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Abstract 

Nanopore sequencing generates noisy electrical signals that need to be converted 
into a standard string of DNA nucleotide bases using a computational step called 
basecalling. The performance of basecalling has critical implications for all later steps 
in genome analysis. Therefore, there is a need to reduce the computation and memory 
cost of basecalling while maintaining accuracy. We present RUBICON, a framework 
to develop efficient hardware-optimized basecallers. We demonstrate the effectiveness 
of RUBICON by developing RUBICALL, the first hardware-optimized mixed-precision 
basecaller that performs efficient basecalling, outperforming the state-of-the-art 
basecallers. We believe RUBICON offers a promising path to develop future hardware-
optimized basecallers.
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Background
The rapid advancement of genomics and sequencing technologies continuously calls for 
the adjustment of existing algorithmic techniques or the development of entirely new 
computational methods across diverse biomedical domains [1–13]. Modern sequencing 
machines  [14, 15] are capable of sequencing complex genomic structures and variants 
with high accuracy and throughput using long-read sequencing technology [16]. Oxford 
Nanopore Technologies (ONT) is the most widely used long-read sequencing technol-
ogy  [16–21]. ONT devices generate long genomic reads, each of which has a length 
ranging from a few hundred to a million base pairs or nucleotides, i.e., A, C, G, and T in 
the DNA alphabet [22–26].

ONT devices sequence a genome by measuring changes to an electrical signal as a 
single strand of DNA is passed through a nanoscale hole or nanopore  [27]. The gener-
ated noisy electrical signal or squiggle is decoded into a sequence of nucleotides using 
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a computationally expensive step, called basecalling  [18, 28–31]. Basecallers need to 
address two key challenges to accurately basecall a raw sequencing input: first, provid-
ing accurate predictions of each and every individual nucleotide, as the sensors measur-
ing the changes in electrical current can only measure the effect of multiple neighboring 
nucleotides together [28], and second, tolerating low signal-to-noise ratio (SNR) caused 
by thermal noise and the lack of statistically significant current signals triggered by DNA 
strand motions [29].

Modern basecallers use deep learning-based models to significantly (by at least 10%) 
improve the accuracy of predicting a nucleotide base from the squiggle compared 
to traditional non-deep learning-based basecallers  [15–17, 30, 32–36]. The success of 
deep learning in genome basecalling is attributed to the advances in its architecture to 
model and identify spatial features in raw input data to predict nucleotides. However, we 
observe the following six shortcomings with the current basecallers  [32, 37–44]. First, 
current state-of-the-art basecallers are slow and show poor performance on state-of-
the-art CPU and GPU-based systems, bottlenecking the entire genomic analyses. For 
example, state-of-the-art throughput optimized basecaller, Dorado-fast, takes ∼2.1 
h to basecall a 300-Gbps (Giga basepairs) human genome at 3 × coverage on a server-
grade GPU (NVIDIA A10G  [45] GPU with 24GiB DRAM and 16× CPU with 64 GiB 
DRAM) [46], while the subsequent step, i.e., read mapping, takes only a small fraction of 
basecalling time ( ∼0.11 h using minimap2 [47]). We observe that basecalling is the sin-
gle longest stage in the genome sequencing pipeline, taking up to 43% of execution time 
while the subsequent steps of overlap finding, assembly, read mapping, and polishing 
take 18%, 4%, <1%, and 35% of execution time, respectively.

Second, for real-time sequencing, high basecalling throughput is a critical factor [7]. In 
particular, scenarios such as field sequencing [39] and adaptive sampling [48] necessitate 
rapid basecalling due to hardware limitations and the need for real-time decision-mak-
ing. Field sequencing, often conducted in remote or resource-constrained environments, 
demands immediate basecalling to obtain actionable genomic information swiftly. Con-
ventional high-compute infrastructure is often unavailable or impractical in these set-
tings, underscoring the importance of an efficient basecalling process. Similarly, adaptive 
sampling protocols, aiming to optimize sequencing output based on real-time analysis 
of initial sequencing data, require a fast and accurate basecaller to make prompt deci-
sions regarding read continuation or rejection. Also, enhancing the speed and efficiency 
of basecalling is critical for re-basecalling existing datasets using advanced, higher-accu-
racy models. By revisiting earlier data with improved basecalling algorithms, researchers 
can achieve a more precise representation of the genomic sequence. Current basecall-
ers provide a tradeoff between speed and accuracy, often leading to sub-optimal perfor-
mance in real-time sequencing scenarios.

Third, since basecalling shares similarities with automatic-speech recognition 
(ASR) task, many researchers have directly adapted established ASR models, such as 
Quartznet  [49], Citrinet  [50], and Conformers  [51], for basecalling without custom-
izing the neural network architecture specifically for the basecalling problem. Such an 
approach might lead to higher basecalling accuracy but at the cost of large and unop-
timized neural network architecture. For example, Bonito_CTC , an expert-designed 
convolutional neural network (CNN)-based version of Bonito from ONT, has ∼ 10 
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million model parameters. We show in the “Effect of pruning” section that we can elimi-
nate up to 85% of the model parameters to achieve a 6.67× reduction in model size with-
out any loss in basecalling accuracy. Therefore, current basecalling models are costly to 
run, and the inference latency becomes a major bottleneck.

Fourth, modern basecallers are typically composed of convolution layers with skip con-
nections1 [52] (allow reusing of activations from previous layers) that creates two major 
performance issues: (a) skip connections increase the data lifetime: the layers whose 
activations are reused in future layers must either wait for this reuse to occur before 
accepting new input or store the activations for later use by utilizing more memory. 
Thus, leading to high resource and storage requirements; and (b) skip connections often 
need to perform additional computation to match the channel size at the input of the 
non-consecutive layer, which increases the number of model parameters, e.g., Bonito_
CTC  requires ∼21.7% additional model parameters due to the skip connections.

Fifth, current basecallers use floating-point precision (32 bits) to represent each neu-
ral network layer present in a basecaller. This leads to high bandwidth and processing 
demands  [53–55]. Thus, current basecallers with floating-point arithmetic precision 
have inefficient hardware implementations. We observe in the “Effect of quantiza-
tion”  section that the arithmetic precision requirements of current basecallers can be 
reduced ∼4× by adjusting the precision for each neural network layer based on the target 
hardware and desired accuracy.

Sixth, basecallers that provide higher throughput have lower basecalling accuracy. For 
example, we show in the “RUBICALL: overall trend” section and Additional file 1: Sec-
tion S4 that Bonito_CRF-fast provides up to 51.65× higher basecalling performance 
using 36.96× fewer model parameters at the expense of the 5.37% lower basecalling 
accuracy compared to most accurate basecaller.

These six problems concurrently make basecalling slow, inefficient, and memory-hun-
gry, bottlenecking all genomic analyses that depend on it. Therefore, there is a need to 
reduce the computation and memory cost of basecalling while maintaining their per-
formance. However, developing a basecaller that can provide fast runtime performance 
with high accuracy requires a deep understanding of genome sequencing, machine 
learning, and hardware design. At present, computational biologists spend significant 
time and effort to design and implement new basecallers by an extensive trial-and-error 
process.

Our goal is to overcome the above issues by developing a comprehensive framework 
for specializing and optimizing a deep learning-based basecaller that provides high effi-
ciency and performance.

To this end, we introduce RUBICON, the first framework for specializing and optimiz-
ing a machine learning-based basecaller. RUBICON uses two machine learning tech-
niques to develop hardware-optimized basecallers that are specifically designed for 
basecalling. First, we propose QABAS, a quantization-aware basecalling architecture 
search framework to specialize basecaller architectures for hardware implementation 
while considering hardware performance metrics (e.g., latency, throughput). QABAS 

1 A skip connection allows to skip some of the layers in the neural network and feeds the output of one layer as the input 
to the next layers.
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uses neural architecture search (NAS)  [56] to evaluate millions of different basecaller 
architectures. As discussed in Additional file 1: Section S1, during the basecaller neural 
architecture search, QABAS quantizes the neural network model by exploring and find-
ing the best bit-width precision for each neural network layer, which largely reduces the 
memory and computational complexity of a basecaller. Adding quantization to the base-
caller neural architecture search dramatically increases the model search space ( ∼6.72×
1020 more viable options in our search space). However, jointly optimizing basecalling 
neural network architecture search and quantization allows us to develop accurate base-
caller architectures that are optimized for hardware acceleration. Second, we develop 
SkipClip to remove all the skip connections present in modern basecallers to reduce 
resource and storage requirements without any loss in basecalling accuracy. SkipClip 
performs a skip removal process using knowledge distillation  [57], as shown in Addi-
tional file 1: Fig. S2 in Additional file 1: Section S2, where we train a smaller network 
(student) without skip connections to mimic a pre-trained larger network (teacher) with 
skip connections. Figure 1 shows the key components of RUBICON. It consists of four 
modules. QABAS ( ) and SkipClip ( ) are two novel techniques that are specifically 
designed for specializing and optimizing machine learning-based basecallers. RUBICON 
provides support for Pruning ( ), which is a popular model compression technique 
where we discard network connections that are unimportant to neural network perfor-
mance [58–61]. We integrate Training ( ) module from the official ONT basecalling 
pipeline [62]. For both the Pruning and Training modules, we provide the capability 
to use knowledge distillation [57, 63] for faster convergence and to increase the accuracy 
of the designed basecalling network.

Key results

We demonstrate the effectiveness of RUBICON by developing RUBICALL, the first hard-
ware-optimized mixed-precision basecaller that performs efficient basecalling, outper-
forming the state-of-the-art basecallers. Additional file  1: Fig. S5 in Additional file  1: 
Section S2 shows the RUBICALL architecture. We compare RUBICALL to five differ-
ent basecallers. We demonstrate six key results. First, RUBICALL provides, on average, 
2.85% higher basecalling accuracy with 3.77× higher basecalling throughput compared 
to the fastest basecaller. Compared to an expert-designed basecaller, RUBICALL pro-
vides 128.13× higher basecalling throughput without any loss in basecalling accuracy by 
leveraging mixed precision computation when implemented on a cutting-edge spatial 
vector computing system, i.e., the AMD-Xilinx Versal AIE-ML  [64]. Second, we show 
that QABAS-designed models are 5.74× smaller in size with 2.41× fewer neural network 

Fig. 1 Overview of RUBICON framework
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model parameters than an expert-designed basecaller. Third, by further using our Skip-
Clip approach, RUBICALL achieves a 6.88× and 2.94× reduction in neural network 
model size and the number of parameters, respectively. Fourth, we show in Additional 
file  1: Section S4 that compared to the most accurate state-of-the-art basecaller (i.e., 
Bonito_CRF-sup), RUBICALL provides 185.54× speedup using 19.22× lower param-
eters at the expense of, on average, 2.47% lower accuracy. Fifth, assemblies constructed 
using reads basecalled by RUBICALL lead to higher quality, more contiguous, and more 
complete assemblies for all evaluated species than that provided by other basecallers. 
Sixth, RUBICALL provides a 1.82–26.49% lower number of base mismatches with the 
largest number of mapped bases and mapped reads compared to the baseline basecaller. 
Our experimental results on state-of-the-art computing systems show that RUBICALL is 
a fast, memory-efficient, and hardware-friendly basecaller. RUBICON can help research-
ers develop hardware-optimized basecallers that are superior to expert-designed models 
and can inspire independent future ideas.

Results
Analyzing the state‑of‑the‑art basecaller

We observe established automatic-speech recognition (ASR) models being directly 
applied to basecalling without optimizing it for basecalling. Such an approach leads to 
large and unoptimized basecaller architectures. We evaluate the effect of using two pop-
ular model compression techniques on the Bonito_CTC  basecaller: (1) pruning and (2) 
quantization.

Effect of pruning

We show the effect of pruning Bonito_CTC  on the validation accuracy and model 
size in Fig. 2a and b, respectively. Pruning is a model compression technique where we 
discard network connections that are unimportant to network performance without 
affecting the inference accuracy  [58–61]. We use unstructured element pruning and 
structured channel pruning with different degrees of sparsity. Unstructured or element 
pruning is a fine-grain way of pruning individual weights in a neural network without 
applying any pruning constraints. While in structured pruning, we remove a larger set of 
weights while maintaining a dense structure of the model [65, 66].

We make three major observations. First, pruning up to 85% of the Bonito_CTC  
model weights using unstructured pruning reduces the model size by 6.67× while 

Fig. 2 Effect of pruning the elements and channels of Bonito_CTC  using unstructured and structured 
pruning, respectively, on a validation accuracy and b model size
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maintaining the same accuracy as the baseline, unpruned Bonito_CTC  model. 
Unstructured pruning leads to the highest model compression [67] at the cost of having 
sparse weights structure that is unsuitable for acceleration on any hardware platform. 
While pruning 30–40% of the Bonito_CTC  model filters, using structured pruning 
reduces the model size by 1.46–1.66× while maintaining the same accuracy of the base-
line, unpruned Bonito_CTC  model. Such a high pruning ratio shows that most of the 
weights are redundant and do not contribute to the actual accuracy. Second, after prun-
ing 97% (60%) of the model weights, Bonito_CTC  provides 81.20% (72.66%) basecalling 
accuracy while using 33.33× (2.62× ) smaller model using unstructured pruning (struc-
tured pruning). Third, the knee point2 for unstructured pruning and structured pruning 
is at 98% and 60% where Bonito_CTC  provides 65.14% and 72.66% of basecalling accu-
racy, respectively. Beyond the knee-point, Bonito_CTC  loses its complete prediction 
power. We conclude that Bonito_CTC  is over-parameterized and contains redundant 
logic and features.

Effect of quantization

Figure 3 shows the effect of using a quantized model to basecall on the basecalling accu-
racy for four different species. In Fig. 4, we show the effect of quantization on the model 
size. We quantize both the weight and activation using six different bit-width configu-
rations (<3,2>,<4,2>,<4,4>,<4,8>,<8,4>, and <16,16>). We also show the 
results with the default floating-point precision (<fp32,fp32>). We use static quanti-
zation that uses the same precision for each neural network layer.

We make four main observations. First, using a precision of <8,8> for weight and acti-
vation for all the layers of Bonito_CTC  causes a negligible accuracy loss (0.18–0.67%), 
while reducing the model size by 4.03× . Second, Bonito_CTC  is more sensitive to 
weight precision than activation precision. For example, we observe a loss of 1.82–9.48% 
accuracy when using a precision of <4,8> instead of <16,16> bits compared to an 

Fig. 3 Basecalling using quantized models

2 We define knee point as the point beyond which a basecaller is unable to basecall at an acceptable level of accuracy.
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accuracy loss of only 0.51–3.02% when using a precision of <8,4> instead of <16,16> 
bits. Third, we observe a significant drop in accuracy (by 9.17–15.07%), when using less 
than 4 bits for weights (e.g., using <3,2> configuration). Fourth, using bit-width preci-
sion of <16,16> bits provides ∼2× reductions in model size and without any accuracy loss 
compared to using full precision (<fp32,fp32>) floating-point implementation. We 
conclude that the current state-of-the-art basecaller, Bonito_CTC , can still efficiently 
perform basecalling even when using lower precision for both the weight and activation.

RUBICALL: overall trend

We compare the overall basecalling throughput of RUBICALL with that of the baseline 
basecallers in terms of average basecalling accuracy, model parameters, and model size in 
Fig. 5a–c, respectively. We evaluate RUBICALL using (1) MI210 GPU [68] (RUBICALL-
FP) using floating-point precision computation and (2) Versal ACAP VC2802  [64], a 
cutting-edge spatial vector computing system (RUBICALL-MP) using mixed-precision 
computation. The “Methods” section provides details on our evaluation methodology.

We make six key observations. First, compared to Dorado-fast, the fastest base-
caller, RUBICALL-MP provides, on average, 2.85% higher accuracy with 3.77× higher 

Fig. 4 Effect of quantizing weight and activation of Bonito_CTC  on model size. We quantize both the 
weight and activation with static precision. Since weights are the trainable parameters in a neural network, 
only weights contribute to the final model size

Fig. 5 Comparison of average basecalling throughput for RUBICALL-MP with state-of-the-art basecallers 
in terms of a average basecalling accuracy, b model parameters, and c model size. RUBICALL-MP provides 
higher compute performance with lower model size when compared to RUBICALL-FP because of the 
mixed-precision computation
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basecalling throughput. Therefore, RUBICALL-MP provides both accuracy and high 
basecalling throughput. Second, RUBICALL-MP provides 128.13× higher basecall-
ing throughput without any loss in accuracy compared to Bonito_CTC , which is an 
expert-designed basecaller. Unlike Bonito_CTC , this is because RUBICALL-MP has a 
mixed precision neural architecture that leads to high compute density. Third, by using 
mixed-precision quantization, RUBICALL-MP provides 50.15× higher performance 
when compared to its floating-point implementation (RUBICALL-FP). Fourth, SACall 
has the highest number of neural network model parameters, which are 2.74× , 13.49× , 
1.01× , 13.49× , and 2.97× more than Causalcall, Bonito_CRF-fast, Bonito_CTC 
, Dorado-fast, and RUBICALL-MP, respectively. SACall uses a large transformer 
model with an attention mechanism that leads to an over-parameterized model. Fifth, 
Dorado-fast has 4.92× , 13.33× , 13.49× , and 4.54× lower number of trainable model 
parameters than Causalcall, Bonito_CTC , SACall, and RUBICALL-MP. As dis-
cussed earlier, Dorado-fast provides 2.85% lower accuracy with 3.77× lower base-
calling throughput. While Dorado-fast has a 4.54× lower number of trainable model 
parameters, the difference in model size is only 1.92× because RUBICALL-MP has each 
layer quantized to a different precision. Sixth, compared to basecallers with skip con-
nections, RUBICALL-MP provides 2.55× and 6.93× smaller model size compared to 
Causalcall and Bonito_CTC , respectively. The decrease in model size is due to (1) 
a lower number of neural network layers and (2) optimum bit-width precision for each 
neural network layer. Sixth, all the baseline basecallers use floating-point arithmetic 
precision for all neural network layers. This leads to very high memory bandwidth and 
processing demands. We conclude that RUBICALL-MP provides the ability to basecall 
quickly and efficiently scale basecalling by providing reductions in both model size and 
neural network model parameters.

Performance comparison

We compare the speed of RUBICALL-MP against baseline basecallers in Fig. 6. We make 
three major observations. First, RUBICALL-MP consistently outperforms all the other 
basecallers for all the evaluated species. RUBICALL-MP improves average performance 
by 364.89× , 14.25× , 128.13× , 81.58× , and 3.77× over Causalcall, Bonito_CRF-fast, 

Fig. 6 Performance comparison of RUBICALL (using floating-point precision (RUBICALL-FP) and 
mixed-precision (RUBICALL-MP)) and five state-of-the-art basecallers on AMD MI210. The y-axis is on a 
logarithmic scale
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Bonito_CTC , SACall, and Dorado-fast, respectively. Second, as RUBICALL-MP 
each layer is quantized to a different precision, it provides 50.15× higher performance when 
compared to its floating-point only implementation (RUBICALL-FP). Third, RUBICALL-
FP, by using floating-point precision, provides 7.28× , 2.56× , and 1.63× higher performance 
compared to Causalcall, Bonito_CTC , and SACall, respectively. Additional file 1: 
Fig. S7 in Additional file 1: Section S5 demonstrates the performance of all the evaluated 
basecallers on NVIDIA A40 [69] GPU. We conclude that using mixed-precision computa-
tion, RUBICALL-MP consistently performs better than the baseline basecallers.

Basecalling accuracy

We compare the basecalling accuracy of RUBICALL against baseline basecallers in 
Fig. 7. RUBICALL-MP and RUBICALL-FP use the same model architecture and pro-
duce the same basecalled reads, so we report results as RUBICALL. We make three 
major observations. First, compared to Dorado-fast and Bonito_CRF-fast, we 
observe RUBICALL achieves 2.85% and 2.89% higher accuracy over these RNN-based 
basecallers, respectively. RUBICALL provides 5.23% and 0.06% higher accuracy than 
CNN-based basecaller Causalcall and Bonito_CTC , respectively. Compared to 
a state-of-the-art transformer-based basecaller, SACall, RUBICALL achieves 1.97% 
higher basecalling accuracy. Second, Bonito_CTC  has 2.93× higher parameters 
(Fig. 5a) while having similar accuracy as RUBICALL. Third, Causalcall and SACall 
are unable to align half of Haemophilus haemolyticus M1C132_1 reads to its reference. 
Therefore, it is deemed unaligned and cannot be used to determine its read accuracy. We 
conclude that RUBICALL provides the highest accuracy compared to other basecallers.

Downstream analysis

De novo assembly

We provide the statistics related to the accuracy, completeness, and contiguity of assem-
blies we generate using the basecalled reads from Causalcall, Bonito_CRF-fast, 
Bonito_CTC , SACall, Dorado-fast, and RUBICALL in Table  1. For Genome 

Fig. 7 Basecalling accuracy comparison of RUBICALL (using floating-point precision (RUBICALL-FP) and 
mixed-precision (RUBICALL-MP))
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Table 1 Assembly quality comparison of the evaluated basecallers for different species. We measure 
assembly accuracy in terms of genome fraction (Genome Fraction (%)) and average identity 
(Average Identity (%)). Genome fraction is the portion of the Reference genome that can align to 
a given assembly, while average identity is the average of the identity of assemblies when compared 
to their respective Reference genomes. We measure statistics related to the contiguity and 
completeness of the assemblies in terms of the overall assembly length (Assembly Length), Average 
GC content (Average GC (%)) (i.e., the ratio of G and C bases in an assembly), NG50 statistics (NG50) 
(i.e., shortest contig at the half of the overall Reference genome length), total number of indels 
in all aligned bases in the assembly (Total Indels), the ratio of indels to assembly length (Indel Ratio 
(%)), and the reliability of basepairs using the quality value (Quality Value). NA indicates that the 
generated assemblies were unalignable to the reference genome

Dataset Basecaller Genome 
fraction 
(%)

Average 
identity 
(%)

Assembly 
length

Average 
GC (%)

NG50 Total 
indels

Indel 
ratio (%)

Quality 
value (QV)

Acineto-
bacter

Causal-
call

92.45 86.18 3,826,077 42.23 3,826,077 270,228 7.06 11.99

pittii 16-377-
0801

Bonito_
CRF-fast

96.64 89.29 3,628,317 38.82 3,628,317 242,373 6.68 12.03

Bonito_
CTC 

96.87 91.44 3,676,821 38.9 3,676,821 210,496 5.72 12.45

SACall 96.68 89.42 3,699,232 38.7 3,699,232 247,997 6.7 12.1

Dorado-
fast

96.37 88.72 3,839,847 39.09 3,839,847 245,016 6.38 12.03

RUBICALL 96.87 91.51 3,694,086 38.82 3,694,086 208,748 5.65 15.42

Reference 100 100 3,814,719 38.78 3,814,719 0 0 -

Haemophilus Causal-
call

0.00 0.00 0 0 0 0 0 NA

haemolyticus Bonito_
CRF-fast

88.76 91.51 2,046,024 37.98 2,046,024 128,481 6.28 12.25

M1C132_1 Bonito_
CTC 

96.87 90.70 1,957,480 38.87 1,957,480 118,253 6.04 15.34

SACall 90.11 88.45 2,032,994 38.22 1,880,730 134,702 6.63 13.15

Dorado-
fast

89.42 88.97 2,110,860 39.49 2,110,860 129,503 6.14 12.38

RUBICALL 96.87 90.54 1,966,781 38.92 1,966,781 119,777 6.09 15.37

Reference 100 100 2,042,591 38.46 2,042,591 0 0 -

Klebsiella Causal-
call

92.45 87.35 4,959,127 56.9 4,959,127 353,550 7.13 10.54

pneumoniae Bonito_
CRF-fast

92.69 87.53 4,761,297 57.19 4,761,297 347,299 7.29 10.56

INF032 Bonito_
CTC 

94.50 90.20 4,897,352 56.65 4,897,352 317,428 6.48 11.26

SACall 93.97 88.08 4,874,880 56.87 4,874,880 379,028 7.78 10.8

Dorado-
fast

93.00 87.69 5,063,562 56.8 5,063,562 348,572 6.88 10.64

RUBICALL 94.51 90.30 4,924,240 56.85 4,924,240 314,651 6.39 11.27

Reference 100 100 5,111,537 57.63 5,111,537 0 0 -

Klebsiella Causal-
call

91.44 87.36 5,288,166 56.94 5,288,166 374,162 7.08 10.84

pneumoniae Bonito_
CRF-fast

92.08 88.49 5,052,889 56.8 5,052,889 357,354 7.07 10.93

INF042 Bonito_
CTC 

93.12 90.49 5,111,083 56.61 5,111,083 317,075 6.2 11.40

SACall 92.93 88.60 5,149,039 56.72 5,149,039 369,388 7.17 11.08

Dorado-
fast

90.21 88.20 5,737,059 56.44 5,401,717 342,141 5.96 10.98

RUBICALL 93.12 90.60 5,146,050 56.72 5,146,050 312,448 6.07 11.42

Reference 100 100 5,337,491 57.41 5,337,491 0 0 -

Klebsiella Causal-
call

91.58 86.97 5,175,311 57.09 5,175,311 363,807 7.03 10.88

pneumoniae Bonito_
CRF-fast

90.24 88.00 4,932,626 56.71 4,932,626 357,769 7.25 10.86

KSB2_1B Bonito_
CTC 

93.07 90.11 5,003,377 56.69 5,003,377 320,519 6.41 11.41
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Table 1 (continued)

Dataset Basecaller Genome 
fraction 
(%)

Average 
identity 
(%)

Assembly 
length

Average 
GC (%)

NG50 Total 
indels

Indel 
ratio (%)

Quality 
value (QV)

SACall 93.58 88.19 5,034,408 56.79 5,034,408 372,380 7.4 11.16

Dorado-
fast

90.28 87.67 5,442,186 56.72 5,261,731 349,387 6.42 11.03

RUBICALL 93.07 89.89 5,023,639 56.75 4,932,626 357,769 7.12 11.25

Reference 100 100 5,228,889 57.59 5,228,889 0 0 -

Klebsiella Causal-
call

89.08 86.01 5,158,874 56.78 5,158,874 389,676 7.55 11.75

pneumoniae Bonito_
CRF-fast

92.17 89.34 4,942,833 57.01 4,942,833 355,690 7.2 11.47

NUH29 Bonito_
CTC 

94.36 90.26 4,918,147 57.04 4,918,147 324,406 6.6 11.92

SACall 93.66 88.58 4,978,307 57.06 4,978,307 360,950 7.25 11.56

Dorado-
fast

92.27 88.12 5,195,594 57.01 5,195,594 355,728 6.85 11.56

RUBICALL 94.36 90.43 4,940,813 57.18 4,940,813 316,019 6.4 11.83

Reference 100 100 5,134,281 57.61 5,134,281 0 0 -

Serratia Causal-
call

89.91 86.23 5,532,953 57.86 5,422,052 401,545 7.26 13.39

marcescens Bonito_
CRF-fast

96.06 89.56 5,479,812 58.85 5,282,474 345,351 6.3 12.66

17-147-1671 Bonito_
CTC 

96.76 91.38 5,534,329 58.41 5,316,651 298,982 5.4 13

SACall 94.29 89.36 5,366,913 58.57 5,366,913 358,954 6.69 12.27

Dorado-
fast

96.51 88.87 5,758,989 58.29 5,282,474 348,968 6.06 12.5

RUBICALL 96.76 91.59 5,597,251 58.52 5,346,640 294,643 5.26 13.01

Reference 100 100 5,517,578 59.13 5,517,578 0 0 -

Staphylococ-
cus

Causal-
call

94.35 87.29 2,849,123 36.59 2,810,038 191,730 6.73 10.8

aureus Bonito_
CRF-fast

96.27 91.49 2,790,895 33.05 2,752,169 149,623 5.36 11.59

CAS38_02 Bonito_
CTC 

97.03 93.57 2,858,986 32.86 2,819,356 123,542 4.32 12.82

SACall 95.66 91.25 2,837,503 32.91 2,798,079 165,200 5.82 11.57

Dorado-
fast

96.70 91.16 2,927,882 33.52 2,752,169 152,216 5.2 11.64

RUBICALL 97.03 93.36 2,860,885 33.24 2,821,276 124,795 4.36 12.59

Reference 100 100 2,902,076 32.82 2,902,076 0 0 -

Stenotropho-
monas

Causal-
call

94.85 85.73 4,823,177 63.66 4,823,177 366,228 7.59 11.01

maltophilia Bonito_
CRF-fast

94.60 89.74 4,596,898 65.5 4,596,898 337,040 7.33 11.10

17_G_0092_
Kos

Bonito_
CTC 

95.42 90.14 4,664,226 64.82 4,664,226 298,711 6.4 11.51

SACall 95.28 88.50 4,672,540 64.98 4,672,540 339,853 7.27 11.11

Dorado-
fast

92.99 87.70 4,854,007 63.99 4,854,007 337,105 6.94 11.01

RUBICALL 95.46 90.49 4,693,744 65.03 4,693,744 289,073 6.16 11.63

Reference 100 100 4,802,733 66.28 4,802,733 0 0 -

Human Causal-
call

NA NA 130,962 42.95 13,522 NA NA NA

HG002 Bonito_
CRF-fast

0.002 92.36 119,570,537 40.34 368,848 2860 0 18.87

Bonito_
CTC 

0.430 95.06 134,732,516 40.86 371,590 384,243 0.29 18.58

SACall NA NA 63,025,520 39.87 320,873 NA NA NA

Dorado-
fast

0.001 93.15 121,146,376 39.8 361,677 926 0 17.46

RUBICALL 0.125 94.50 140,928,248 40.99 393,950 100,256 0.1 17.81

Reference 100 100 2,947,743,500 40.79 2,947,743,500 0 0 -
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Fraction (%), Average Identity (%), and Quality Value (QV), we highlight 
the highest achieved value. While for Assembly Length, Average GC (%), and 
NG50, we highlight the value closest to the real assembly length. For Total Indels 
and Indel Ratio (%), the best-performing basecaller has the lowest value. We also 
collect the number of unique k-mers and the frequency of each unique k-mer in a given 
sequence to perform a comparison of under and over-represented k-mers in Additional 
file 1: Section S7.

We make six key observations. First, assemblies constructed using reads basecalled 
by RUBICALL provide the best reference genome coverage for all datasets (“Genome 
Fraction” in Table  1). This means that assemblies built using RUBICALL-basecalled 
reads are more complete than assemblies built using reads from other basecallers since 
a larger portion of the corresponding reference genomes align to their assemblies using 
RUBICALL-basecalled reads compared to that of using reads from other basecallers. 
Second, assemblies constructed using the RUBICALL reads usually have a higher aver-
age identity than that of Causalcall, Bonito_CRF-fast, Bonito_CTC , SACall, 
and Dorado-fast. These average identity results are tightly in line with the basecall-
ing accuracy results we show in Fig. 7. Although Bonito_CRF-fast provides a higher 
average identity for the Haemophilus haemolyticus M1C132_1 dataset (i.e., 91.51%), the 
genome coverage provided by both Bonito_CRF-fast and Dorado-fast is 2.2% 
lower than that provided by RUBICALL for the same dataset. This means a large por-
tion of the assembly provided by Bonito_CRF-fast  has low-quality regions as the 
reference genome cannot align to these regions due to high dissimilarity. Third, assem-
blies constructed using the RUBICALL reads provide better completeness and contigu-
ity as they have (1)  assembly lengths closer to their corresponding reference genomes 
and (2) higher NG50 results in most cases than those constructed using the Bonito_
CRF-fast and Bonito_CTC  reads. Fourth, although Causalcall usually pro-
vides the best results in terms of the assembly lengths and NG50 results, we suspect 
that these high NG50 and assembly length results are caused due to highly repetitive 
and inaccurate regions in these assemblies due to their poor genome fraction and aver-
age GC content results. The average GC content of the assemblies constructed using 
the Causalcall reads is significantly distant from the GC content of their corre-
sponding reference genomes in most cases. This poor genome fraction and average GC 
content results suggest that such large NG50 and assembly length values from Causal-
call may also be caused by poorly basecalled reads that lead to unresolved repetitive 
regions (i.e., bubbles in genome assembly graphs) or a strong bias toward certain error 
types (i.e., homopolymer insertions of a certain base) in the assembly  [70, 71]. Fifth, 
the low total indels and indel ratio (%) for RUBICALL in an assembled sequence sig-
nify a sequence that closely resembles the expected reference with minimal insertions 
and deletions (indels). This indicates a well-structured and high-quality assembly. Such 
assemblies offer a clear and accurate representation of the original sequence, facilitating 
downstream analyses, gene prediction, functional annotation, and comparative genom-
ics. Sixth, RUBICALL consistently provides a higher quality value (QV), indicating a low 
probability of sequencing errors. Therefore, compared to the other evaluated basecallers, 
RUBICALL has higher reliability of the assembled genome.



Page 13 of 29Singh et al. Genome Biology           (2024) 25:49  

We conclude that, in most cases, the reads basecalled by RUBICALL lead to higher 
quality, more contiguous, and more complete assemblies than that provided by other 
state-of-the-art basecallers, Causalcall, Bonito_CRF-fast, Bonito_CTC , 
SACall, and Dorado-fast.

Read mapping

We provide the comparison of RUBICALL with Causalcall, Bonito_CRF-fast, 
Bonito_CTC , SACall, and Dorado-fast in terms of the total number of base mis-
matches, the total number of mapped bases, the total number of mapped reads, and the 
total number of unmapped reads in Fig. 8a–d, respectively. We also show the average 
read length, the overall number of mapped reads and the mapped bases, and the ratio 
of the number of mapped bases to the number of mapped reads in Additional file  1: 
Table S2.

We make five key observations. First, RUBICALL provides the lowest number of 
base mismatches, which are 26.97%, 22.66%, 11.45%, 12.35%, and 23.58% lower 
compared to Causalcall, Bonito_CRF-fast, Bonito_CTC , SACall, and 
Dorado-fast, respectively. This indicates that RUBICALL provides more accurate 
basecalled reads that share large similarity with the reference genome. This is in line 
with the fact that RUBICALL provides the highest basecalling accuracy, as we evalu-
ate in the “Basecalling accuracy”  section. Second, RUBICALL provides, on average, 
22.86%, 0.24%, and 4.77% higher number of mapped bases compared to Causal-
call, Bonito_CTC , and SACall, respectively, and only 0.3% and 0.4% lower num-
ber of mapped bases when compared to Bonito_CRF-fast and Dorado-fast, 
respectively. Mapping more bases to the target reference genome confirms that the 
careful design and optimizations we perform when building RUBICALL have no 
negative effects on the basecalling accuracy. Third, unlike Causalcall, RUBI-
CALL, Bonito_CRF-fast, Bonito_CTC , SACall, and Dorado-fast, all pro-
vide a high number of mapped reads. However, RUBICALL is the only basecaller 

Fig. 8 Comparison of RUBICALL (using floating-point precision (RUBICALL-FP) and mixed-precision 
(RUBICALL-MP)) for normalized a mismatches, b bases mapped, c reads mapped, and d reads unmapped
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that provides high-quality reads that have the highest number of base matches 
and the lowest number of base mismatches. Fourth, RUBICALL achieves 72.66%, 
11.79%, 14.63%, 55.02%, and 11.61% lower unmapped reads compared to Causal-
call, Bonito_CRF-fast, Bonito_CTC , SACall, and Dorado-fast, respec-
tively. This indicates that using Causalcall, Bonito_CRF-fast, Bonito_CTC 
, SACall, and Dorado-fast wastes a valuable, expensive resource, i.e., sequenc-
ing data, by not mapping reads to the reference genome due to basecalling inaccura-
cies during basecalling. If a read is flagged as unmapped during read mapping, then 
this read is excluded from all the following analysis steps affecting the overall down-
stream analysis results. Fifth, for each dataset, we find that the ratio of the number of 
mapped bases to the number of mapped reads and the average length of the reads are 
mainly similar across all basecallers (Additional file 1: Table S2), while Causalcall 
has a substantially lower ratio for the human genome. This mainly indicates that una-
ligned bases across basecallers are mainly shared within the mapped reads, resulting 
in a similar number of mapped reads with similar average lengths as well as the ratio. 
We conclude that RUBICALL reads provides the highest-quality read mapping results 
with the largest number of mapped bases and mapped reads.

SkipClip analysis

Figure  9 shows the effect of SkipClip on validation accuracy using three different 
strides at which we remove a skip connection from a block, i.e., the epoch interval at 
which SkipClip removes a skip connection from a block. We use our QABAS-designed 
model that has five blocks of skip connections. We highlight the number of epochs 
needed to remove all the skip connections for different strides. For example, Stride 
1 requires five epochs to remove all the skip connections, while Stride 3 requires 15 
epochs. We make three observations. First, Stride 1 converges faster to the baseline 
accuracy compared to Stride 2 and Stride 3. By using Stride 1, we quickly 
remove all the skip connections (in five epochs) giving enough fine-tuning iterations for 
the model to recover its loss in accuracy. Second, all the strides show the maximum drop 
in accuracy (1.27–2.88%) when removing skip connections from block 1 and block 4. 
We observe these blocks consist of the highest number of neural network model param-
eters due to the skip connections (30.73% and 25.62% of the total model parameters are 
present in skip connections in block 1 and block 4, respectively). Therefore, the model 

Fig. 9 Effect of different strides while removing skip connections
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requires more training epochs to recover its accuracy after the removal of skip connec-
tions from these blocks. Third, a lower stride can get rid of skip connections faster than 
using a higher stride. However, all strides eventually converge to the baseline accuracy at 
the expense of more training iterations. We conclude that SkipClip provides an effi-
cient mechanism to remove hardware-unfriendly skip connections without any loss in 
basecalling accuracy.

Effect of pruning RUBICALL

Figure 10 shows the effect of pruning RUBICALL using two different pruning methods: 
unstructured element pruning and structured channel pruning.

We make four major observations. First, we can remove up to 15% and 5% of model 
parameters providing 1.18% and 1.05% reductions in model size without any loss in 
accuracy by using unstructured pruning and structured pruning, respectively. However, 
unstructured pruning is unsuitable for hardware acceleration due to irregular structure, 
and structured pruning provides minimal model size (or parameters) savings. Therefore, 
we do not apply these pruning techniques to optimize RUBICALL further. Second, we 
observe a drop in accuracy for pruning levels greater than 15% and 5% for unstructured 
and structured pruning, respectively. This shows that QABAS found an optimal architec-
ture as there is little room for pruning RUBICALL further without loss in accuracy.

Third, we observe that the knee point for unstructured pruning and structured prun-
ing lies at 90% and 50%, where we achieve 80.65% and 70.10% of accuracy with 9.99× and 
1.99× savings model size, respectively. After the knee point, we observe a sharp decline 
in accuracy. Fourth, below the knee point, we can trade accuracy for speed to further 
accelerate RUBICALL for hardware computation and resources by removing unimpor-
tant network weights. We conclude that pruning provides a tradeoff between accuracy 
and model size that can lead to further reductions in processing and memory demands 
for RUBICALL, depending on the type of device on which genomic analyses would be 
performed.

Explainability into QABAS results

We perform an explainability analysis to understand our results further and explain 
QABAS’s decisions. The search performed by QABAS provides insight into whether 
QABAS has learned meaningful representations in basecalling. In Fig.  11a and b, we 
extract the number of model parameters and precision of each parameter in a neural 
network layer to calculate the total size for each layer for Bonito_CTC  and RUBI-
CALL-MP, respectively. We highlight each layer’s precision (i.e., weights and activation 

Fig. 10 Effect of pruning RUBICALL on: (a) validation accuracy and (b) model size
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precision) using distinct colors. Our range includes floating-point (i.e., fp32) computa-
tion to integer computation (i.e., int16, int8, and int4) for weight and activation. 
Based on our experiments in the “Effect of quantization”  section, we restrict the pre-
cision of weight and activation in RUBICALL-MP architecture in QABAS to int8 and 
int4, respectively. We compare RUBICALL-MP to Bonito_CTC  as it has the same 
backend (i.e., Quartznet [49]) and is designed by ONT experts. We make three obser-
vations. First, QABAS uses more bits in the initial layers than the final layers in RUBI-
CALL-MP. QABAS learns that the input to RUBICALL uses an analog squiggle that 
requires higher precision, while the output is only the nucleotide bases (A, C, G, T), 
which can be represented using lower precision.

Second, RUBICALL uses 1.97× less number of neural network layers than Bonito_
CTC  while providing similar or higher basecalling accuracy on the evaluated species 
(“Basecalling accuracy” section). Thus, the superior performance of a basecaller archi-
tecture is not explicitly linked to its model complexity, and QABAS-designed models are 
parameter efficient. Third, Bonito_CTC  uses the same single-precision floating-point 
representation (FP32) for all neural network layers, which leads to very high memory 
bandwidth and processing demands, whereas RUBICALL has every layer quantized to a 
different quantization domain. We conclude that QABAS provides an efficient automated 
method for designing more efficient and hardware-friendly genomic basecallers com-
pared to expert-designed basecallers.

Discussion
We are witnessing a tremendous transformation in high-throughput sequencing to sig-
nificantly advance omics and other life sciences. The bioinformatics community has 
developed a multitude of software tools to leverage increasingly large and complex 
sequencing datasets. Deep learning models have been especially powerful in modeling 
basecalling.

Importance of basecalling

Basecalling is the most fundamental computational step in the high-throughput 
sequencing pipeline. It is a critical problem in the field of genomics, and it has a sig-
nificant impact on downstream analyses, such as variant calling and genome assembly. 
Improving the efficiency of basecalling has the potential to reduce the cost and time 

Fig. 11 Layer size comparison for basecallers: a Bonito_CTC  and b RUBICALL-MP 



Page 17 of 29Singh et al. Genome Biology           (2024) 25:49  

required for genomic analyses, which has practical implications for real-world applica-
tions. RUBICALL offers a valuable alternative for researchers and practitioners who seek 
a balance between accuracy and speed. By maintaining competitive accuracy levels while 
significantly improving speed, our framework addresses the needs of various applica-
tions with stringent time constraints, ultimately benefiting a broader range of users. We 
believe that RUBICON provides a significant improvement over existing methods, and it 
has practical implications for the genomics community.

Need to improve the throughput of basecallers

Increasing throughput and reducing model size is critical because of the following three 
reasons. First, current basecallers already have high accuracy, but biologists do not pay 
attention to the throughput implications of using large deep learning-based models [30]. 
We observe researchers building larger and larger basecallers in an attempt to gain more 
accuracy without heeding to the disproportionately higher amount of power these base-
callers are consuming. Moreover, none of the previous basecallers  [28, 29, 39–42, 44, 
72] have been optimized for mixed-precision execution to reduce energy consumption. 
As energy usage is proportional to the size of the network, energy-efficient basecalling 
is essential to enable the adoption of more and more sophisticated basecallers. Second, 
speed is critical in certain applications and use cases, particularly those that require real-
time or near-real-time processing. RUBICON addresses these needs by focusing on hard-
ware optimization and efficient implementation, ultimately enabling faster basecalling 
and potentially opening up new possibilities for applications with stringent time con-
straints. Third, as deep learning techniques and hardware continue to evolve, the balance 
between accuracy and speed/energy will remain an important aspect of model develop-
ment. RUBICON provides a foundation for future research and innovation in hardware-
friendly deep learning models for genomic basecalling.

Evaluating RUBICON on other platforms

All the state-of-the-art basecallers and RUBICON use high-level libraries, such as 
PyTorch or TensorFlow, which abstract the hardware architecture and provide a uni-
fied interface for deep learning computations. These libraries work out-of-the-box for 
AMD GPUs and are equally optimized for them. Currently, high-level libraries do not 
provide capabilities to exploit low-precision tensor cores available on the latest GPUs. 
As a result, existing basecallers take advantage of comparable architectural capabilities 
regardless of the specific GPU employed. Therefore, the hardware and software optimi-
zations are at the same level for all supported GPU-based platforms.

Automating basecaller generation process

Modern basecallers generally employ convolution neural networks to extract features 
from raw genomic sequences. However, designing a basecaller comes with a cost that a 
neural network model can have many different computational elements making the neu-
ral network tuning a major problem. At present, the vast majority of deep learning-based 
basecallers are manually tuned by computational biologists through manual trial and 
error, which is time-consuming. To a large extent, basecallers are being designed to pro-
vide higher accuracy without considering the compute demands of such networks. Such 
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an approach leads to computationally complex basecallers that impose a substantial bar-
rier to performing end-to-end time-sensitive genomic analyses. This vast dependence 
of computational biologists and biomedical researchers on these deep learning-based 
models creates a critical need to find efficient basecalling architectures optimized for 
performance.

During our evaluation, we ran QABAS for 96 GPU hours to sample architectures from 
our search space. Using complete sampling to evaluate all the 1.8×1032 viable options 
would take at least ∼4.3×1033 GPU hours. Thus, QABAS accelerates the basecaller archi-
tecture search to develop high-performance basecalling architectures. The final model 
architecture can be further fine-tuned for other hyperparameters [73, 74], such as learn-
ing rate and batch size (for example, with grid search or neural architecture search). 
Throughout our experiments, we build general-purpose basecalling models by training 
and testing the model using an official, open-source ONT dataset that consists of a mix 
of different species. We did not specialize basecalling models for a specific specie. Past 
works, such as [28], show that higher basecalling accuracy can be achieved by building 
species-specific models.

Extending RUBICON

RUBICON’s modular design allows for the incorporation of additional layers or tech-
niques, such as RNN, LSTM, and Transformers, to potentially increase accuracy further. 
We focus on convolution-based networks because (a) matrix multiplication is the funda-
mental operation in such networks that is easily amenable to hardware acceleration; (b) 
the training and inference of RNN and LSTM models inherently involve sequential com-
putation tasks, which poses a challenge for their acceleration on contemporary hardware 
such as GPUs and field-programmable gate arrays (FPGAs)  [75–83]; and (c) trans-
former-based models are typically composed of multiple fully connected layers, which 
can be supported in RUBICON by modifying convolutional layers for improved compu-
tational efficiency and performance [84]. As future work, QABAS can be extended in two 
ways: (1) evaluate advance model architectures (such as RNN, transformer) and (2) per-
form more fine-grain quantization. First, extending QABAS to other model architectures 
is important for researchers to quickly evaluate different computational elements. As 
the field of machine learning is rapidly evolving, it is non-trivial for researchers to adapt 
their models with the latest deep learning techniques. Second, currently, we perform 
mixed precision quantization, where every layer is quantized to a different domain. In 
the future, we can quantize every dimension of the weights to different precision. Such 
an approach would increase the design space of neural network architectural options to 
many folds. QABAS enables easy integration to explore such options automatically. Thus, 
QABAS is easily extensible and alleviates the designer’s burden in exploring and find-
ing sophisticated basecallers for different hardware configurations. We would explore 
two future directions for pruning a basecaller. First, currently, we perform one-shot 
pruning, whereby we prune the model once and then fine-tune the model until conver-
gence. Another approach could be to perform iterative pruning, where after every train-
ing epoch, we can re-prune the model using certain pruning criteria. Such an approach 
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would further evaluate the fine-grained pruning limit of a basecaller. Second, an inter-
esting future direction would be to combine multiple pruning techniques, e.g., struc-
tured channel pruning with structured group pruning (where we maintain the structure 
of the tensors without causing sparsity). Such an approach could lead to higher pruning 
ratios without substantial accuracy loss.

Importance of RUBICALL beyond basecalling

For SkipClip, we demonstrate its applicability on basecalling only, while there are 
other genome sequencing tasks where deep learning models with skip connections are 
actively being developed, such as predicting the effect of genetic variations  [72, 85], 
detecting replication dynamics  [86], and predicting super-enhancers  [87]. In Addi-
tional file 1: Section S1, we show the effect of manual skip removal, where we manually 
remove all the skip connections at once. We observe that the basecaller achieves 90.55% 
accuracy (4.08% lower than the baseline model with skip connections). By manual skip 
removal, the basecaller is unable to recover the loss in accuracy because CNN-based 
basecallers are sensitive to skip connections. Therefore, SkipClip provides a mecha-
nism to develop hardware-friendly deep learning models for other genomic tasks.

Separation between QABAS and SkipClip

Both QABAS and SkipClip share the overarching objective of creating a compact base-
calling network without compromising accuracy. However, they approach this goal from 
distinct perspectives and employ different optimization tools. The following three points 
justify the separation of the two methods. First, skip connections are integral to stable 
model training, and by retaining them during the initial QABAS phase, we ensure effec-
tive training of the final basecalling network. The subsequent application of SkipClip 
allows for the controlled removal of skip connections, contributing to a more robust 
solution. Second, QABAS might find an architecture with skip connections, whereas 
SkipClip employs knowledge distillation for skip connection removal, addressing a 
specific aspect not efficiently handled by QABAS alone. Third, unlike SkipClip, QABAS 
tailors the neural network architecture for hardware efficiency without relying on a 
teacher network. The teacher network provides an upper bound on the achievable accu-
racy. Therefore, this two-step approach optimally combines the strengths of NAS and 
knowledge distillation, ensuring a comprehensive and effective optimization process for 
a compact and efficient basecalling model.

Conclusion
Nanopore sequencing generates noisy electrical signals that require conversion into a 
standard DNA nucleotide base string through a computational process known as base-
calling. Efficient basecalling is crucial for subsequent genome analysis steps. Current 
basecalling approaches often neglect computational efficiency, resulting in slow, ineffi-
cient, and resource-intensive basecallers. To address this, we present RUBICON, a frame-
work designed for creating hardware-optimized basecallers. RUBICON introduces two 
novel machine-learning techniques: QABAS, an automatic architecture search for com-
putation blocks and optimal bit-width precision, and SkipClip, a dynamic skip con-
nection removal module that significantly reduces resource and storage requirements 
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without sacrificing basecalling accuracy. We demonstrate the capabilities of QABAS and 
SkipClip by designing RUBICALL, the first hardware-optimized basecaller, demon-
strates fast, accurate, and efficient basecalling, achieving ∼6.88× reductions in model 
size with 2.94× fewer neural network parameters compared to an expert designed base-
caller. We believe our open-source implementations of RUBICON will inspire advance-
ments in genomics and omics research and development.

Methods
Evaluation setup

Table  2 provides our system details. We evaluate RUBICALL using (1) AMD MI210 
GPU  [68] (RUBICALL-FP) using floating-point precision computation and (2) Versal 
ACAP VC2802 [64], a cutting-edge spatial vector computing system from AMD-Xilinx 
(RUBICALL-MP) using mixed-precision computation. The Versal ACAP VC2802 fea-
tures Versal AI Engine ML (AIE-ML) [64] with 304 cores. The AIE-ML vector datapath 
implements two-dimensional single instruction, multiple data (SIMD)  [88] operations 
using precisions ranging from int4×int8 to int16×int16 operands that can execute 512 
to 64 multiply-accumulate operations (MACs) per cycle, respectively. With its many dif-
ferent datatype precision options, AIE-ML acts as a suitable platform to demonstrate 
the benefits of a mixed precision basecaller. We train all the basecallers (Causalcall, 
Bonito_CRF-fast, Bonito_CTC , SACall, and Dorado-fast) using the same 
MI50 GPU. We use ONNX (Open Neural Network Exchange)  [89] representation to 
evaluate the performance on AIE-ML by calculating bit operations (BOPs) [90], which 
measures the number of bitwise operations in a given network, taking into account the 
total number of supported operations per datatype on AIE-ML.

QABAS setup details

We use the publicly available ONT dataset  [62] sequenced using MinION Flow Cell 
(R9.4.1) for the training and validation during the QABAS search phase. The dataset 
comprises 1,221,470 reads, all sequenced from complete genomes. This ONT training 
dataset has an approximate list of 496 unique taxonomic IDs using the Kraken2  [100] 
taxonomic classification system [101]. We randomly select 30k samples from the training 
set for the search phase (specified using the —chunks parameter). We use nni [102] with 
nn-meter [103] to implement hardware-aware NAS. We use the Brevitas library [104] to 

Table 2 System parameters and hardware configuration for the CPU, GPU and the AMD-Xilinx Versal 
ACAP

CPU AMD EPYC 7742 [91]

@2.25GHz, 4-way SMT [92]

Cache‑Hierarchy 32× 32 KiB L1-I/D, 512 KiB L2, 256 MiB L3

System memory 4×32GiB RDIMM DDR4 2666 MHz [93] PCIe 4.0 ×128

OS details Ubuntu 21.04 Hirsute Hippo [94], GNU Compiler Collection (GCC) version 10.3.0 [95]

GPU AMD Radeon Instinct™ MI210 [68] 6656 Stream Processors@1.7GHz 64GB HBM2 PCIe 
4.0 ×16, ROCm version 5.1.1 [96] NVIDIA A40 [69] 10,752 CUDA Cores@1.2GHz, 48GiB 
DRAM NVIDIA System Management Interface (NVIDIA-SMI) version 510.47.03 [97] 
NVIDIA CUDA Compiler Driver (NVCC) version 11.4 [98]

AMD‑Xilinx Versal ACAP Versal ACAP VC2802 [64], 304×AIE-ML@1GHz, 19MB local memory, Dual-Core Arm 
Cortex-A72 [99]
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perform quantization-aware training. The architectural parameters and network weights 
are updated using AdamW [105] optimizer with a learning rate of 2 e−3 , a beta value of 
0.999, a weight decay of 0.01, and an epsilon of 1 e−8 . We set the hyperparameter � to 
0.6. We choose these values based on our empirical analysis. After the QABAS search 
phase, the sampled networks are trained until convergence with knowledge distillation 
using the same ONT dataset that we use during the QABAS search phase, with a batch 
size of 64, based on the maximum memory capacity of our evaluated Mi50 GPU. We 
set knowledge distillation hyperparameters alpha ( α ) and temperature ( τ ) at 0.9 and 2, 
respectively.

QABAS search space

For the computations operations, we search for a design with one-dimensional (1D) con-
volution with ten different options: kernel size (KS) options (3, 5, 7, 9, 25, 31, 55, 75, 115, 
and 123) for grouped 1-D convolutions. We also use an identity operator that, in effect, 
removes a layer to get a shallower network. For quantization bits, we use bit-widths that 
are a factor of 2 n , where 2 < n  < 4 (since we need at least 2 bits to represent nucleo-
tides A, C, G, T and 1 additional bit to represent an undefined character in case of a 
misprediction). We use four different quantization options for weights and activations 
(<8,4>,<8,8>,<16,8>, and <16,16>). We choose these quantization levels based 
on the precision support provided by our evaluated hardware and the effect of quanti-
zation on basecalling (see the “Discussion” section). We use five different channel sizes 
with four repeats each. We choose the number of repeats based on the maximum mem-
ory capacity of our evaluated GPU. In total, we have ∼1.8× 1032 distinct model options 
in our search space M.

SkipClip details

We use Bonito_CTC  as the teacher network, while the QABAS-designed model is the 
student network. We remove skip connections with a stride 1 (using parameter —skip_
stride). Based on hyper-parameter tuning experiments (Additional file 1: Section S2), 
set knowledge distillation hyperparameters alpha ( α ) and temperature ( τ ) at 0.9 and 2, 
respectively. We use Kullback-Leibler divergence loss to calculate the loss [106].

Pruning details

We use PyTorch [107] modules for both unstructured and structured pruning [108] with 
L1-norm, i.e., prune the weights that have the smallest absolute values. We apply one-
shot pruning, where we first prune a model with a specific amount of sparsity, then train 
the model until convergence on the full ONT dataset [62].

Baseline basecallers

RUBICALL is a pure convolution-based network. We focus on convolution-based 
networks because (a) matrix multiplication is the fundamental operation in such net-
works that is easily amenable to hardware acceleration; (b) the training and inference 
of RNN and LSTM models inherently involve sequential computation tasks, which 
poses a challenge for their acceleration on contemporary hardware such as GPUs 
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and field-programmable gate arrays (FPGAs)  [75]; and (c) transformer-based mod-
els are typically composed of multiple fully connected layers, which can be supported 
in RUBICON by modifying convolutional layers for improved computational efficiency 
and performance [84]. We compare RUBICALL against five different basecallers: (1) 
Causalcall [38] is a state-of-the-art basecaller with skip connections, (2) Bonito_
CRF-fast [62] v0.6.2 is a recurrent neural network (RNN)-based version of basecaller 
from ONT that is optimized for throughput for real-time basecalling on Nanopore 
devices, (3) Bonito_CTC   [62] v0.6.2 is convolutional neural network (CNN)-based 
hand-tuned basecaller from ONT, (4) SACall  [43] is a transformer-based basecaller 
that uses an attention mechanism for basecalling, and (5) Dorado-fast [109] v0.4.0 
is a LibTorch  [110] version of Bonito_CRF-fast from ONT. Dorado-fast uses 
the same model architecture as Bonito_CRF-fast and uses the Bonito framework 
for model training. Causalcall and Bonito_CTC  uses the same backend structure 
as RUBICALL (i.e., Quartznet  [49]). We are aware of other basecallers such as Hal-
cyon [42], Helix [40], and Fast-bonito [41]. However, these basecallers are either 
not open-source or do not provide training code with support for specific read formats.

Basecalling reads

To evaluate basecalling performance, we use a set of reads generated using a MinION 
R9.4.1 flowcell. We use only R9 chemistry datasets as, currently, ONT does not provide a 
suitable public training dataset for R10 chemistry. They offer in-house trained R10 mod-
els that cannot be employed for a consistent evaluation across all basecallers. R9 and R10 
chemistries involve distinct generations of nanopore technologies, including different 
pore proteins and read lengths. Therefore, models trained on R9 chemistry are incom-
patible for inference on R10 sequenced datasets. Due to these technical constraints, our 
study is currently limited to utilizing the available R9 chemistry training dataset from 
ONT and conducting inference exclusively on R9 chemistry datasets. Table 3 provides 
details on different organisms used in our evaluation. We use several bacterial species 
and the human genome. For Human HG002, we use 3 × depth of coverage.

Table 3 Details of datasets used in evaluation

Organism Chemistry # Reads Reference 
Genome Size 
(bp)

Acinetobacter pittii 16-377-0801 R9.4.1 4467 3,814,719

Haemophilus haemolyticus M1C132_1 R9.4 8669 2,042,591

Klebsiella pneumoniae INF032 R9.4 15,154 5,111,537

Klebsiella pneumoniae INF042 R9.4 11,278 5,337,491

Klebsiella pneumoniae KSB2_1B R9.4 15,178 5,228,889

Klebsiella pneumoniae NUH29 R9.4 11,047 5,134,281

Serratia marcescens 17-147-1671 R9.4.1 16,847 5,517,578

Staphylococcus aureus CAS38_02 R9.4.1 16,742 2,902,076

Stenotrophomonas maltophilia 17_G_0092_Kos R9.4 16,010 4,802,733

Human HG002 R9.4.1 300,000 2,947,743,500
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Prior to basecalling, raw nanopore signals undergo a preprocessing pipeline to prepare 
them for input into the neural network. Raw nanopore signals, which can be hundreds of 
thousands of data points long, are normalized to ensure consistent input characteristics 
for the subsequent processing steps. We use empirically determined normalization scal-
ing factors from ONT’s Bonito_CTC  basecaller. The normalized signals are chunked 
into smaller segments, typically with overlapping regions. The chunk size and overlap 
are empirically set to 4000 bps and 500, respectively. Chunk size affects the balance 
between processing speed and accuracy. Smaller chunk sizes can lead to more accurate 
basecalling but may require more computational resources and time. Larger chunk sizes 
may be faster but can potentially introduce errors if the signal varies significantly within 
the chunk. Overlap represents the degree to which consecutive chunks share data with 
each other. Overlapping chunks can help mitigate the potential issues caused by abrupt 
changes in the signal at chunk boundaries. It allows for a smoother transition between 
chunks, reducing the chances of missing important information in the signal. However, 
a larger overlap may increase computational demands and processing time. After base-
calling, the basecalled sequences obtained from individual signal segments are stitched 
back together to reconstruct the entire nucleotide sequence. The stitched sequences are 
then decoded to obtain the final basecalled sequences. We use the beam-search decod-
ing [111] method to obtain the final basecalled sequences from stitched segments.

Basecaller evaluation metrics

We evaluate the performance of RUBICALL using two different metrics: (1) basecalling 
throughput (kbp/sec), i.e., the throughput of a basecaller in terms of kilo basepairs gener-
ated per second, and (2) basecalling accuracy (%), i.e., the total number of bases of a read 
that are exactly matched to the bases of the reference genome divided by the total length of 
its alignment including insertions and deletions. We measure the basecalling throughput 
for the end-to-end basecalling calculations, including reading FAST5 files and writing out 
FASTQ or FASTA file using Linux /usr/bin/time -v command. For basecalling accuracy, 
we align each basecalled read to its corresponding reference genome of the same species 
using the state-of-the-art read mapper, minimap2 [112]. We use Rebaler  [113] to gener-
ate a consensus sequence from each basecalled read set, which replaces portions of the 
reference genome with read-derived sequences. The assembled genome is then polished 
with multiple rounds of Racon [114]. This results in an assembled genome that accurately 
represents the original data while minimizing potential errors introduced by the reference.

Downstream analysis

We evaluate the effect of using RUBICALL and other baseline basecallers on two widely 
used downstream analyses, de novo assembly [115] and read mapping [116].

De novo assembly

We construct de novo assemblies from the basecalled reads and calculate the statistics 
related to the accuracy, completeness, and contiguity of these assemblies. To generate 
de novo assemblies, we use minimap2 [112] to report all read overlaps and miniasm [47] 
to construct the assembly from these overlaps. We use miniasm because it allows 
us to observe the effect of the reads on the assemblies without performing additional 
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error correction steps on input reads  [117] and their final assembly  [34]. To measure 
the assembly accuracy, we use dnadiff [118] to evaluate (1) the portion of the reference 
genome that can align to a given assembly (i.e., Genome Fraction), (2) the average iden-
tity of assemblies (i.e., Average Identity) when compared to their respective reference 
genomes, and (3) insertions and deletions of nucleotides (or bases) in the sequence when 
compared to a reference or other sequences. ( i.e., Total Indels and Indel Ratio (%)). Total 
indels represents the sum of all the insertions and deletions in the assembled sequence 
when compared to a reference or other sequences. The indel ratio is a measure of the rel-
ative abundance of indels compared to the total length of the assembled sequence (cal-
culated using total indels/assembly length) × 100. This metric helps to understand the 
proportion of the assembly that contains insertions and deletions. To measure statistics 
related to the contiguity and completeness of the assemblies, such as the overall assem-
bly length, average GC content (i.e., the ratio of G and C bases in an assembly), and 
NG50 statistics (i.e., shortest contig at the half of the overall reference genome length), 
we use QUAST  [119]. We assume that the reference genomes are high-quality repre-
sentative of the sequenced samples that we basecall the reads from when comparing 
assemblies to their corresponding reference genomes. The higher the values of the aver-
age identity, genome fraction, and NG50 results, the higher the quality of the assembly 
and, hence, the better the corresponding basecaller. When the values of the average GC 
and assembly length results are closer to that of the corresponding reference genome, 
the better the assembly and the corresponding basecaller. We use Inspector [120] to cal-
culate the overall quality value (QV) of an assembly. The QV score is determined by con-
sidering structural and small-scale errors in proportion to the total number of base pairs 
in the assemblies. High-quality sequences have higher QV scores, indicating a low prob-
ability of sequencing errors, while low-quality sequences have lower QV scores, suggest-
ing a higher likelihood of errors.

Read mapping

We basecall the raw electrical signals into reads using each of the subject basecallers. We 
map the resulting read set to the reference genome of the same species using the state-
of-the-art read mapper, minimap2  [112]. We use the default parameter values for map-
ping ONT reads using the preset parameter -x map-ont. We use the stats tool from the 
SAMtools library [121] to obtain four key statistics on the quality of read mapping results, 
the total number of mismatches, the total number of mapped bases, the total number of 
mapped reads, and the total number of unmapped reads. We normalize the total number of 
base mismatches and the total number of mapped bases using the total number of bases in 
the reads, while for the total number of mapped reads and the total number of unmapped 
reads, we normalize using the total number of reads.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 024- 03181-2.

Additional file 1. Supplementary notes S1-S6, Figs. S1-S9, and Tables S1-S3.

Additional file 2. Review history.

https://doi.org/10.1186/s13059-024-03181-2


Page 25 of 29Singh et al. Genome Biology           (2024) 25:49  

Acknowledgements
We thank the SAFARI Research Group members for their valuable feedback and the stimulating intellectual and scholarly 
environment they provide. SAFARI Research Group acknowledges the generous gifts of their industrial partners, includ-
ing Google, Huawei, Intel, Microsoft, VMware, and AMD. This research was partially supported by the Semiconductor 
Research Corporation. SAFARI Research Group acknowledges support from the European Union’s Horizon program for 
research and innovation under grant agreement No. 101047160, project BioPIM. Special thanks to Alessandro Pappalardo 
for his support with quantization-aware training. We appreciate valuable discussions with Giovanni Mariani. Thanks to 
AMD for providing access to the HPC fund cluster [122].

Peer review information
Kevin Pang was the primary editor of this article and managed its editorial process and peer review in collaboration with 
the rest of the editorial team.

Review history
The review history is available as Additional file 2.

Authors’ contributions
G.S., M.A., K.D., and A.K. conceived RUBICON. G.S. designed and implemented RUBICON. G.S., C.F., and M.C. collected 
data and performed the evaluations. K.D., H.C., and O.M. supervised the work. G.S., M.A., K.D., and C.F. wrote the manu-
script. All authors reviewed and edited the manuscript. All authors analyzed the results. All authors read and approved 
the final manuscript.

Funding
Open access funding provided by Swiss Federal Institute of Technology Zurich

Availability of data and materials
The read set and reference set used in this study are part of work carried out by Wick et al. [28], which can be down-
loaded from https:// bridg es. monash. edu/ artic les/ datas et/ Raw_ fast5s/ 76761 74 and https:// bridg es. monash. edu/ artic les/ 
datas et/ Refer ence_ genom es/ 76761 35, respectively. For the human genome [123], we download reads from https:// labs. 
epi2me. io/ gm243 85_ 2020. 11/, while the reference genome is available at https:// github. com/ marbl/ HG002. All trained 
models and generated reads can be downloaded from https:// zenodo. org/ record/ 10198 815. We ensure unbiased, fair, 
and consistent evaluation by retraining all the basecallers using the official ONT dataset [62].
Source code with the instructions for reproducing the results is publicly available at GitHub [124] and Zenodo [125]. 
Scripts used to perform basecalling accuracy analysis are available at: https:// github. com/ rrwick/ Basec alling- compa rison.

Declarations

Ethics approval and consent to participate
Not applicable—ethical approval was not needed for the study, as publicly available datasets were used. No private, 
confidential, or sensitive information pertaining to individuals was utilized. Furthermore, our research did not involve any 
animal experiments.

Competing interests
Gagandeep Singh, Kristof Denolf, and Alireza Khodamoradi are affiliated with AMD. The remaining authors declare no 
competing interests.

Received: 24 April 2023   Accepted: 2 February 2024

References
 1. Ginsburg G, Phillips K. Precision medicine: from science to value. Health Aff. 2018;05(37):694–701. https:// doi. org/ 

10. 1377/ hltha ff. 2017. 1624.
 2. Aryan Z, Szanto A, Pantazi A, Reddi T, Rheinstein C, Powers W, et al. Moving genomics to routine care: an initial 

pilot in acute cardiovascular disease. Circ Genomic Precis Med. 2020;13(5):406–16. https:// doi. org/ 10. 1161/ CIRCG 
EN. 120. 002961.

 3. Clark MM, Hildreth A, Batalov S, Ding Y, Chowdhury S, Watkins K, et al. Diagnosis of genetic diseases in seriously 
ill children by rapid whole-genome sequencing and automated phenotyping and interpretation. Sci Transl Med. 
2019;11(489):eaat6177. https:// doi. org/ 10. 1126/ scitr anslm ed. aat61 77.

 4. Kingsmore SF, Smith LD, Kunard CM, Bainbridge M, Batalov S, Benson W, et al. A genome sequencing system for 
universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am J Hum Genet. 
2022;109(9):1605–19. https:// doi. org/ 10. 1016/j. ajhg. 2022. 08. 003.

 5. Ginsburg GS, Willard HF. Genomic and personalized medicine: foundations and applications. Transl Res. 
2009;154(6):277–287. Spec Issue Personalized Med. https:// doi. org/ 10. 1016/j. trsl. 2009. 09. 005. https:// www. scien 
cedir ect. com/ scien ce/ artic le/ pii/ S1931 52440 90027 46.

 6. Bloom JS, Sathe L, Munugala C, Jones EM, Gasperini M, Lubock NB, et al. Massively scaled-up testing for SARS-
CoV-2 RNA via next-generation sequencing of pooled and barcoded nasal and saliva samples. Nat Biomed Eng. 
2021;5(7):657–65. https:// doi. org/ 10. 1038/ s41551- 021- 00754-5.

 7. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, et al. Real-time, portable genome sequencing for 
Ebola surveillance. Nat Res. 2016;530(7589):228–32.

https://bridges.monash.edu/articles/dataset/Raw_fast5s/7676174
https://bridges.monash.edu/articles/dataset/Reference_genomes/7676135
https://bridges.monash.edu/articles/dataset/Reference_genomes/7676135
https://labs.epi2me.io/gm24385_2020.11/
https://labs.epi2me.io/gm24385_2020.11/
https://github.com/marbl/HG002
https://zenodo.org/record/10198815
https://github.com/rrwick/Basecalling-comparison
https://doi.org/10.1377/hlthaff.2017.1624
https://doi.org/10.1377/hlthaff.2017.1624
https://doi.org/10.1161/CIRCGEN.120.002961
https://doi.org/10.1161/CIRCGEN.120.002961
https://doi.org/10.1126/scitranslmed.aat6177
https://doi.org/10.1016/j.ajhg.2022.08.003
https://doi.org/10.1016/j.trsl.2009.09.005
https://www.sciencedirect.com/science/article/pii/S1931524409002746
https://www.sciencedirect.com/science/article/pii/S1931524409002746
https://doi.org/10.1038/s41551-021-00754-5


Page 26 of 29Singh et al. Genome Biology           (2024) 25:49 

 8. Yelagandula R, Bykov A, Vogt A, Heinen R, Özkan E, Strobl MM, et al. Multiplexed detection of SARS-CoV-2 and 
other respiratory infections in high throughput by SARSeq. Nat Commun. 2021;12(1):3132. https:// doi. org/ 10. 
1038/ s41467- 021- 22664-5. https:// europ epmc. org/ artic les/ PMC81 49640

 9. Le VTM, Diep BA. Selected insights from application of whole-genome sequencing for outbreak investigations. 
Curr Opin Crit Care. 2013;19:432–39.

 10. Nikolayevskyy V, Kranzer K, Niemann S, Drobniewski F. Whole genome sequencing of M. tuberculosis for detection 
of recent transmission and tracing outbreaks: a systematic review. Tuberculosis. 2016;98. https:// doi. org/ 10. 1016/j. 
tube. 2016. 02. 009.

 11. Meyer F, Fritz A, Deng ZL, Koslicki D, Lesker TR, Gurevich A, et al. Critical assessment of metagenome interpretation: 
the second round of challenges. Nat Methods. 2022;19(4):429–40. https:// doi. org/ 10. 1038/ s41592- 022- 01431-4.

 12. LaPierre N, Alser M, Eskin E, Koslicki D, Mangul S. Metalign: efficient alignment-based metagenomic profiling via 
containment min hash. Genome Biol. 2020;21(1):1–15.

 13. LaPierre N, Mangul S, Alser M, Mandric I, Wu N, Koslicki D, et al. MiCoP: Microbial community profiling method for 
detecting viral and fungal organisms in metagenomic samples. BMC Genomics. 2019;06(20):423. https:// doi. org/ 
10. 1186/ s12864- 019- 5699-9.

 14. Pollard MO, Gurdasani D, Mentzer AJ, Porter T, Sandhu MS. Long reads: their purpose and place. Hum Mol Genet. 
2018;27(R2):R234–41.

 15. Senol Cali D, Kim JS, Ghose S, Alkan C, Mutlu O. Nanopore sequencing technology and tools for genome 
assembly: computational analysis of the current state. Bottlenecks and Future Directions Brief Bioinform. 
2019;20(4):1542–59.

 16. Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. Opportunities and challenges in long-read sequenc-
ing data analysis. Genome Biol. 2020;21(1):1–16.

 17. Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nat Rev Genet. 
2020;21(10):597–614.

 18. Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat 
Biotechnol. 2021;39(11):1348–65.

 19. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. Nanopore sequencing and assembly of a human 
genome with ultra-long reads. Nat Biotechnol. 2018;36(4):338–45. https:// doi. org/ 10. 1038/ nbt. 4060.

 20. Gong L, Wong CH, Idol J, Ngan CY, Wei CL. Ultra-long read sequencing for whole genomic DNA analysis. JoVE. 
2019;145: e58954. https:// doi. org/ 10. 3791/ 58954. https:// www. jove. com/t/ 58954

 21. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, et al. The potential and challenges of nanopore 
sequencing. Nat Biotechnol. 2008;26(10):1146–53.

 22. Van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology. Trends Genet. 
2018;34(9):666–81.

 23. Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of age: appli-
cations and utilities for medical diagnostics. Nucleic Acids Res. 2018;46(5):2159–68.

 24. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. Nanopore sequencing and assembly of a human 
genome with ultra-long reads. Nat Biotechnol. 2018;36(4):338–45.

 25. Kchouk M, Gibrat JF, Elloumi M. Generations of sequencing technologies: from first to next generation. Biol Med. 
2017;9(3):1–8.

 26. Weirather JL, de Cesare M, Wang Y, Piazza P, Sebastiano V, Wang XJ, et al. Comprehensive comparison of Pacific 
Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Research. 
2017;6:1–32.

 27. Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the 
genomics community. Genome Biol. 2016;17(1):1–11.

 28. Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford Nanopore sequencing. 
Genome Biol. 2019;20(1):1–10.

 29. Pages-Gallego M, de Ridder J. Comprehensive benchmark and architectural analysis of deep learning models for 
nanopore sequencing basecalling. Genome Biol. 2023;24:71.

 30. Alser M, Lindegger J, Firtina C, Almadhoun N, Mao H, Singh G, et al. From molecules to genomic variations: 
accelerating genome analysis via intelligent algorithms and architectures. Comput Struct Biotechnol J. 
2022;20:4579–99.

 31. Alser M, Rotman J, Deshpande D, Taraszka K, Shi H, Baykal PI, et al. Technology dictates algorithms: recent develop-
ments in read alignment. Genome Biol. 2021;22(1):249.

 32. Zhang Yz, Akdemir A, Tremmel G, Imoto S, Miyano S, Shibuya T, et al. Nanopore basecalling from a perspective of 
instance segmentation. BMC Bioinform. 2020;21:1–9.

 33. Dias R, Torkamani A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 2019;11(1):1–12.
 34. Firtina C, Kim JS, Alser M, Senol Cali D, Cicek AE, Alkan C, et al. Apollo: a sequencing-technology-independent, 

scalable and accurate assembly polishing algorithm. Bioinformatics. 2020;36(12):3669–79.
 35. Rang FJ, Kloosterman WP, de Ridder J. From Squiggle to basepair: computational approaches for improving Nano-

pore sequencing read accuracy. Genome Biol. 2018;19(1):90. https:// doi. org/ 10. 1186/ s13059- 018- 1462-9.
 36. Mao H, Alser M, Sadrosadati M, Firtina C, Baranwal A, Cali DS, GenPIP: in-memory acceleration of genome analysis 

via tight integration of basecalling and read mapping. In: 2022 et al. 55th IEEE/ACM International Symposium on 
Microarchitecture (MICRO). IEEE; 2022. p. 710–26.

 37. Lv X, Chen Z, Lu Y, Yang Y. An end-to-end Oxford Nanopore basecaller using convolution-augmented transformer. 
In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE; 2020. p. 337–342.

 38. Zeng J, Cai H, Peng H, Wang H, Zhang Y. Akutsu T. Causalcall: Nanopore basecalling using a temporal convolu-
tional network. Front Genet; 2020. p. 1332.

 39. Perešíni P, Boža V, Brejová B, Vinař T. Nanopore base calling on the edge. Bioinformatics. 2021;37(24):4661–7.

https://doi.org/10.1038/s41467-021-22664-5
https://doi.org/10.1038/s41467-021-22664-5
https://europepmc.org/articles/PMC8149640
https://doi.org/10.1016/j.tube.2016.02.009
https://doi.org/10.1016/j.tube.2016.02.009
https://doi.org/10.1038/s41592-022-01431-4
https://doi.org/10.1186/s12864-019-5699-9
https://doi.org/10.1186/s12864-019-5699-9
https://doi.org/10.1038/nbt.4060
https://doi.org/10.3791/58954
https://www.jove.com/t/58954
https://doi.org/10.1186/s13059-018-1462-9


Page 27 of 29Singh et al. Genome Biology           (2024) 25:49  

 40. Lou Q, Janga SC, Jiang L. Helix: algorithm/architecture co-design for accelerating nanopore genome base-calling. 
In: Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques. New 
York: ACM; 2020. p. 293–304.

 41. Xu Z, Mai Y, Liu D, He W, Lin X, Xu C, et al. Fast-bonito: a faster deep learning based basecaller for Nanopore 
sequencing. Artif Intell Life Sci. 2021;1:100011.

 42. Konishi H, Yamaguchi R, Yamaguchi K, Furukawa Y, Imoto S. Halcyon: an accurate basecaller exploiting an encoder-
decoder model with monotonic attention. Bioinformatics. 2021;37(9):1211–7.

 43. Huang N, Nie F, Ni P, Luo F, Wang J. SACall: a neural network basecaller for Oxford Nanopore sequencing data 
based on self-attention mechanism. IEEE/ACM Trans Comput Biol Bioinforma. 2020;19(1):614–23.

 44. Neumann D, Reddy AS, Ben-Hur A. RODAN: a fully convolutional architecture for basecalling Nanopore RNA 
sequencing data. BMC Bioinformatics. 2022;23(1):1–9.

 45. NVIDIA. NVIDIA A10 Tensor Core GPU. https:// www. nvidia. com/ en- us/ data- center/ produ cts/ a10- gpu/. Accessed 
24 Oct 2023.

 46. Benchmarking the Oxford Nanopore Technologies basecallers on AWS. https:// aws. amazon. com/ blogs/ hpc/ 
bench marki ng- the- oxford- nanop ore- techn ologi es- basec allers- on- aws/. Accessed 24 Oct 2023.

 47. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics. 
2016;32(14):2103–10.

 48. Ulrich JU, Lutfi A, Rutzen K, Renard BY. ReadBouncer: precise and scalable adaptive sampling for Nanopore 
sequencing. Bioinformatics. 2022;38:i153–60.

 49. Kriman S, Beliaev S, Ginsburg B, Huang J, Kuchaiev O, Lavrukhin V, et al. QuartzNet: deep automatic speech 
recognition with 1D time-channel separable convolutions. In: ICASSP 2020-2020 IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2020. p. 6124–6128.

 50. Majumdar S, Balam J, Hrinchuk O, Lavrukhin V, Noroozi V, Ginsburg B. Citrinet: closing the gap between non-
autoregressive and autoregressive end-to-end models for automatic speech recognition. 2021. arXiv preprint 
arXiv: 2104. 01721.

 51. Gulati A, Qin J, Chiu CC, Parmar N, Zhang Y, Yu J, et al. Conformer: convolution-augmented transformer for speech 
recognition. 2020. arXiv preprint arXiv: 2005. 08100.

 52. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4. Inception-ResNet and the impact of residual connections 
on learning. In: Thirty-first AAAI conference on artificial intelligence, 2017.

 53. Singh G, Diamantopoulos D, Stuijk S, Hagleitner C, Corporaal H. Low precision processing for high order stencil 
computations. In: International Conference on Embedded Computer Systems. Springer; 2019. p. 403–415.

 54. Singh G, Diamantopoulos D, Hagleitner C, Gómez-Luna J, Stuijk S, Mutlu O, et al. NERO: A near high-bandwidth 
memory stencil accelerator for weather prediction modeling. In: 2020 30th International Conference on Field-
Programmable Logic and Applications (FPL). IEEE; 2020. p. 9–17.

 55. Singh G. Designing, modeling, and optimizing data-intensive computing systems, 2022. arXiv preprint arXiv: 2208. 
08886.

 56. Zoph B, Le QV. Neural architecture search with reinforcement learning, 2016. arXiv preprint arXiv: 1611. 01578.
 57. Buciluǎ C, Caruana R, Niculescu-Mizil A. Model compression. In: Proceedings of the 12th ACM SIGKDD Conference 

on Knowledge Discovery and Data Mining New York: ACM; 2006. p. 535–41.
 58. LeCun Y, Denker J, Solla S. Optimal brain damage. Adv Neural Inf Process Syst. 1989;2:598–605.
 59. Han S, Mao H, Dally WJ. Deep compression: compressing deep neural networks with pruning, trained quantization 

and Huffman coding. arXiv.  2015.
 60. Han S, Pool J, Tran J, Dally W. Learning both weights and connections for efficient neural network. Adv Neural Inf 

Process Syst. 2015;28:1135–43.
 61. Frankle J, Carbin M. The lottery ticket hypothesis: finding sparse, trainable neural networks. 2018. arXiv preprint 

arXiv: 1803. 03635.
 62. Bonito. https:// github. com/ nanop orete ch/ bonito. Accessed 24 Oct 2023.
 63. Hinton G, Vinyals O, Dean J, et al. distilling the knowledge in a neural network. 2015;2(7). arXiv preprint arXiv: 1503. 

02531.
 64. Versal ACAP AI core series product selection guide. https:// docs. xilinx. com/v/ u/ en- US/ versal- ai- core- produ ct- selec 

tion- guide. Accessed 24 Oct 2023.
 65. Kruschke JK, Movellan JR. Benefits of gain: speeded learning and minimal hidden layers in back-propagation 

networks. IEEE Trans Syst Man Cybern. 1991;21(1):273–80.
 66. Liu Z, Sun M, Zhou T, Huang G, Darrell T. Rethinking the value of network pruning. 2018. arXiv preprint arXiv: 1810. 

05270.
 67. Gale T, Elsen E, Hooker S. The state of sparsity in deep neural networks. 2019. arXiv preprint arXiv: 1902. 09574.
 68. AMD. AMD Instinct MI210 Accelerator. https:// www. amd. com/ system/ files/ docum ents/ amd- insti nct- mi210- broch 

ure. pdf. Accessed 24 Oct 2023.
 69. NVIDIA. NVIDIA A40. https:// images. nvidia. com/ conte nt/ Solut ions/ data- center/ a40/ nvidia- a40- datas heet. pdf. 

Accessed 24 Oct 2023.
 70. Ferrarini M, Moretto M, Ward JA, Šurbanovski N, Stevanović V, Giongo L, et al. An evaluation of the PacBio RS 

platform for sequencing and de novo assembly of a Chloroplast genome. BMC Genomics. 2013;14(1):670. https:// 
doi. org/ 10. 1186/ 1471- 2164- 14- 670.

 71. Chen YC, Liu T, Yu CH, Chiang TY, Hwang CC. Effects of GC Bias in next-generation-sequencing data on de novo 
genome assembly. PLoS ONE. 2013;8(4):e62856. https:// doi. org/ 10. 1371/ journ al. pone. 00628 56.

 72. Zhang Z, Park CY, Theesfeld CL, Troyanskaya OG. An automated framework for efficiently designing deep convolu-
tional neural networks in genomics. Nat Mach Intell. 2021;3(5):392–400.

 73. Singh G, Gómez-Luna J, Mariani G, Oliveira GF, Corda S, Stuijk S, et al. Napel: near-memory computing application 
performance prediction via ensemble learning. In: 2019 56th ACM/IEEE Design Automation Conference (DAC). 
IEEE; 2019. p. 1–6.

https://www.nvidia.com/en-us/data-center/products/a10-gpu/
https://aws.amazon.com/blogs/hpc/benchmarking-the-oxford-nanopore-technologies-basecallers-on-aws/
https://aws.amazon.com/blogs/hpc/benchmarking-the-oxford-nanopore-technologies-basecallers-on-aws/
http://arxiv.org/abs/2104.01721
http://arxiv.org/abs/2005.08100
http://arxiv.org/abs/2208.08886
http://arxiv.org/abs/2208.08886
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/2015
http://arxiv.org/abs/1803.03635
https://github.com/nanoporetech/bonito
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://docs.xilinx.com/v/u/en-US/versal-ai-core-product-selection-guide
https://docs.xilinx.com/v/u/en-US/versal-ai-core-product-selection-guide
http://arxiv.org/abs/1810.05270
http://arxiv.org/abs/1810.05270
http://arxiv.org/abs/1902.09574
https://www.amd.com/system/files/documents/amd-instinct-mi210-brochure.pdf
https://www.amd.com/system/files/documents/amd-instinct-mi210-brochure.pdf
https://images.nvidia.com/content/Solutions/data-center/a40/nvidia-a40-datasheet.pdf
https://doi.org/10.1186/1471-2164-14-670
https://doi.org/10.1186/1471-2164-14-670
https://doi.org/10.1371/journal.pone.0062856


Page 28 of 29Singh et al. Genome Biology           (2024) 25:49 

 74. Singh G, Nadig R, Park J, Bera R, Hajinazar N, Novo D, et al. Sibyl: adaptive and extensible data placement in hybrid 
storage systems using reinforcement learning. In: Proceedings of the 49th Annual International Symposium on 
Computer Architecture. ISCA ’22. New York, NY, USA: Association for Computing Machinery; 2022. p. 320–336. 
https:// doi. org/ 10. 1145/ 34704 96. 35274 42.

 75. Nurvitadhi E, Sim J, Sheffield D, Mishra A, Krishnan S, Marr D. Accelerating recurrent neural networks in analytics 
servers: comparison of FPGA, CPU, GPU, and ASIC. In: FPL. Lausanne: IEEE; 2016.

 76. Singh G, Alser M, Senol Cali D, Diamantopoulos D, Gómez-Luna J, Corporaal H, et al. FPGA-based near-memory 
acceleration of modern data-intensive applications. IEEE Micro. 2021;41(4):39–48. https:// doi. org/ 10. 1109/ MM. 
2021. 30883 96.

 77. Singh G, Khodamoradi A, Denolf K, Lo J, Gomez-Luna J, Melber J, et al. SPARTA: spatial acceleration for efficient and 
scalable horizontal diffusion weather stencil computation. In: Proceedings of the 37th International Conference 
on Supercomputing. New York: ACM; 2023. p. 463–76.

 78. Singh G, Diamantopoulos D, Gómez-Luna J, Hagleitner C, Stuijk S, Corporaal H, et al. Accelerating weather predic-
tion using near-memory reconfigurable fabric. ACM Trans Reconfigurable Technol Syst. 2022;15(4):1–27.

 79. Senol Cali D, Kanellopoulos K, Lindegger J, Bingöl Z, Kalsi GS, Zuo Z, et al. SeGraM: a universal hardware accelera-
tor for genomic sequence-to-graph and sequence-to-sequence mapping. In: Proceedings of the 49th Annual 
International Symposium on Computer Architecture. ISCA ’22. New York, NY, USA: Association for Computing 
Machinery; 2022. p. 638–655. https:// doi. org/ 10. 1145/ 34704 96. 35274 36.

 80. Singh G, Chelini L, Corda S, Awan AJ, Stuijk S, Jordans R, et al. A review of near-memory computing architectures: 
opportunities and challenges. In: DSD. Prague: IEEE; 2018.

 81. Singh G, Chelini L, Corda S, Awan AJ, Stuijk S, Jordans R, et al. Near-memory computing: past, present, and future. 
Microprocessors and Microsystems, Elsevier. 2019;71:1–16.

 82. Gómez-Luna J, Guo Y, Brocard S, Legriel J, Cimadomo R, Oliveira GF, et al. Evaluating machine learning workloads 
on memory-centric computing systems. In: 2023 IEEE International Symposium on Performance Analysis of 
Systems and Software (ISPASS). IEEE; 2023. p. 35–49.

 83. Singh G, Diamantopolous D, Gómez-Luna J, Stuijk S, Mutlu O, Corporaal H. Modeling FPGA-based systems via few-
shot learning. In: The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. New York: 
ACM; 2021. p. 146.

 84. Umuroglu Y, Fraser NJ, Gambardella G, Blott M, Leong P, Jahre M, et al. FINN: a framework for fast, scalable 
binarized neural network inference. In: Proceedings of the 2017 ACM/SIGDA international symposium on field-
programmable gate arrays. New York: ACM; 2017.

 85. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA-and RNA-binding 
proteins by deep learning. Nat Biotechnol. 2015;33(8):831–8.

 86. Boemo MA. DNAscent v2: detecting replication forks in Nanopore sequencing data with deep learning. BMC 
Genomics. 2021;22(1):1–8.

 87. Sabba S, Smara M, Benhacine M, Hameurlaine A. Residual neural network for predicting super-enhancers on 
genome scale. In: International Conference on Artificial Intelligence and its Applications. Springer; 2021. p. 32–42.

 88. Barnes GH, Brown RM, Kato M, Kuck DJ, Slotnick DL, Stokes RA. The ILLIAC IV Computer. IEEE Trans Comput. 
1968;100(8):746–57.

 89. Open Neural Network Exchange (ONNX). https:// github. com/ onnx/ onnx. Accessed 18 Mar 2023.
 90. Baskin C, Liss N, Schwartz E, Zheltonozhskii E, Giryes R, Bronstein AM, et al. Uniq: uniform noise injection for non-

uniform quantization of neural networks. ACM Trans Comput Syst. 2021;37(1–4):1–15.
 91. AMD EPYC 7742. https:// www. amd. com/ en/ produ cts/ cpu/ amd- epyc- 7742. Accessed 18 Mar 2023.
 92. Tullsen DM, Eggers SJ, Levy HM. Simultaneous multithreading: maximizing on-chip parallelism. In: ISCA. New York: 

ACM; 1995.
 93. RDIMM. https:// www. micron. com/ produ cts/ dram- modul es/ rdimm. Accessed 18 Mar 2023.
 94. Ubuntu 20.04.3 LTS (Focal Fossa). https:// relea ses. ubuntu. com/ 20. 04/. Accessed 18 Mar 2023.
 95. GCC, the GNU Compiler Collection. https:// gcc. gnu. org/. Accessed 18 Mar 2023.
 96. AMD. ROCm. https:// github. com/ Radeo nOpen Compu te/ ROCm. Accessed 18 Mar 2023.
 97. NVIDIA system management interface. https:// devel oper. nvidia. com/ nvidia- system- manag ement- inter face. 

Accessed 24 Oct 2023.
 98. NVIDIA CUDA compiler driver NVCC. https:// docs. nvidia. com/ cuda/ cuda- compi ler- driver- nvcc/ index. html. 

Accessed 24 Oct 2023.
 99. ARM Cortex-A72 MPCore processor technical reference manual r0p3. https:// devel oper. arm. com/ docum entat ion/ 

100095/ 0003. Accessed 24 Oct 2023.
 100. Kraken 2. https:// github. com/ Derri ckWood/ krake n2. Accessed 18 Mar 2023.
 101. Larsen ACM, Knudsen CA, Hansen MN. Palamut - an expansion of the Bonito basecaller using language models 

[Master’s thesis]. 2020. https:// proje kter. aau. dk/ proje kter/ files/ 33490 4330/ MI104 F20_ Speci ale___ Paper__ 21_. pdf. 
Accessed 24 Oct 2023.

 102. NNI. https:// github. com/ micro soft/ nni. Accessed 18 Mar 2023.
 103. nn Meter Team MR. Nn-meter: towards accurate latency prediction of deep-learning model inference on diverse 

edge devices. 2021. https:// github. com/ micro soft/ nn- Meter. Accessed 18 Mar 2023.
 104. Pappalardo A. Xilinx/brevitas. Zenodo; 2021. Available from: https:// doi. org/ 10. 5281/ zenodo. 33335 52.
 105. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv.  2014. Accessed 18 Mar 2023.
 106. KLDivLoss. https:// pytor ch. org/ docs/ stable/ gener ated/ torch. nn. KLDiv Loss. html. Accessed 18 Mar 2023.
 107. PyTorch. https:// pytor ch. org/. Accessed 18 Mar 2023.
 108. TORCH.NN. https:// pytor ch. org/ docs/ stable/ nn. html. Accessed 18 Mar 2023.
 109. ONT. Dorado. https:// github. com/ nanop orete ch/ dorado. git. Accessed 18 Mar 2023.
 110. PyTorch C++ API. https:// pytor ch. org/ cppdo cs/. Accessed 18 Mar 2023.
 111. Silvestre-Ryan J, Holmes I. Pair consensus decoding improves accuracy of neural network basecallers for nanopore 

sequencing. Genome Biol. 2021;22:1–6.

https://doi.org/10.1145/3470496.3527442
https://doi.org/10.1109/MM.2021.3088396
https://doi.org/10.1109/MM.2021.3088396
https://doi.org/10.1145/3470496.3527436
https://github.com/onnx/onnx
https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.micron.com/products/dram-modules/rdimm
https://releases.ubuntu.com/20.04/
https://gcc.gnu.org/
https://github.com/RadeonOpenCompute/ROCm
https://developer.nvidia.com/nvidia-system-management-interface
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://developer.arm.com/documentation/100095/0003
https://developer.arm.com/documentation/100095/0003
https://github.com/DerrickWood/kraken2
https://projekter.aau.dk/projekter/files/334904330/MI104F20_Speciale___Paper__21_.pdf
https://github.com/microsoft/nni
https://github.com/microsoft/nn-Meter
https://doi.org/10.5281/zenodo.3333552
http://arxiv.org/abs/2014
https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html
https://pytorch.org/
https://pytorch.org/docs/stable/nn.html
https://github.com/nanoporetech/dorado.git
https://pytorch.org/cppdocs/


Page 29 of 29Singh et al. Genome Biology           (2024) 25:49  

 112. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.
 113. Rebaler. https:// github. com/ rrwick/ Rebal er. Accessed 18 Mar 2023.
 114. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. 

Genome Res. 2017;27(5):737–46.
 115. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, et al. De novo assembly and analysis of RNA-seq 

data. Nat Methods. 2010;7(11):909–12.
 116. Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN. RNA-Seq gene expression estimation with read mapping 

uncertainty. Bioinformatics. 2010;26(4):493–500.
 117. Firtina C, Bar-Joseph Z, Alkan C, Cicek AE. Hercules: a profile HMM-based hybrid error correction algorithm for long 

reads. Nucleic Acids Res. 2018;46(21):e125–e125. https:// doi. org/ 10. 1093/ nar/ gky724.
 118. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: a fast and versatile genome align-

ment system. PLoS Comput Biol. 2018;14(1):e1005944.
 119. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 

2013;29(8):1072–5.
 120. Chen Y, Zhang Y, Wang AY, Gao M, Chong Z. Accurate long-read de novo assembly evaluation with Inspector. 

Genome Biol. 2021;22(1):1–21.
 121. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map (SAM) format and 

SAMtools. Bioinformatics. 2009;25(16):2078–9.
 122. AMD HPC Fund. https:// www. amd. com/ en/ corpo rate/ hpc- fund. html. Accessed 14 Mar 2023.
 123. Rhie A, Nurk S, Cechova M, Hoyt SJ, Taylor DJ, Altemose N, et al. The complete sequence of a human Y chromo-

some. Nature. 2023;621(7978):344–54.
 124. Singh G, Alser M, Denolf K, Firtina C, Khodamoradi A, Cavlak MB, et al. RUBICON: a framework for designing 

efficient deep learning-based genomic basecallers. 2023. https:// github. com/ Xilinx/ neura lArch itect ureRe shapi ng. 
(accessed 23 Nov 2023)

 125. Singh G, Alser M, Denolf K, Firtina C, Khodamoradi A, Cavlak MB, et al. RUBICON: a framework for designing 
efficient deep learning-based genomic basecallers. 2023. https:// zenodo. org/ recor ds/ 10549 310. Accessed 22 Jan 
2024.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/rrwick/Rebaler
https://doi.org/10.1093/nar/gky724
https://www.amd.com/en/corporate/hpc-fund.html
https://github.com/Xilinx/neuralArchitectureReshaping
https://zenodo.org/records/10549310

	RUBICON: a framework for designing efficient deep learning-based genomic basecallers
	Abstract 
	Background
	Key results

	Results
	Analyzing the state-of-the-art basecaller
	Effect of pruning
	Effect of quantization

	RUBICALL: overall trend
	Performance comparison
	Basecalling accuracy
	Downstream analysis
	De novo assembly
	Read mapping

	SkipClip analysis
	Effect of pruning RUBICALL
	Explainability into QABAS results

	Discussion
	Importance of basecalling
	Need to improve the throughput of basecallers
	Evaluating RUBICON on other platforms
	Automating basecaller generation process
	Extending RUBICON
	Importance of RUBICALL beyond basecalling
	Separation between QABAS and SkipClip

	Conclusion
	Methods
	Evaluation setup
	QABAS setup details
	QABAS search space
	SkipClip details
	Pruning details
	Baseline basecallers
	Basecalling reads
	Basecaller evaluation metrics
	Downstream analysis
	De novo assembly
	Read mapping


	Acknowledgements
	References


