux-sum values across con-
tributing pathways that produce a given target metabolite.

where fip denotes the target flux-sum of pathway p producing metabolite i, and path for 
a set of pathways producing metabolite i. Based on this, target flux-sum of pathway p 
was adjusted as follows:

Statistical significance of the target flux-sum values for a target pathway between the 
wild-type and mutant groups was also examined using the two-sided Wilcoxon rank-
sum as in the second step (P value < 0.05).

For the final step of the computational workflow, the mean target flux-sum value for 
each target gene in each target pathway associated with MGP candidates was converted 
to the modified Z-score:

(2)Fi =
∑

p∈path
fip

(3)f ∗ip =
F∗
i

Fi
× fip
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where f̃ ∗ip denotes the median adjusted target flux-sum values, � denotes the cumulative 
distribution function of normal distribution, and MAD and MeanAD stand for median 
absolute deviation from the median and mean absolute deviation from the median, 
respectively. A threshold of |modified Zip-score| > 3.5 was considered for a target gene in 
a MGP candidate to be significant [76].

Computing environment

Reconstruction and simulation of all the personal GEMs were conducted in Python 
environment with Gurobi Optimizer 9.0.2 and GurobiPy package (Gurobi Optimization, 
Inc.). Reading, writing, and manipulation of the COBRA-compliant SBML files were 
implemented using COBRApy 0.6.0 [77]. All the statistical tests were conducted using 
SciPy 1.4.1 [78]. Principal component analysis initialization and t-SNE were conducted 
using scikit-learn 0.20.3 [79]. Paper retrieval from PubMed was conducted using Biopy-
thon 1.74 [80]. All the plots presented in this study were generated using seaborn 0.10.0 
[81] and matplotlib 3.2.0 [82]. The metabolic pathway map in Fig. 4e was generated using 
Cytoscape 3.8.1 [83] on the basis of human metabolic pathway maps from KEGG [84].
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