
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHOD

Singh et al. Genome Biology (2024) 25:49
https://doi.org/10.1186/s13059-024-03181-2

Genome Biology

RUBICON: a framework for designing
efficient deep learning-based genomic
basecallers
Gagandeep Singh1,3, Mohammed Alser1, Kristof Denolf3, Can Firtina1* , Alireza Khodamoradi3,
Meryem Banu Cavlak1, Henk Corporaal2 and Onur Mutlu1*

Abstract

Nanopore sequencing generates noisy electrical signals that need to be converted
into a standard string of DNA nucleotide bases using a computational step called
basecalling. The performance of basecalling has critical implications for all later steps
in genome analysis. Therefore, there is a need to reduce the computation and memory
cost of basecalling while maintaining accuracy. We present RUBICON, a framework
to develop efficient hardware-optimized basecallers. We demonstrate the effectiveness
of RUBICON by developing RUBICALL, the first hardware-optimized mixed-precision
basecaller that performs efficient basecalling, outperforming the state-of-the-art
basecallers. We believe RUBICON offers a promising path to develop future hardware-
optimized basecallers.

Keywords: Genomics sequencing, Basecalling, Hardware acceleration, Machine
learning, Deep neural network

Background
The rapid advancement of genomics and sequencing technologies continuously calls for
the adjustment of existing algorithmic techniques or the development of entirely new
computational methods across diverse biomedical domains [1–13]. Modern sequencing
machines [14, 15] are capable of sequencing complex genomic structures and variants
with high accuracy and throughput using long-read sequencing technology [16]. Oxford
Nanopore Technologies (ONT) is the most widely used long-read sequencing technol-
ogy [16–21]. ONT devices generate long genomic reads, each of which has a length
ranging from a few hundred to a million base pairs or nucleotides, i.e., A, C, G, and T in
the DNA alphabet [22–26].

ONT devices sequence a genome by measuring changes to an electrical signal as a
single strand of DNA is passed through a nanoscale hole or nanopore [27]. The gener-
ated noisy electrical signal or squiggle is decoded into a sequence of nucleotides using

*Correspondence:
firtinac@ethz.ch; omutlu@ethz.ch

1 Department of Information
Technology and Electrical
Engineering, ETH Zürich, Zürich,
Switzerland
2 Department of Electrical
Engineering, Eindhoven
University of Technology,
Eindhoven, The Netherlands
3 Research and Advanced
Development, AMD, Longmont,
USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-024-03181-2&domain=pdf
http://orcid.org/0000-0002-6548-7863

Page 2 of 29Singh et al. Genome Biology (2024) 25:49

a computationally expensive step, called basecalling [18, 28–31]. Basecallers need to
address two key challenges to accurately basecall a raw sequencing input: first, provid-
ing accurate predictions of each and every individual nucleotide, as the sensors measur-
ing the changes in electrical current can only measure the effect of multiple neighboring
nucleotides together [28], and second, tolerating low signal-to-noise ratio (SNR) caused
by thermal noise and the lack of statistically significant current signals triggered by DNA
strand motions [29].

Modern basecallers use deep learning-based models to significantly (by at least 10%)
improve the accuracy of predicting a nucleotide base from the squiggle compared
to traditional non-deep learning-based basecallers [15–17, 30, 32–36]. The success of
deep learning in genome basecalling is attributed to the advances in its architecture to
model and identify spatial features in raw input data to predict nucleotides. However, we
observe the following six shortcomings with the current basecallers [32, 37–44]. First,
current state-of-the-art basecallers are slow and show poor performance on state-of-
the-art CPU and GPU-based systems, bottlenecking the entire genomic analyses. For
example, state-of-the-art throughput optimized basecaller, Dorado-fast, takes ∼2.1
h to basecall a 300-Gbps (Giga basepairs) human genome at 3 × coverage on a server-
grade GPU (NVIDIA A10G [45] GPU with 24GiB DRAM and 16× CPU with 64 GiB
DRAM) [46], while the subsequent step, i.e., read mapping, takes only a small fraction of
basecalling time (∼0.11 h using minimap2 [47]). We observe that basecalling is the sin-
gle longest stage in the genome sequencing pipeline, taking up to 43% of execution time
while the subsequent steps of overlap finding, assembly, read mapping, and polishing
take 18%, 4%, <1%, and 35% of execution time, respectively.

Second, for real-time sequencing, high basecalling throughput is a critical factor [7]. In
particular, scenarios such as field sequencing [39] and adaptive sampling [48] necessitate
rapid basecalling due to hardware limitations and the need for real-time decision-mak-
ing. Field sequencing, often conducted in remote or resource-constrained environments,
demands immediate basecalling to obtain actionable genomic information swiftly. Con-
ventional high-compute infrastructure is often unavailable or impractical in these set-
tings, underscoring the importance of an efficient basecalling process. Similarly, adaptive
sampling protocols, aiming to optimize sequencing output based on real-time analysis
of initial sequencing data, require a fast and accurate basecaller to make prompt deci-
sions regarding read continuation or rejection. Also, enhancing the speed and efficiency
of basecalling is critical for re-basecalling existing datasets using advanced, higher-accu-
racy models. By revisiting earlier data with improved basecalling algorithms, researchers
can achieve a more precise representation of the genomic sequence. Current basecall-
ers provide a tradeoff between speed and accuracy, often leading to sub-optimal perfor-
mance in real-time sequencing scenarios.

Third, since basecalling shares similarities with automatic-speech recognition
(ASR) task, many researchers have directly adapted established ASR models, such as
Quartznet [49], Citrinet [50], and Conformers [51], for basecalling without custom-
izing the neural network architecture specifically for the basecalling problem. Such an
approach might lead to higher basecalling accuracy but at the cost of large and unop-
timized neural network architecture. For example, Bonito_CTC , an expert-designed
convolutional neural network (CNN)-based version of Bonito from ONT, has ∼ 10

Page 3 of 29Singh et al. Genome Biology (2024) 25:49

million model parameters. We show in the “Effect of pruning” section that we can elimi-
nate up to 85% of the model parameters to achieve a 6.67× reduction in model size with-
out any loss in basecalling accuracy. Therefore, current basecalling models are costly to
run, and the inference latency becomes a major bottleneck.

Fourth, modern basecallers are typically composed of convolution layers with skip con-
nections1 [52] (allow reusing of activations from previous layers) that creates two major
performance issues: (a) skip connections increase the data lifetime: the layers whose
activations are reused in future layers must either wait for this reuse to occur before
accepting new input or store the activations for later use by utilizing more memory.
Thus, leading to high resource and storage requirements; and (b) skip connections often
need to perform additional computation to match the channel size at the input of the
non-consecutive layer, which increases the number of model parameters, e.g., Bonito_
CTC requires ∼21.7% additional model parameters due to the skip connections.

Fifth, current basecallers use floating-point precision (32 bits) to represent each neu-
ral network layer present in a basecaller. This leads to high bandwidth and processing
demands [53–55]. Thus, current basecallers with floating-point arithmetic precision
have inefficient hardware implementations. We observe in the “Effect of quantiza-
tion” section that the arithmetic precision requirements of current basecallers can be
reduced ∼4× by adjusting the precision for each neural network layer based on the target
hardware and desired accuracy.

Sixth, basecallers that provide higher throughput have lower basecalling accuracy. For
example, we show in the “RUBICALL: overall trend” section and Additional file 1: Sec-
tion S4 that Bonito_CRF-fast provides up to 51.65× higher basecalling performance
using 36.96× fewer model parameters at the expense of the 5.37% lower basecalling
accuracy compared to most accurate basecaller.

These six problems concurrently make basecalling slow, inefficient, and memory-hun-
gry, bottlenecking all genomic analyses that depend on it. Therefore, there is a need to
reduce the computation and memory cost of basecalling while maintaining their per-
formance. However, developing a basecaller that can provide fast runtime performance
with high accuracy requires a deep understanding of genome sequencing, machine
learning, and hardware design. At present, computational biologists spend significant
time and effort to design and implement new basecallers by an extensive trial-and-error
process.

Our goal is to overcome the above issues by developing a comprehensive framework
for specializing and optimizing a deep learning-based basecaller that provides high effi-
ciency and performance.

To this end, we introduce RUBICON, the first framework for specializing and optimiz-
ing a machine learning-based basecaller. RUBICON uses two machine learning tech-
niques to develop hardware-optimized basecallers that are specifically designed for
basecalling. First, we propose QABAS, a quantization-aware basecalling architecture
search framework to specialize basecaller architectures for hardware implementation
while considering hardware performance metrics (e.g., latency, throughput). QABAS

1 A skip connection allows to skip some of the layers in the neural network and feeds the output of one layer as the input
to the next layers.

Page 4 of 29Singh et al. Genome Biology (2024) 25:49

uses neural architecture search (NAS) [56] to evaluate millions of different basecaller
architectures. As discussed in Additional file 1: Section S1, during the basecaller neural
architecture search, QABAS quantizes the neural network model by exploring and find-
ing the best bit-width precision for each neural network layer, which largely reduces the
memory and computational complexity of a basecaller. Adding quantization to the base-
caller neural architecture search dramatically increases the model search space (∼6.72×
1020 more viable options in our search space). However, jointly optimizing basecalling
neural network architecture search and quantization allows us to develop accurate base-
caller architectures that are optimized for hardware acceleration. Second, we develop
SkipClip to remove all the skip connections present in modern basecallers to reduce
resource and storage requirements without any loss in basecalling accuracy. SkipClip
performs a skip removal process using knowledge distillation [57], as shown in Addi-
tional file 1: Fig. S2 in Additional file 1: Section S2, where we train a smaller network
(student) without skip connections to mimic a pre-trained larger network (teacher) with
skip connections. Figure 1 shows the key components of RUBICON. It consists of four
modules. QABAS () and SkipClip () are two novel techniques that are specifically
designed for specializing and optimizing machine learning-based basecallers. RUBICON
provides support for Pruning (), which is a popular model compression technique
where we discard network connections that are unimportant to neural network perfor-
mance [58–61]. We integrate Training () module from the official ONT basecalling
pipeline [62]. For both the Pruning and Training modules, we provide the capability
to use knowledge distillation [57, 63] for faster convergence and to increase the accuracy
of the designed basecalling network.

Key results

We demonstrate the effectiveness of RUBICON by developing RUBICALL, the first hard-
ware-optimized mixed-precision basecaller that performs efficient basecalling, outper-
forming the state-of-the-art basecallers. Additional file 1: Fig. S5 in Additional file 1:
Section S2 shows the RUBICALL architecture. We compare RUBICALL to five differ-
ent basecallers. We demonstrate six key results. First, RUBICALL provides, on average,
2.85% higher basecalling accuracy with 3.77× higher basecalling throughput compared
to the fastest basecaller. Compared to an expert-designed basecaller, RUBICALL pro-
vides 128.13× higher basecalling throughput without any loss in basecalling accuracy by
leveraging mixed precision computation when implemented on a cutting-edge spatial
vector computing system, i.e., the AMD-Xilinx Versal AIE-ML [64]. Second, we show
that QABAS-designed models are 5.74× smaller in size with 2.41× fewer neural network

Fig. 1 Overview of RUBICON framework

Page 5 of 29Singh et al. Genome Biology (2024) 25:49

model parameters than an expert-designed basecaller. Third, by further using our Skip-
Clip approach, RUBICALL achieves a 6.88× and 2.94× reduction in neural network
model size and the number of parameters, respectively. Fourth, we show in Additional
file 1: Section S4 that compared to the most accurate state-of-the-art basecaller (i.e.,
Bonito_CRF-sup), RUBICALL provides 185.54× speedup using 19.22× lower param-
eters at the expense of, on average, 2.47% lower accuracy. Fifth, assemblies constructed
using reads basecalled by RUBICALL lead to higher quality, more contiguous, and more
complete assemblies for all evaluated species than that provided by other basecallers.
Sixth, RUBICALL provides a 1.82–26.49% lower number of base mismatches with the
largest number of mapped bases and mapped reads compared to the baseline basecaller.
Our experimental results on state-of-the-art computing systems show that RUBICALL is
a fast, memory-efficient, and hardware-friendly basecaller. RUBICON can help research-
ers develop hardware-optimized basecallers that are superior to expert-designed models
and can inspire independent future ideas.

Results
Analyzing the state‑of‑the‑art basecaller

We observe established automatic-speech recognition (ASR) models being directly
applied to basecalling without optimizing it for basecalling. Such an approach leads to
large and unoptimized basecaller architectures. We evaluate the effect of using two pop-
ular model compression techniques on the Bonito_CTC basecaller: (1) pruning and (2)
quantization.

Effect of pruning

We show the effect of pruning Bonito_CTC on the validation accuracy and model
size in Fig. 2a and b, respectively. Pruning is a model compression technique where we
discard network connections that are unimportant to network performance without
affecting the inference accuracy [58–61]. We use unstructured element pruning and
structured channel pruning with different degrees of sparsity. Unstructured or element
pruning is a fine-grain way of pruning individual weights in a neural network without
applying any pruning constraints. While in structured pruning, we remove a larger set of
weights while maintaining a dense structure of the model [65, 66].

We make three major observations. First, pruning up to 85% of the Bonito_CTC
model weights using unstructured pruning reduces the model size by 6.67× while

Fig. 2 Effect of pruning the elements and channels of Bonito_CTC using unstructured and structured
pruning, respectively, on a validation accuracy and b model size

Page 6 of 29Singh et al. Genome Biology (2024) 25:49

maintaining the same accuracy as the baseline, unpruned Bonito_CTC model.
Unstructured pruning leads to the highest model compression [67] at the cost of having
sparse weights structure that is unsuitable for acceleration on any hardware platform.
While pruning 30–40% of the Bonito_CTC model filters, using structured pruning
reduces the model size by 1.46–1.66× while maintaining the same accuracy of the base-
line, unpruned Bonito_CTC model. Such a high pruning ratio shows that most of the
weights are redundant and do not contribute to the actual accuracy. Second, after prun-
ing 97% (60%) of the model weights, Bonito_CTC provides 81.20% (72.66%) basecalling
accuracy while using 33.33× (2.62×) smaller model using unstructured pruning (struc-
tured pruning). Third, the knee point2 for unstructured pruning and structured pruning
is at 98% and 60% where Bonito_CTC provides 65.14% and 72.66% of basecalling accu-
racy, respectively. Beyond the knee-point, Bonito_CTC loses its complete prediction
power. We conclude that Bonito_CTC is over-parameterized and contains redundant
logic and features.

Effect of quantization

Figure 3 shows the effect of using a quantized model to basecall on the basecalling accu-
racy for four different species. In Fig. 4, we show the effect of quantization on the model
size. We quantize both the weight and activation using six different bit-width configu-
rations (<3,2>,<4,2>,<4,4>,<4,8>,<8,4>, and <16,16>). We also show the
results with the default floating-point precision (<fp32,fp32>). We use static quanti-
zation that uses the same precision for each neural network layer.

We make four main observations. First, using a precision of <8,8> for weight and acti-
vation for all the layers of Bonito_CTC causes a negligible accuracy loss (0.18–0.67%),
while reducing the model size by 4.03× . Second, Bonito_CTC is more sensitive to
weight precision than activation precision. For example, we observe a loss of 1.82–9.48%
accuracy when using a precision of <4,8> instead of <16,16> bits compared to an

Fig. 3 Basecalling using quantized models

2 We define knee point as the point beyond which a basecaller is unable to basecall at an acceptable level of accuracy.

Page 7 of 29Singh et al. Genome Biology (2024) 25:49

accuracy loss of only 0.51–3.02% when using a precision of <8,4> instead of <16,16>
bits. Third, we observe a significant drop in accuracy (by 9.17–15.07%), when using less
than 4 bits for weights (e.g., using <3,2> configuration). Fourth, using bit-width preci-
sion of <16,16> bits provides ∼2× reductions in model size and without any accuracy loss
compared to using full precision (<fp32,fp32>) floating-point implementation. We
conclude that the current state-of-the-art basecaller, Bonito_CTC , can still efficiently
perform basecalling even when using lower precision for both the weight and activation.

RUBICALL: overall trend

We compare the overall basecalling throughput of RUBICALL with that of the baseline
basecallers in terms of average basecalling accuracy, model parameters, and model size in
Fig. 5a–c, respectively. We evaluate RUBICALL using (1) MI210 GPU [68] (RUBICALL-
FP) using floating-point precision computation and (2) Versal ACAP VC2802 [64], a
cutting-edge spatial vector computing system (RUBICALL-MP) using mixed-precision
computation. The “Methods” section provides details on our evaluation methodology.

We make six key observations. First, compared to Dorado-fast, the fastest base-
caller, RUBICALL-MP provides, on average, 2.85% higher accuracy with 3.77× higher

Fig. 4 Effect of quantizing weight and activation of Bonito_CTC on model size. We quantize both the
weight and activation with static precision. Since weights are the trainable parameters in a neural network,
only weights contribute to the final model size

Fig. 5 Comparison of average basecalling throughput for RUBICALL-MP with state-of-the-art basecallers
in terms of a average basecalling accuracy, b model parameters, and c model size. RUBICALL-MP provides
higher compute performance with lower model size when compared to RUBICALL-FP because of the
mixed-precision computation

Page 8 of 29Singh et al. Genome Biology (2024) 25:49

basecalling throughput. Therefore, RUBICALL-MP provides both accuracy and high
basecalling throughput. Second, RUBICALL-MP provides 128.13× higher basecall-
ing throughput without any loss in accuracy compared to Bonito_CTC , which is an
expert-designed basecaller. Unlike Bonito_CTC , this is because RUBICALL-MP has a
mixed precision neural architecture that leads to high compute density. Third, by using
mixed-precision quantization, RUBICALL-MP provides 50.15× higher performance
when compared to its floating-point implementation (RUBICALL-FP). Fourth, SACall
has the highest number of neural network model parameters, which are 2.74× , 13.49× ,
1.01× , 13.49× , and 2.97× more than Causalcall, Bonito_CRF-fast, Bonito_CTC
, Dorado-fast, and RUBICALL-MP, respectively. SACall uses a large transformer
model with an attention mechanism that leads to an over-parameterized model. Fifth,
Dorado-fast has 4.92× , 13.33× , 13.49× , and 4.54× lower number of trainable model
parameters than Causalcall, Bonito_CTC , SACall, and RUBICALL-MP. As dis-
cussed earlier, Dorado-fast provides 2.85% lower accuracy with 3.77× lower base-
calling throughput. While Dorado-fast has a 4.54× lower number of trainable model
parameters, the difference in model size is only 1.92× because RUBICALL-MP has each
layer quantized to a different precision. Sixth, compared to basecallers with skip con-
nections, RUBICALL-MP provides 2.55× and 6.93× smaller model size compared to
Causalcall and Bonito_CTC , respectively. The decrease in model size is due to (1)
a lower number of neural network layers and (2) optimum bit-width precision for each
neural network layer. Sixth, all the baseline basecallers use floating-point arithmetic
precision for all neural network layers. This leads to very high memory bandwidth and
processing demands. We conclude that RUBICALL-MP provides the ability to basecall
quickly and efficiently scale basecalling by providing reductions in both model size and
neural network model parameters.

Performance comparison

We compare the speed of RUBICALL-MP against baseline basecallers in Fig. 6. We make
three major observations. First, RUBICALL-MP consistently outperforms all the other
basecallers for all the evaluated species. RUBICALL-MP improves average performance
by 364.89× , 14.25× , 128.13× , 81.58× , and 3.77× over Causalcall, Bonito_CRF-fast,

Fig. 6 Performance comparison of RUBICALL (using floating-point precision (RUBICALL-FP) and
mixed-precision (RUBICALL-MP)) and five state-of-the-art basecallers on AMD MI210. The y-axis is on a
logarithmic scale

Page 9 of 29Singh et al. Genome Biology (2024) 25:49

Bonito_CTC , SACall, and Dorado-fast, respectively. Second, as RUBICALL-MP
each layer is quantized to a different precision, it provides 50.15× higher performance when
compared to its floating-point only implementation (RUBICALL-FP). Third, RUBICALL-
FP, by using floating-point precision, provides 7.28× , 2.56× , and 1.63× higher performance
compared to Causalcall, Bonito_CTC , and SACall, respectively. Additional file 1:
Fig. S7 in Additional file 1: Section S5 demonstrates the performance of all the evaluated
basecallers on NVIDIA A40 [69] GPU. We conclude that using mixed-precision computa-
tion, RUBICALL-MP consistently performs better than the baseline basecallers.

Basecalling accuracy

We compare the basecalling accuracy of RUBICALL against baseline basecallers in
Fig. 7. RUBICALL-MP and RUBICALL-FP use the same model architecture and pro-
duce the same basecalled reads, so we report results as RUBICALL. We make three
major observations. First, compared to Dorado-fast and Bonito_CRF-fast, we
observe RUBICALL achieves 2.85% and 2.89% higher accuracy over these RNN-based
basecallers, respectively. RUBICALL provides 5.23% and 0.06% higher accuracy than
CNN-based basecaller Causalcall and Bonito_CTC , respectively. Compared to
a state-of-the-art transformer-based basecaller, SACall, RUBICALL achieves 1.97%
higher basecalling accuracy. Second, Bonito_CTC has 2.93× higher parameters
(Fig. 5a) while having similar accuracy as RUBICALL. Third, Causalcall and SACall
are unable to align half of Haemophilus haemolyticus M1C132_1 reads to its reference.
Therefore, it is deemed unaligned and cannot be used to determine its read accuracy. We
conclude that RUBICALL provides the highest accuracy compared to other basecallers.

Downstream analysis

De novo assembly

We provide the statistics related to the accuracy, completeness, and contiguity of assem-
blies we generate using the basecalled reads from Causalcall, Bonito_CRF-fast,
Bonito_CTC , SACall, Dorado-fast, and RUBICALL in Table 1. For Genome

Fig. 7 Basecalling accuracy comparison of RUBICALL (using floating-point precision (RUBICALL-FP) and
mixed-precision (RUBICALL-MP))

Page 10 of 29Singh et al. Genome Biology (2024) 25:49

Table 1 Assembly quality comparison of the evaluated basecallers for different species. We measure
assembly accuracy in terms of genome fraction (Genome Fraction (%)) and average identity
(Average Identity (%)). Genome fraction is the portion of the Reference genome that can align to
a given assembly, while average identity is the average of the identity of assemblies when compared
to their respective Reference genomes. We measure statistics related to the contiguity and
completeness of the assemblies in terms of the overall assembly length (Assembly Length), Average
GC content (Average GC (%)) (i.e., the ratio of G and C bases in an assembly), NG50 statistics (NG50)
(i.e., shortest contig at the half of the overall Reference genome length), total number of indels
in all aligned bases in the assembly (Total Indels), the ratio of indels to assembly length (Indel Ratio
(%)), and the reliability of basepairs using the quality value (Quality Value). NA indicates that the
generated assemblies were unalignable to the reference genome

Dataset Basecaller Genome
fraction
(%)

Average
identity
(%)

Assembly
length

Average
GC (%)

NG50 Total
indels

Indel
ratio (%)

Quality
value (QV)

Acineto-
bacter

Causal-
call

92.45 86.18 3,826,077 42.23 3,826,077 270,228 7.06 11.99

pittii 16-377-
0801

Bonito_
CRF-fast

96.64 89.29 3,628,317 38.82 3,628,317 242,373 6.68 12.03

Bonito_
CTC

96.87 91.44 3,676,821 38.9 3,676,821 210,496 5.72 12.45

SACall 96.68 89.42 3,699,232 38.7 3,699,232 247,997 6.7 12.1

Dorado-
fast

96.37 88.72 3,839,847 39.09 3,839,847 245,016 6.38 12.03

RUBICALL 96.87 91.51 3,694,086 38.82 3,694,086 208,748 5.65 15.42

Reference 100 100 3,814,719 38.78 3,814,719 0 0 -

Haemophilus Causal-
call

0.00 0.00 0 0 0 0 0 NA

haemolyticus Bonito_
CRF-fast

88.76 91.51 2,046,024 37.98 2,046,024 128,481 6.28 12.25

M1C132_1 Bonito_
CTC

96.87 90.70 1,957,480 38.87 1,957,480 118,253 6.04 15.34

SACall 90.11 88.45 2,032,994 38.22 1,880,730 134,702 6.63 13.15

Dorado-
fast

89.42 88.97 2,110,860 39.49 2,110,860 129,503 6.14 12.38

RUBICALL 96.87 90.54 1,966,781 38.92 1,966,781 119,777 6.09 15.37

Reference 100 100 2,042,591 38.46 2,042,591 0 0 -

Klebsiella Causal-
call

92.45 87.35 4,959,127 56.9 4,959,127 353,550 7.13 10.54

pneumoniae Bonito_
CRF-fast

92.69 87.53 4,761,297 57.19 4,761,297 347,299 7.29 10.56

INF032 Bonito_
CTC

94.50 90.20 4,897,352 56.65 4,897,352 317,428 6.48 11.26

SACall 93.97 88.08 4,874,880 56.87 4,874,880 379,028 7.78 10.8

Dorado-
fast

93.00 87.69 5,063,562 56.8 5,063,562 348,572 6.88 10.64

RUBICALL 94.51 90.30 4,924,240 56.85 4,924,240 314,651 6.39 11.27

Reference 100 100 5,111,537 57.63 5,111,537 0 0 -

Klebsiella Causal-
call

91.44 87.36 5,288,166 56.94 5,288,166 374,162 7.08 10.84

pneumoniae Bonito_
CRF-fast

92.08 88.49 5,052,889 56.8 5,052,889 357,354 7.07 10.93

INF042 Bonito_
CTC

93.12 90.49 5,111,083 56.61 5,111,083 317,075 6.2 11.40

SACall 92.93 88.60 5,149,039 56.72 5,149,039 369,388 7.17 11.08

Dorado-
fast

90.21 88.20 5,737,059 56.44 5,401,717 342,141 5.96 10.98

RUBICALL 93.12 90.60 5,146,050 56.72 5,146,050 312,448 6.07 11.42

Reference 100 100 5,337,491 57.41 5,337,491 0 0 -

Klebsiella Causal-
call

91.58 86.97 5,175,311 57.09 5,175,311 363,807 7.03 10.88

pneumoniae Bonito_
CRF-fast

90.24 88.00 4,932,626 56.71 4,932,626 357,769 7.25 10.86

KSB2_1B Bonito_
CTC

93.07 90.11 5,003,377 56.69 5,003,377 320,519 6.41 11.41

Page 11 of 29Singh et al. Genome Biology (2024) 25:49

Table 1 (continued)

Dataset Basecaller Genome
fraction
(%)

Average
identity
(%)

Assembly
length

Average
GC (%)

NG50 Total
indels

Indel
ratio (%)

Quality
value (QV)

SACall 93.58 88.19 5,034,408 56.79 5,034,408 372,380 7.4 11.16

Dorado-
fast

90.28 87.67 5,442,186 56.72 5,261,731 349,387 6.42 11.03

RUBICALL 93.07 89.89 5,023,639 56.75 4,932,626 357,769 7.12 11.25

Reference 100 100 5,228,889 57.59 5,228,889 0 0 -

Klebsiella Causal-
call

89.08 86.01 5,158,874 56.78 5,158,874 389,676 7.55 11.75

pneumoniae Bonito_
CRF-fast

92.17 89.34 4,942,833 57.01 4,942,833 355,690 7.2 11.47

NUH29 Bonito_
CTC

94.36 90.26 4,918,147 57.04 4,918,147 324,406 6.6 11.92

SACall 93.66 88.58 4,978,307 57.06 4,978,307 360,950 7.25 11.56

Dorado-
fast

92.27 88.12 5,195,594 57.01 5,195,594 355,728 6.85 11.56

RUBICALL 94.36 90.43 4,940,813 57.18 4,940,813 316,019 6.4 11.83

Reference 100 100 5,134,281 57.61 5,134,281 0 0 -

Serratia Causal-
call

89.91 86.23 5,532,953 57.86 5,422,052 401,545 7.26 13.39

marcescens Bonito_
CRF-fast

96.06 89.56 5,479,812 58.85 5,282,474 345,351 6.3 12.66

17-147-1671 Bonito_
CTC

96.76 91.38 5,534,329 58.41 5,316,651 298,982 5.4 13

SACall 94.29 89.36 5,366,913 58.57 5,366,913 358,954 6.69 12.27

Dorado-
fast

96.51 88.87 5,758,989 58.29 5,282,474 348,968 6.06 12.5

RUBICALL 96.76 91.59 5,597,251 58.52 5,346,640 294,643 5.26 13.01

Reference 100 100 5,517,578 59.13 5,517,578 0 0 -

Staphylococ-
cus

Causal-
call

94.35 87.29 2,849,123 36.59 2,810,038 191,730 6.73 10.8

aureus Bonito_
CRF-fast

96.27 91.49 2,790,895 33.05 2,752,169 149,623 5.36 11.59

CAS38_02 Bonito_
CTC

97.03 93.57 2,858,986 32.86 2,819,356 123,542 4.32 12.82

SACall 95.66 91.25 2,837,503 32.91 2,798,079 165,200 5.82 11.57

Dorado-
fast

96.70 91.16 2,927,882 33.52 2,752,169 152,216 5.2 11.64

RUBICALL 97.03 93.36 2,860,885 33.24 2,821,276 124,795 4.36 12.59

Reference 100 100 2,902,076 32.82 2,902,076 0 0 -

Stenotropho-
monas

Causal-
call

94.85 85.73 4,823,177 63.66 4,823,177 366,228 7.59 11.01

maltophilia Bonito_
CRF-fast

94.60 89.74 4,596,898 65.5 4,596,898 337,040 7.33 11.10

17_G_0092_
Kos

Bonito_
CTC

95.42 90.14 4,664,226 64.82 4,664,226 298,711 6.4 11.51

SACall 95.28 88.50 4,672,540 64.98 4,672,540 339,853 7.27 11.11

Dorado-
fast

92.99 87.70 4,854,007 63.99 4,854,007 337,105 6.94 11.01

RUBICALL 95.46 90.49 4,693,744 65.03 4,693,744 289,073 6.16 11.63

Reference 100 100 4,802,733 66.28 4,802,733 0 0 -

Human Causal-
call

NA NA 130,962 42.95 13,522 NA NA NA

HG002 Bonito_
CRF-fast

0.002 92.36 119,570,537 40.34 368,848 2860 0 18.87

Bonito_
CTC

0.430 95.06 134,732,516 40.86 371,590 384,243 0.29 18.58

SACall NA NA 63,025,520 39.87 320,873 NA NA NA

Dorado-
fast

0.001 93.15 121,146,376 39.8 361,677 926 0 17.46

RUBICALL 0.125 94.50 140,928,248 40.99 393,950 100,256 0.1 17.81

Reference 100 100 2,947,743,500 40.79 2,947,743,500 0 0 -

Page 12 of 29Singh et al. Genome Biology (2024) 25:49

Fraction (%), Average Identity (%), and Quality Value (QV), we highlight
the highest achieved value. While for Assembly Length, Average GC (%), and
NG50, we highlight the value closest to the real assembly length. For Total Indels
and Indel Ratio (%), the best-performing basecaller has the lowest value. We also
collect the number of unique k-mers and the frequency of each unique k-mer in a given
sequence to perform a comparison of under and over-represented k-mers in Additional
file 1: Section S7.

We make six key observations. First, assemblies constructed using reads basecalled
by RUBICALL provide the best reference genome coverage for all datasets (“Genome
Fraction” in Table 1). This means that assemblies built using RUBICALL-basecalled
reads are more complete than assemblies built using reads from other basecallers since
a larger portion of the corresponding reference genomes align to their assemblies using
RUBICALL-basecalled reads compared to that of using reads from other basecallers.
Second, assemblies constructed using the RUBICALL reads usually have a higher aver-
age identity than that of Causalcall, Bonito_CRF-fast, Bonito_CTC , SACall,
and Dorado-fast. These average identity results are tightly in line with the basecall-
ing accuracy results we show in Fig. 7. Although Bonito_CRF-fast provides a higher
average identity for the Haemophilus haemolyticus M1C132_1 dataset (i.e., 91.51%), the
genome coverage provided by both Bonito_CRF-fast and Dorado-fast is 2.2%
lower than that provided by RUBICALL for the same dataset. This means a large por-
tion of the assembly provided by Bonito_CRF-fast has low-quality regions as the
reference genome cannot align to these regions due to high dissimilarity. Third, assem-
blies constructed using the RUBICALL reads provide better completeness and contigu-
ity as they have (1) assembly lengths closer to their corresponding reference genomes
and (2) higher NG50 results in most cases than those constructed using the Bonito_
CRF-fast and Bonito_CTC reads. Fourth, although Causalcall usually pro-
vides the best results in terms of the assembly lengths and NG50 results, we suspect
that these high NG50 and assembly length results are caused due to highly repetitive
and inaccurate regions in these assemblies due to their poor genome fraction and aver-
age GC content results. The average GC content of the assemblies constructed using
the Causalcall reads is significantly distant from the GC content of their corre-
sponding reference genomes in most cases. This poor genome fraction and average GC
content results suggest that such large NG50 and assembly length values from Causal-
call may also be caused by poorly basecalled reads that lead to unresolved repetitive
regions (i.e., bubbles in genome assembly graphs) or a strong bias toward certain error
types (i.e., homopolymer insertions of a certain base) in the assembly [70, 71]. Fifth,
the low total indels and indel ratio (%) for RUBICALL in an assembled sequence sig-
nify a sequence that closely resembles the expected reference with minimal insertions
and deletions (indels). This indicates a well-structured and high-quality assembly. Such
assemblies offer a clear and accurate representation of the original sequence, facilitating
downstream analyses, gene prediction, functional annotation, and comparative genom-
ics. Sixth, RUBICALL consistently provides a higher quality value (QV), indicating a low
probability of sequencing errors. Therefore, compared to the other evaluated basecallers,
RUBICALL has higher reliability of the assembled genome.

Page 13 of 29Singh et al. Genome Biology (2024) 25:49

We conclude that, in most cases, the reads basecalled by RUBICALL lead to higher
quality, more contiguous, and more complete assemblies than that provided by other
state-of-the-art basecallers, Causalcall, Bonito_CRF-fast, Bonito_CTC ,
SACall, and Dorado-fast.

Read mapping

We provide the comparison of RUBICALL with Causalcall, Bonito_CRF-fast,
Bonito_CTC , SACall, and Dorado-fast in terms of the total number of base mis-
matches, the total number of mapped bases, the total number of mapped reads, and the
total number of unmapped reads in Fig. 8a–d, respectively. We also show the average
read length, the overall number of mapped reads and the mapped bases, and the ratio
of the number of mapped bases to the number of mapped reads in Additional file 1:
Table S2.

We make five key observations. First, RUBICALL provides the lowest number of
base mismatches, which are 26.97%, 22.66%, 11.45%, 12.35%, and 23.58% lower
compared to Causalcall, Bonito_CRF-fast, Bonito_CTC , SACall, and
Dorado-fast, respectively. This indicates that RUBICALL provides more accurate
basecalled reads that share large similarity with the reference genome. This is in line
with the fact that RUBICALL provides the highest basecalling accuracy, as we evalu-
ate in the “Basecalling accuracy” section. Second, RUBICALL provides, on average,
22.86%, 0.24%, and 4.77% higher number of mapped bases compared to Causal-
call, Bonito_CTC , and SACall, respectively, and only 0.3% and 0.4% lower num-
ber of mapped bases when compared to Bonito_CRF-fast and Dorado-fast,
respectively. Mapping more bases to the target reference genome confirms that the
careful design and optimizations we perform when building RUBICALL have no
negative effects on the basecalling accuracy. Third, unlike Causalcall, RUBI-
CALL, Bonito_CRF-fast, Bonito_CTC , SACall, and Dorado-fast, all pro-
vide a high number of mapped reads. However, RUBICALL is the only basecaller

Fig. 8 Comparison of RUBICALL (using floating-point precision (RUBICALL-FP) and mixed-precision
(RUBICALL-MP)) for normalized a mismatches, b bases mapped, c reads mapped, and d reads unmapped

Page 14 of 29Singh et al. Genome Biology (2024) 25:49

that provides high-quality reads that have the highest number of base matches
and the lowest number of base mismatches. Fourth, RUBICALL achieves 72.66%,
11.79%, 14.63%, 55.02%, and 11.61% lower unmapped reads compared to Causal-
call, Bonito_CRF-fast, Bonito_CTC , SACall, and Dorado-fast, respec-
tively. This indicates that using Causalcall, Bonito_CRF-fast, Bonito_CTC
, SACall, and Dorado-fast wastes a valuable, expensive resource, i.e., sequenc-
ing data, by not mapping reads to the reference genome due to basecalling inaccura-
cies during basecalling. If a read is flagged as unmapped during read mapping, then
this read is excluded from all the following analysis steps affecting the overall down-
stream analysis results. Fifth, for each dataset, we find that the ratio of the number of
mapped bases to the number of mapped reads and the average length of the reads are
mainly similar across all basecallers (Additional file 1: Table S2), while Causalcall
has a substantially lower ratio for the human genome. This mainly indicates that una-
ligned bases across basecallers are mainly shared within the mapped reads, resulting
in a similar number of mapped reads with similar average lengths as well as the ratio.
We conclude that RUBICALL reads provides the highest-quality read mapping results
with the largest number of mapped bases and mapped reads.

SkipClip analysis

Figure 9 shows the effect of SkipClip on validation accuracy using three different
strides at which we remove a skip connection from a block, i.e., the epoch interval at
which SkipClip removes a skip connection from a block. We use our QABAS-designed
model that has five blocks of skip connections. We highlight the number of epochs
needed to remove all the skip connections for different strides. For example, Stride
1 requires five epochs to remove all the skip connections, while Stride 3 requires 15
epochs. We make three observations. First, Stride 1 converges faster to the baseline
accuracy compared to Stride 2 and Stride 3. By using Stride 1, we quickly
remove all the skip connections (in five epochs) giving enough fine-tuning iterations for
the model to recover its loss in accuracy. Second, all the strides show the maximum drop
in accuracy (1.27–2.88%) when removing skip connections from block 1 and block 4.
We observe these blocks consist of the highest number of neural network model param-
eters due to the skip connections (30.73% and 25.62% of the total model parameters are
present in skip connections in block 1 and block 4, respectively). Therefore, the model

Fig. 9 Effect of different strides while removing skip connections

Page 15 of 29Singh et al. Genome Biology (2024) 25:49

requires more training epochs to recover its accuracy after the removal of skip connec-
tions from these blocks. Third, a lower stride can get rid of skip connections faster than
using a higher stride. However, all strides eventually converge to the baseline accuracy at
the expense of more training iterations. We conclude that SkipClip provides an effi-
cient mechanism to remove hardware-unfriendly skip connections without any loss in
basecalling accuracy.

Effect of pruning RUBICALL

Figure 10 shows the effect of pruning RUBICALL using two different pruning methods:
unstructured element pruning and structured channel pruning.

We make four major observations. First, we can remove up to 15% and 5% of model
parameters providing 1.18% and 1.05% reductions in model size without any loss in
accuracy by using unstructured pruning and structured pruning, respectively. However,
unstructured pruning is unsuitable for hardware acceleration due to irregular structure,
and structured pruning provides minimal model size (or parameters) savings. Therefore,
we do not apply these pruning techniques to optimize RUBICALL further. Second, we
observe a drop in accuracy for pruning levels greater than 15% and 5% for unstructured
and structured pruning, respectively. This shows that QABAS found an optimal architec-
ture as there is little room for pruning RUBICALL further without loss in accuracy.

Third, we observe that the knee point for unstructured pruning and structured prun-
ing lies at 90% and 50%, where we achieve 80.65% and 70.10% of accuracy with 9.99× and
1.99× savings model size, respectively. After the knee point, we observe a sharp decline
in accuracy. Fourth, below the knee point, we can trade accuracy for speed to further
accelerate RUBICALL for hardware computation and resources by removing unimpor-
tant network weights. We conclude that pruning provides a tradeoff between accuracy
and model size that can lead to further reductions in processing and memory demands
for RUBICALL, depending on the type of device on which genomic analyses would be
performed.

Explainability into QABAS results

We perform an explainability analysis to understand our results further and explain
QABAS’s decisions. The search performed by QABAS provides insight into whether
QABAS has learned meaningful representations in basecalling. In Fig. 11a and b, we
extract the number of model parameters and precision of each parameter in a neural
network layer to calculate the total size for each layer for Bonito_CTC and RUBI-
CALL-MP, respectively. We highlight each layer’s precision (i.e., weights and activation

Fig. 10 Effect of pruning RUBICALL on: (a) validation accuracy and (b) model size

Page 16 of 29Singh et al. Genome Biology (2024) 25:49

precision) using distinct colors. Our range includes floating-point (i.e., fp32) computa-
tion to integer computation (i.e., int16, int8, and int4) for weight and activation.
Based on our experiments in the “Effect of quantization” section, we restrict the pre-
cision of weight and activation in RUBICALL-MP architecture in QABAS to int8 and
int4, respectively. We compare RUBICALL-MP to Bonito_CTC as it has the same
backend (i.e., Quartznet [49]) and is designed by ONT experts. We make three obser-
vations. First, QABAS uses more bits in the initial layers than the final layers in RUBI-
CALL-MP. QABAS learns that the input to RUBICALL uses an analog squiggle that
requires higher precision, while the output is only the nucleotide bases (A, C, G, T),
which can be represented using lower precision.

Second, RUBICALL uses 1.97× less number of neural network layers than Bonito_
CTC while providing similar or higher basecalling accuracy on the evaluated species
(“Basecalling accuracy” section). Thus, the superior performance of a basecaller archi-
tecture is not explicitly linked to its model complexity, and QABAS-designed models are
parameter efficient. Third, Bonito_CTC uses the same single-precision floating-point
representation (FP32) for all neural network layers, which leads to very high memory
bandwidth and processing demands, whereas RUBICALL has every layer quantized to a
different quantization domain. We conclude that QABAS provides an efficient automated
method for designing more efficient and hardware-friendly genomic basecallers com-
pared to expert-designed basecallers.

Discussion
We are witnessing a tremendous transformation in high-throughput sequencing to sig-
nificantly advance omics and other life sciences. The bioinformatics community has
developed a multitude of software tools to leverage increasingly large and complex
sequencing datasets. Deep learning models have been especially powerful in modeling
basecalling.

Importance of basecalling

Basecalling is the most fundamental computational step in the high-throughput
sequencing pipeline. It is a critical problem in the field of genomics, and it has a sig-
nificant impact on downstream analyses, such as variant calling and genome assembly.
Improving the efficiency of basecalling has the potential to reduce the cost and time

Fig. 11 Layer size comparison for basecallers: a Bonito_CTC and b RUBICALL-MP

Page 17 of 29Singh et al. Genome Biology (2024) 25:49

required for genomic analyses, which has practical implications for real-world applica-
tions. RUBICALL offers a valuable alternative for researchers and practitioners who seek
a balance between accuracy and speed. By maintaining competitive accuracy levels while
significantly improving speed, our framework addresses the needs of various applica-
tions with stringent time constraints, ultimately benefiting a broader range of users. We
believe that RUBICON provides a significant improvement over existing methods, and it
has practical implications for the genomics community.

Need to improve the throughput of basecallers

Increasing throughput and reducing model size is critical because of the following three
reasons. First, current basecallers already have high accuracy, but biologists do not pay
attention to the throughput implications of using large deep learning-based models [30].
We observe researchers building larger and larger basecallers in an attempt to gain more
accuracy without heeding to the disproportionately higher amount of power these base-
callers are consuming. Moreover, none of the previous basecallers [28, 29, 39–42, 44,
72] have been optimized for mixed-precision execution to reduce energy consumption.
As energy usage is proportional to the size of the network, energy-efficient basecalling
is essential to enable the adoption of more and more sophisticated basecallers. Second,
speed is critical in certain applications and use cases, particularly those that require real-
time or near-real-time processing. RUBICON addresses these needs by focusing on hard-
ware optimization and efficient implementation, ultimately enabling faster basecalling
and potentially opening up new possibilities for applications with stringent time con-
straints. Third, as deep learning techniques and hardware continue to evolve, the balance
between accuracy and speed/energy will remain an important aspect of model develop-
ment. RUBICON provides a foundation for future research and innovation in hardware-
friendly deep learning models for genomic basecalling.

Evaluating RUBICON on other platforms

All the state-of-the-art basecallers and RUBICON use high-level libraries, such as
PyTorch or TensorFlow, which abstract the hardware architecture and provide a uni-
fied interface for deep learning computations. These libraries work out-of-the-box for
AMD GPUs and are equally optimized for them. Currently, high-level libraries do not
provide capabilities to exploit low-precision tensor cores available on the latest GPUs.
As a result, existing basecallers take advantage of comparable architectural capabilities
regardless of the specific GPU employed. Therefore, the hardware and software optimi-
zations are at the same level for all supported GPU-based platforms.

Automating basecaller generation process

Modern basecallers generally employ convolution neural networks to extract features
from raw genomic sequences. However, designing a basecaller comes with a cost that a
neural network model can have many different computational elements making the neu-
ral network tuning a major problem. At present, the vast majority of deep learning-based
basecallers are manually tuned by computational biologists through manual trial and
error, which is time-consuming. To a large extent, basecallers are being designed to pro-
vide higher accuracy without considering the compute demands of such networks. Such

Page 18 of 29Singh et al. Genome Biology (2024) 25:49

an approach leads to computationally complex basecallers that impose a substantial bar-
rier to performing end-to-end time-sensitive genomic analyses. This vast dependence
of computational biologists and biomedical researchers on these deep learning-based
models creates a critical need to find efficient basecalling architectures optimized for
performance.

During our evaluation, we ran QABAS for 96 GPU hours to sample architectures from
our search space. Using complete sampling to evaluate all the 1.8×1032 viable options
would take at least ∼4.3×1033 GPU hours. Thus, QABAS accelerates the basecaller archi-
tecture search to develop high-performance basecalling architectures. The final model
architecture can be further fine-tuned for other hyperparameters [73, 74], such as learn-
ing rate and batch size (for example, with grid search or neural architecture search).
Throughout our experiments, we build general-purpose basecalling models by training
and testing the model using an official, open-source ONT dataset that consists of a mix
of different species. We did not specialize basecalling models for a specific specie. Past
works, such as [28], show that higher basecalling accuracy can be achieved by building
species-specific models.

Extending RUBICON

RUBICON’s modular design allows for the incorporation of additional layers or tech-
niques, such as RNN, LSTM, and Transformers, to potentially increase accuracy further.
We focus on convolution-based networks because (a) matrix multiplication is the funda-
mental operation in such networks that is easily amenable to hardware acceleration; (b)
the training and inference of RNN and LSTM models inherently involve sequential com-
putation tasks, which poses a challenge for their acceleration on contemporary hardware
such as GPUs and field-programmable gate arrays (FPGAs) [75–83]; and (c) trans-
former-based models are typically composed of multiple fully connected layers, which
can be supported in RUBICON by modifying convolutional layers for improved compu-
tational efficiency and performance [84]. As future work, QABAS can be extended in two
ways: (1) evaluate advance model architectures (such as RNN, transformer) and (2) per-
form more fine-grain quantization. First, extending QABAS to other model architectures
is important for researchers to quickly evaluate different computational elements. As
the field of machine learning is rapidly evolving, it is non-trivial for researchers to adapt
their models with the latest deep learning techniques. Second, currently, we perform
mixed precision quantization, where every layer is quantized to a different domain. In
the future, we can quantize every dimension of the weights to different precision. Such
an approach would increase the design space of neural network architectural options to
many folds. QABAS enables easy integration to explore such options automatically. Thus,
QABAS is easily extensible and alleviates the designer’s burden in exploring and find-
ing sophisticated basecallers for different hardware configurations. We would explore
two future directions for pruning a basecaller. First, currently, we perform one-shot
pruning, whereby we prune the model once and then fine-tune the model until conver-
gence. Another approach could be to perform iterative pruning, where after every train-
ing epoch, we can re-prune the model using certain pruning criteria. Such an approach

Page 19 of 29Singh et al. Genome Biology (2024) 25:49

would further evaluate the fine-grained pruning limit of a basecaller. Second, an inter-
esting future direction would be to combine multiple pruning techniques, e.g., struc-
tured channel pruning with structured group pruning (where we maintain the structure
of the tensors without causing sparsity). Such an approach could lead to higher pruning
ratios without substantial accuracy loss.

Importance of RUBICALL beyond basecalling

For SkipClip, we demonstrate its applicability on basecalling only, while there are
other genome sequencing tasks where deep learning models with skip connections are
actively being developed, such as predicting the effect of genetic variations [72, 85],
detecting replication dynamics [86], and predicting super-enhancers [87]. In Addi-
tional file 1: Section S1, we show the effect of manual skip removal, where we manually
remove all the skip connections at once. We observe that the basecaller achieves 90.55%
accuracy (4.08% lower than the baseline model with skip connections). By manual skip
removal, the basecaller is unable to recover the loss in accuracy because CNN-based
basecallers are sensitive to skip connections. Therefore, SkipClip provides a mecha-
nism to develop hardware-friendly deep learning models for other genomic tasks.

Separation between QABAS and SkipClip

Both QABAS and SkipClip share the overarching objective of creating a compact base-
calling network without compromising accuracy. However, they approach this goal from
distinct perspectives and employ different optimization tools. The following three points
justify the separation of the two methods. First, skip connections are integral to stable
model training, and by retaining them during the initial QABAS phase, we ensure effec-
tive training of the final basecalling network. The subsequent application of SkipClip
allows for the controlled removal of skip connections, contributing to a more robust
solution. Second, QABAS might find an architecture with skip connections, whereas
SkipClip employs knowledge distillation for skip connection removal, addressing a
specific aspect not efficiently handled by QABAS alone. Third, unlike SkipClip, QABAS
tailors the neural network architecture for hardware efficiency without relying on a
teacher network. The teacher network provides an upper bound on the achievable accu-
racy. Therefore, this two-step approach optimally combines the strengths of NAS and
knowledge distillation, ensuring a comprehensive and effective optimization process for
a compact and efficient basecalling model.

Conclusion
Nanopore sequencing generates noisy electrical signals that require conversion into a
standard DNA nucleotide base string through a computational process known as base-
calling. Efficient basecalling is crucial for subsequent genome analysis steps. Current
basecalling approaches often neglect computational efficiency, resulting in slow, ineffi-
cient, and resource-intensive basecallers. To address this, we present RUBICON, a frame-
work designed for creating hardware-optimized basecallers. RUBICON introduces two
novel machine-learning techniques: QABAS, an automatic architecture search for com-
putation blocks and optimal bit-width precision, and SkipClip, a dynamic skip con-
nection removal module that significantly reduces resource and storage requirements

Page 20 of 29Singh et al. Genome Biology (2024) 25:49

without sacrificing basecalling accuracy. We demonstrate the capabilities of QABAS and
SkipClip by designing RUBICALL, the first hardware-optimized basecaller, demon-
strates fast, accurate, and efficient basecalling, achieving ∼6.88× reductions in model
size with 2.94× fewer neural network parameters compared to an expert designed base-
caller. We believe our open-source implementations of RUBICON will inspire advance-
ments in genomics and omics research and development.

Methods
Evaluation setup

Table 2 provides our system details. We evaluate RUBICALL using (1) AMD MI210
GPU [68] (RUBICALL-FP) using floating-point precision computation and (2) Versal
ACAP VC2802 [64], a cutting-edge spatial vector computing system from AMD-Xilinx
(RUBICALL-MP) using mixed-precision computation. The Versal ACAP VC2802 fea-
tures Versal AI Engine ML (AIE-ML) [64] with 304 cores. The AIE-ML vector datapath
implements two-dimensional single instruction, multiple data (SIMD) [88] operations
using precisions ranging from int4×int8 to int16×int16 operands that can execute 512
to 64 multiply-accumulate operations (MACs) per cycle, respectively. With its many dif-
ferent datatype precision options, AIE-ML acts as a suitable platform to demonstrate
the benefits of a mixed precision basecaller. We train all the basecallers (Causalcall,
Bonito_CRF-fast, Bonito_CTC , SACall, and Dorado-fast) using the same
MI50 GPU. We use ONNX (Open Neural Network Exchange) [89] representation to
evaluate the performance on AIE-ML by calculating bit operations (BOPs) [90], which
measures the number of bitwise operations in a given network, taking into account the
total number of supported operations per datatype on AIE-ML.

QABAS setup details

We use the publicly available ONT dataset [62] sequenced using MinION Flow Cell
(R9.4.1) for the training and validation during the QABAS search phase. The dataset
comprises 1,221,470 reads, all sequenced from complete genomes. This ONT training
dataset has an approximate list of 496 unique taxonomic IDs using the Kraken2 [100]
taxonomic classification system [101]. We randomly select 30k samples from the training
set for the search phase (specified using the —chunks parameter). We use nni [102] with
nn-meter [103] to implement hardware-aware NAS. We use the Brevitas library [104] to

Table 2 System parameters and hardware configuration for the CPU, GPU and the AMD-Xilinx Versal
ACAP

CPU AMD EPYC 7742 [91]

@2.25GHz, 4-way SMT [92]

Cache‑Hierarchy 32× 32 KiB L1-I/D, 512 KiB L2, 256 MiB L3

System memory 4×32GiB RDIMM DDR4 2666 MHz [93] PCIe 4.0 ×128

OS details Ubuntu 21.04 Hirsute Hippo [94], GNU Compiler Collection (GCC) version 10.3.0 [95]

GPU AMD Radeon Instinct™ MI210 [68] 6656 Stream Processors@1.7GHz 64GB HBM2 PCIe
4.0 ×16, ROCm version 5.1.1 [96] NVIDIA A40 [69] 10,752 CUDA Cores@1.2GHz, 48GiB
DRAM NVIDIA System Management Interface (NVIDIA-SMI) version 510.47.03 [97]
NVIDIA CUDA Compiler Driver (NVCC) version 11.4 [98]

AMD‑Xilinx Versal ACAP Versal ACAP VC2802 [64], 304×AIE-ML@1GHz, 19MB local memory, Dual-Core Arm
Cortex-A72 [99]

Page 21 of 29Singh et al. Genome Biology (2024) 25:49

perform quantization-aware training. The architectural parameters and network weights
are updated using AdamW [105] optimizer with a learning rate of 2 e−3 , a beta value of
0.999, a weight decay of 0.01, and an epsilon of 1 e−8 . We set the hyperparameter � to
0.6. We choose these values based on our empirical analysis. After the QABAS search
phase, the sampled networks are trained until convergence with knowledge distillation
using the same ONT dataset that we use during the QABAS search phase, with a batch
size of 64, based on the maximum memory capacity of our evaluated Mi50 GPU. We
set knowledge distillation hyperparameters alpha (α) and temperature (τ) at 0.9 and 2,
respectively.

QABAS search space

For the computations operations, we search for a design with one-dimensional (1D) con-
volution with ten different options: kernel size (KS) options (3, 5, 7, 9, 25, 31, 55, 75, 115,
and 123) for grouped 1-D convolutions. We also use an identity operator that, in effect,
removes a layer to get a shallower network. For quantization bits, we use bit-widths that
are a factor of 2 n , where 2 < n < 4 (since we need at least 2 bits to represent nucleo-
tides A, C, G, T and 1 additional bit to represent an undefined character in case of a
misprediction). We use four different quantization options for weights and activations
(<8,4>,<8,8>,<16,8>, and <16,16>). We choose these quantization levels based
on the precision support provided by our evaluated hardware and the effect of quanti-
zation on basecalling (see the “Discussion” section). We use five different channel sizes
with four repeats each. We choose the number of repeats based on the maximum mem-
ory capacity of our evaluated GPU. In total, we have ∼1.8× 1032 distinct model options
in our search space M.

SkipClip details

We use Bonito_CTC as the teacher network, while the QABAS-designed model is the
student network. We remove skip connections with a stride 1 (using parameter —skip_
stride). Based on hyper-parameter tuning experiments (Additional file 1: Section S2),
set knowledge distillation hyperparameters alpha (α) and temperature (τ) at 0.9 and 2,
respectively. We use Kullback-Leibler divergence loss to calculate the loss [106].

Pruning details

We use PyTorch [107] modules for both unstructured and structured pruning [108] with
L1-norm, i.e., prune the weights that have the smallest absolute values. We apply one-
shot pruning, where we first prune a model with a specific amount of sparsity, then train
the model until convergence on the full ONT dataset [62].

Baseline basecallers

RUBICALL is a pure convolution-based network. We focus on convolution-based
networks because (a) matrix multiplication is the fundamental operation in such net-
works that is easily amenable to hardware acceleration; (b) the training and inference
of RNN and LSTM models inherently involve sequential computation tasks, which
poses a challenge for their acceleration on contemporary hardware such as GPUs

Page 22 of 29Singh et al. Genome Biology (2024) 25:49

and field-programmable gate arrays (FPGAs) [75]; and (c) transformer-based mod-
els are typically composed of multiple fully connected layers, which can be supported
in RUBICON by modifying convolutional layers for improved computational efficiency
and performance [84]. We compare RUBICALL against five different basecallers: (1)
Causalcall [38] is a state-of-the-art basecaller with skip connections, (2) Bonito_
CRF-fast [62] v0.6.2 is a recurrent neural network (RNN)-based version of basecaller
from ONT that is optimized for throughput for real-time basecalling on Nanopore
devices, (3) Bonito_CTC [62] v0.6.2 is convolutional neural network (CNN)-based
hand-tuned basecaller from ONT, (4) SACall [43] is a transformer-based basecaller
that uses an attention mechanism for basecalling, and (5) Dorado-fast [109] v0.4.0
is a LibTorch [110] version of Bonito_CRF-fast from ONT. Dorado-fast uses
the same model architecture as Bonito_CRF-fast and uses the Bonito framework
for model training. Causalcall and Bonito_CTC uses the same backend structure
as RUBICALL (i.e., Quartznet [49]). We are aware of other basecallers such as Hal-
cyon [42], Helix [40], and Fast-bonito [41]. However, these basecallers are either
not open-source or do not provide training code with support for specific read formats.

Basecalling reads

To evaluate basecalling performance, we use a set of reads generated using a MinION
R9.4.1 flowcell. We use only R9 chemistry datasets as, currently, ONT does not provide a
suitable public training dataset for R10 chemistry. They offer in-house trained R10 mod-
els that cannot be employed for a consistent evaluation across all basecallers. R9 and R10
chemistries involve distinct generations of nanopore technologies, including different
pore proteins and read lengths. Therefore, models trained on R9 chemistry are incom-
patible for inference on R10 sequenced datasets. Due to these technical constraints, our
study is currently limited to utilizing the available R9 chemistry training dataset from
ONT and conducting inference exclusively on R9 chemistry datasets. Table 3 provides
details on different organisms used in our evaluation. We use several bacterial species
and the human genome. For Human HG002, we use 3 × depth of coverage.

Table 3 Details of datasets used in evaluation

Organism Chemistry # Reads Reference
Genome Size
(bp)

Acinetobacter pittii 16-377-0801 R9.4.1 4467 3,814,719

Haemophilus haemolyticus M1C132_1 R9.4 8669 2,042,591

Klebsiella pneumoniae INF032 R9.4 15,154 5,111,537

Klebsiella pneumoniae INF042 R9.4 11,278 5,337,491

Klebsiella pneumoniae KSB2_1B R9.4 15,178 5,228,889

Klebsiella pneumoniae NUH29 R9.4 11,047 5,134,281

Serratia marcescens 17-147-1671 R9.4.1 16,847 5,517,578

Staphylococcus aureus CAS38_02 R9.4.1 16,742 2,902,076

Stenotrophomonas maltophilia 17_G_0092_Kos R9.4 16,010 4,802,733

Human HG002 R9.4.1 300,000 2,947,743,500

Page 23 of 29Singh et al. Genome Biology (2024) 25:49

Prior to basecalling, raw nanopore signals undergo a preprocessing pipeline to prepare
them for input into the neural network. Raw nanopore signals, which can be hundreds of
thousands of data points long, are normalized to ensure consistent input characteristics
for the subsequent processing steps. We use empirically determined normalization scal-
ing factors from ONT’s Bonito_CTC basecaller. The normalized signals are chunked
into smaller segments, typically with overlapping regions. The chunk size and overlap
are empirically set to 4000 bps and 500, respectively. Chunk size affects the balance
between processing speed and accuracy. Smaller chunk sizes can lead to more accurate
basecalling but may require more computational resources and time. Larger chunk sizes
may be faster but can potentially introduce errors if the signal varies significantly within
the chunk. Overlap represents the degree to which consecutive chunks share data with
each other. Overlapping chunks can help mitigate the potential issues caused by abrupt
changes in the signal at chunk boundaries. It allows for a smoother transition between
chunks, reducing the chances of missing important information in the signal. However,
a larger overlap may increase computational demands and processing time. After base-
calling, the basecalled sequences obtained from individual signal segments are stitched
back together to reconstruct the entire nucleotide sequence. The stitched sequences are
then decoded to obtain the final basecalled sequences. We use the beam-search decod-
ing [111] method to obtain the final basecalled sequences from stitched segments.

Basecaller evaluation metrics

We evaluate the performance of RUBICALL using two different metrics: (1) basecalling
throughput (kbp/sec), i.e., the throughput of a basecaller in terms of kilo basepairs gener-
ated per second, and (2) basecalling accuracy (%), i.e., the total number of bases of a read
that are exactly matched to the bases of the reference genome divided by the total length of
its alignment including insertions and deletions. We measure the basecalling throughput
for the end-to-end basecalling calculations, including reading FAST5 files and writing out
FASTQ or FASTA file using Linux /usr/bin/time -v command. For basecalling accuracy,
we align each basecalled read to its corresponding reference genome of the same species
using the state-of-the-art read mapper, minimap2 [112]. We use Rebaler [113] to gener-
ate a consensus sequence from each basecalled read set, which replaces portions of the
reference genome with read-derived sequences. The assembled genome is then polished
with multiple rounds of Racon [114]. This results in an assembled genome that accurately
represents the original data while minimizing potential errors introduced by the reference.

Downstream analysis

We evaluate the effect of using RUBICALL and other baseline basecallers on two widely
used downstream analyses, de novo assembly [115] and read mapping [116].

De novo assembly

We construct de novo assemblies from the basecalled reads and calculate the statistics
related to the accuracy, completeness, and contiguity of these assemblies. To generate
de novo assemblies, we use minimap2 [112] to report all read overlaps and miniasm [47]
to construct the assembly from these overlaps. We use miniasm because it allows
us to observe the effect of the reads on the assemblies without performing additional

Page 24 of 29Singh et al. Genome Biology (2024) 25:49

error correction steps on input reads [117] and their final assembly [34]. To measure
the assembly accuracy, we use dnadiff [118] to evaluate (1) the portion of the reference
genome that can align to a given assembly (i.e., Genome Fraction), (2) the average iden-
tity of assemblies (i.e., Average Identity) when compared to their respective reference
genomes, and (3) insertions and deletions of nucleotides (or bases) in the sequence when
compared to a reference or other sequences. (i.e., Total Indels and Indel Ratio (%)). Total
indels represents the sum of all the insertions and deletions in the assembled sequence
when compared to a reference or other sequences. The indel ratio is a measure of the rel-
ative abundance of indels compared to the total length of the assembled sequence (cal-
culated using total indels/assembly length) × 100. This metric helps to understand the
proportion of the assembly that contains insertions and deletions. To measure statistics
related to the contiguity and completeness of the assemblies, such as the overall assem-
bly length, average GC content (i.e., the ratio of G and C bases in an assembly), and
NG50 statistics (i.e., shortest contig at the half of the overall reference genome length),
we use QUAST [119]. We assume that the reference genomes are high-quality repre-
sentative of the sequenced samples that we basecall the reads from when comparing
assemblies to their corresponding reference genomes. The higher the values of the aver-
age identity, genome fraction, and NG50 results, the higher the quality of the assembly
and, hence, the better the corresponding basecaller. When the values of the average GC
and assembly length results are closer to that of the corresponding reference genome,
the better the assembly and the corresponding basecaller. We use Inspector [120] to cal-
culate the overall quality value (QV) of an assembly. The QV score is determined by con-
sidering structural and small-scale errors in proportion to the total number of base pairs
in the assemblies. High-quality sequences have higher QV scores, indicating a low prob-
ability of sequencing errors, while low-quality sequences have lower QV scores, suggest-
ing a higher likelihood of errors.

Read mapping

We basecall the raw electrical signals into reads using each of the subject basecallers. We
map the resulting read set to the reference genome of the same species using the state-
of-the-art read mapper, minimap2 [112]. We use the default parameter values for map-
ping ONT reads using the preset parameter -x map-ont. We use the stats tool from the
SAMtools library [121] to obtain four key statistics on the quality of read mapping results,
the total number of mismatches, the total number of mapped bases, the total number of
mapped reads, and the total number of unmapped reads. We normalize the total number of
base mismatches and the total number of mapped bases using the total number of bases in
the reads, while for the total number of mapped reads and the total number of unmapped
reads, we normalize using the total number of reads.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 024- 03181-2.

Additional file 1. Supplementary notes S1-S6, Figs. S1-S9, and Tables S1-S3.

Additional file 2. Review history.

https://doi.org/10.1186/s13059-024-03181-2

Page 25 of 29Singh et al. Genome Biology (2024) 25:49

Acknowledgements
We thank the SAFARI Research Group members for their valuable feedback and the stimulating intellectual and scholarly
environment they provide. SAFARI Research Group acknowledges the generous gifts of their industrial partners, includ-
ing Google, Huawei, Intel, Microsoft, VMware, and AMD. This research was partially supported by the Semiconductor
Research Corporation. SAFARI Research Group acknowledges support from the European Union’s Horizon program for
research and innovation under grant agreement No. 101047160, project BioPIM. Special thanks to Alessandro Pappalardo
for his support with quantization-aware training. We appreciate valuable discussions with Giovanni Mariani. Thanks to
AMD for providing access to the HPC fund cluster [122].

Peer review information
Kevin Pang was the primary editor of this article and managed its editorial process and peer review in collaboration with
the rest of the editorial team.

Review history
The review history is available as Additional file 2.

Authors’ contributions
G.S., M.A., K.D., and A.K. conceived RUBICON. G.S. designed and implemented RUBICON. G.S., C.F., and M.C. collected
data and performed the evaluations. K.D., H.C., and O.M. supervised the work. G.S., M.A., K.D., and C.F. wrote the manu-
script. All authors reviewed and edited the manuscript. All authors analyzed the results. All authors read and approved
the final manuscript.

Funding
Open access funding provided by Swiss Federal Institute of Technology Zurich

Availability of data and materials
The read set and reference set used in this study are part of work carried out by Wick et al. [28], which can be down-
loaded from https:// bridg es. monash. edu/ artic les/ datas et/ Raw_ fast5s/ 76761 74 and https:// bridg es. monash. edu/ artic les/
datas et/ Refer ence_ genom es/ 76761 35, respectively. For the human genome [123], we download reads from https:// labs.
epi2me. io/ gm243 85_ 2020. 11/, while the reference genome is available at https:// github. com/ marbl/ HG002. All trained
models and generated reads can be downloaded from https:// zenodo. org/ record/ 10198 815. We ensure unbiased, fair,
and consistent evaluation by retraining all the basecallers using the official ONT dataset [62].
Source code with the instructions for reproducing the results is publicly available at GitHub [124] and Zenodo [125].
Scripts used to perform basecalling accuracy analysis are available at: https:// github. com/ rrwick/ Basec alling- compa rison.

Declarations

Ethics approval and consent to participate
Not applicable—ethical approval was not needed for the study, as publicly available datasets were used. No private,
confidential, or sensitive information pertaining to individuals was utilized. Furthermore, our research did not involve any
animal experiments.

Competing interests
Gagandeep Singh, Kristof Denolf, and Alireza Khodamoradi are affiliated with AMD. The remaining authors declare no
competing interests.

Received: 24 April 2023 Accepted: 2 February 2024

References
 1. Ginsburg G, Phillips K. Precision medicine: from science to value. Health Aff. 2018;05(37):694–701. https:// doi. org/

10. 1377/ hltha ff. 2017. 1624.
 2. Aryan Z, Szanto A, Pantazi A, Reddi T, Rheinstein C, Powers W, et al. Moving genomics to routine care: an initial

pilot in acute cardiovascular disease. Circ Genomic Precis Med. 2020;13(5):406–16. https:// doi. org/ 10. 1161/ CIRCG
EN. 120. 002961.

 3. Clark MM, Hildreth A, Batalov S, Ding Y, Chowdhury S, Watkins K, et al. Diagnosis of genetic diseases in seriously
ill children by rapid whole-genome sequencing and automated phenotyping and interpretation. Sci Transl Med.
2019;11(489):eaat6177. https:// doi. org/ 10. 1126/ scitr anslm ed. aat61 77.

 4. Kingsmore SF, Smith LD, Kunard CM, Bainbridge M, Batalov S, Benson W, et al. A genome sequencing system for
universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am J Hum Genet.
2022;109(9):1605–19. https:// doi. org/ 10. 1016/j. ajhg. 2022. 08. 003.

 5. Ginsburg GS, Willard HF. Genomic and personalized medicine: foundations and applications. Transl Res.
2009;154(6):277–287. Spec Issue Personalized Med. https:// doi. org/ 10. 1016/j. trsl. 2009. 09. 005. https:// www. scien
cedir ect. com/ scien ce/ artic le/ pii/ S1931 52440 90027 46.

 6. Bloom JS, Sathe L, Munugala C, Jones EM, Gasperini M, Lubock NB, et al. Massively scaled-up testing for SARS-
CoV-2 RNA via next-generation sequencing of pooled and barcoded nasal and saliva samples. Nat Biomed Eng.
2021;5(7):657–65. https:// doi. org/ 10. 1038/ s41551- 021- 00754-5.

 7. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, et al. Real-time, portable genome sequencing for
Ebola surveillance. Nat Res. 2016;530(7589):228–32.

https://bridges.monash.edu/articles/dataset/Raw_fast5s/7676174
https://bridges.monash.edu/articles/dataset/Reference_genomes/7676135
https://bridges.monash.edu/articles/dataset/Reference_genomes/7676135
https://labs.epi2me.io/gm24385_2020.11/
https://labs.epi2me.io/gm24385_2020.11/
https://github.com/marbl/HG002
https://zenodo.org/record/10198815
https://github.com/rrwick/Basecalling-comparison
https://doi.org/10.1377/hlthaff.2017.1624
https://doi.org/10.1377/hlthaff.2017.1624
https://doi.org/10.1161/CIRCGEN.120.002961
https://doi.org/10.1161/CIRCGEN.120.002961
https://doi.org/10.1126/scitranslmed.aat6177
https://doi.org/10.1016/j.ajhg.2022.08.003
https://doi.org/10.1016/j.trsl.2009.09.005
https://www.sciencedirect.com/science/article/pii/S1931524409002746
https://www.sciencedirect.com/science/article/pii/S1931524409002746
https://doi.org/10.1038/s41551-021-00754-5

Page 26 of 29Singh et al. Genome Biology (2024) 25:49

 8. Yelagandula R, Bykov A, Vogt A, Heinen R, Özkan E, Strobl MM, et al. Multiplexed detection of SARS-CoV-2 and
other respiratory infections in high throughput by SARSeq. Nat Commun. 2021;12(1):3132. https:// doi. org/ 10.
1038/ s41467- 021- 22664-5. https:// europ epmc. org/ artic les/ PMC81 49640

 9. Le VTM, Diep BA. Selected insights from application of whole-genome sequencing for outbreak investigations.
Curr Opin Crit Care. 2013;19:432–39.

 10. Nikolayevskyy V, Kranzer K, Niemann S, Drobniewski F. Whole genome sequencing of M. tuberculosis for detection
of recent transmission and tracing outbreaks: a systematic review. Tuberculosis. 2016;98. https:// doi. org/ 10. 1016/j.
tube. 2016. 02. 009.

 11. Meyer F, Fritz A, Deng ZL, Koslicki D, Lesker TR, Gurevich A, et al. Critical assessment of metagenome interpretation:
the second round of challenges. Nat Methods. 2022;19(4):429–40. https:// doi. org/ 10. 1038/ s41592- 022- 01431-4.

 12. LaPierre N, Alser M, Eskin E, Koslicki D, Mangul S. Metalign: efficient alignment-based metagenomic profiling via
containment min hash. Genome Biol. 2020;21(1):1–15.

 13. LaPierre N, Mangul S, Alser M, Mandric I, Wu N, Koslicki D, et al. MiCoP: Microbial community profiling method for
detecting viral and fungal organisms in metagenomic samples. BMC Genomics. 2019;06(20):423. https:// doi. org/
10. 1186/ s12864- 019- 5699-9.

 14. Pollard MO, Gurdasani D, Mentzer AJ, Porter T, Sandhu MS. Long reads: their purpose and place. Hum Mol Genet.
2018;27(R2):R234–41.

 15. Senol Cali D, Kim JS, Ghose S, Alkan C, Mutlu O. Nanopore sequencing technology and tools for genome
assembly: computational analysis of the current state. Bottlenecks and Future Directions Brief Bioinform.
2019;20(4):1542–59.

 16. Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. Opportunities and challenges in long-read sequenc-
ing data analysis. Genome Biol. 2020;21(1):1–16.

 17. Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nat Rev Genet.
2020;21(10):597–614.

 18. Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat
Biotechnol. 2021;39(11):1348–65.

 19. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. Nanopore sequencing and assembly of a human
genome with ultra-long reads. Nat Biotechnol. 2018;36(4):338–45. https:// doi. org/ 10. 1038/ nbt. 4060.

 20. Gong L, Wong CH, Idol J, Ngan CY, Wei CL. Ultra-long read sequencing for whole genomic DNA analysis. JoVE.
2019;145: e58954. https:// doi. org/ 10. 3791/ 58954. https:// www. jove. com/t/ 58954

 21. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, et al. The potential and challenges of nanopore
sequencing. Nat Biotechnol. 2008;26(10):1146–53.

 22. Van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology. Trends Genet.
2018;34(9):666–81.

 23. Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of age: appli-
cations and utilities for medical diagnostics. Nucleic Acids Res. 2018;46(5):2159–68.

 24. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. Nanopore sequencing and assembly of a human
genome with ultra-long reads. Nat Biotechnol. 2018;36(4):338–45.

 25. Kchouk M, Gibrat JF, Elloumi M. Generations of sequencing technologies: from first to next generation. Biol Med.
2017;9(3):1–8.

 26. Weirather JL, de Cesare M, Wang Y, Piazza P, Sebastiano V, Wang XJ, et al. Comprehensive comparison of Pacific
Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Research.
2017;6:1–32.

 27. Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the
genomics community. Genome Biol. 2016;17(1):1–11.

 28. Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford Nanopore sequencing.
Genome Biol. 2019;20(1):1–10.

 29. Pages-Gallego M, de Ridder J. Comprehensive benchmark and architectural analysis of deep learning models for
nanopore sequencing basecalling. Genome Biol. 2023;24:71.

 30. Alser M, Lindegger J, Firtina C, Almadhoun N, Mao H, Singh G, et al. From molecules to genomic variations:
accelerating genome analysis via intelligent algorithms and architectures. Comput Struct Biotechnol J.
2022;20:4579–99.

 31. Alser M, Rotman J, Deshpande D, Taraszka K, Shi H, Baykal PI, et al. Technology dictates algorithms: recent develop-
ments in read alignment. Genome Biol. 2021;22(1):249.

 32. Zhang Yz, Akdemir A, Tremmel G, Imoto S, Miyano S, Shibuya T, et al. Nanopore basecalling from a perspective of
instance segmentation. BMC Bioinform. 2020;21:1–9.

 33. Dias R, Torkamani A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 2019;11(1):1–12.
 34. Firtina C, Kim JS, Alser M, Senol Cali D, Cicek AE, Alkan C, et al. Apollo: a sequencing-technology-independent,

scalable and accurate assembly polishing algorithm. Bioinformatics. 2020;36(12):3669–79.
 35. Rang FJ, Kloosterman WP, de Ridder J. From Squiggle to basepair: computational approaches for improving Nano-

pore sequencing read accuracy. Genome Biol. 2018;19(1):90. https:// doi. org/ 10. 1186/ s13059- 018- 1462-9.
 36. Mao H, Alser M, Sadrosadati M, Firtina C, Baranwal A, Cali DS, GenPIP: in-memory acceleration of genome analysis

via tight integration of basecalling and read mapping. In: 2022 et al. 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE; 2022. p. 710–26.

 37. Lv X, Chen Z, Lu Y, Yang Y. An end-to-end Oxford Nanopore basecaller using convolution-augmented transformer.
In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE; 2020. p. 337–342.

 38. Zeng J, Cai H, Peng H, Wang H, Zhang Y. Akutsu T. Causalcall: Nanopore basecalling using a temporal convolu-
tional network. Front Genet; 2020. p. 1332.

 39. Perešíni P, Boža V, Brejová B, Vinař T. Nanopore base calling on the edge. Bioinformatics. 2021;37(24):4661–7.

https://doi.org/10.1038/s41467-021-22664-5
https://doi.org/10.1038/s41467-021-22664-5
https://europepmc.org/articles/PMC8149640
https://doi.org/10.1016/j.tube.2016.02.009
https://doi.org/10.1016/j.tube.2016.02.009
https://doi.org/10.1038/s41592-022-01431-4
https://doi.org/10.1186/s12864-019-5699-9
https://doi.org/10.1186/s12864-019-5699-9
https://doi.org/10.1038/nbt.4060
https://doi.org/10.3791/58954
https://www.jove.com/t/58954
https://doi.org/10.1186/s13059-018-1462-9

Page 27 of 29Singh et al. Genome Biology (2024) 25:49

 40. Lou Q, Janga SC, Jiang L. Helix: algorithm/architecture co-design for accelerating nanopore genome base-calling.
In: Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques. New
York: ACM; 2020. p. 293–304.

 41. Xu Z, Mai Y, Liu D, He W, Lin X, Xu C, et al. Fast-bonito: a faster deep learning based basecaller for Nanopore
sequencing. Artif Intell Life Sci. 2021;1:100011.

 42. Konishi H, Yamaguchi R, Yamaguchi K, Furukawa Y, Imoto S. Halcyon: an accurate basecaller exploiting an encoder-
decoder model with monotonic attention. Bioinformatics. 2021;37(9):1211–7.

 43. Huang N, Nie F, Ni P, Luo F, Wang J. SACall: a neural network basecaller for Oxford Nanopore sequencing data
based on self-attention mechanism. IEEE/ACM Trans Comput Biol Bioinforma. 2020;19(1):614–23.

 44. Neumann D, Reddy AS, Ben-Hur A. RODAN: a fully convolutional architecture for basecalling Nanopore RNA
sequencing data. BMC Bioinformatics. 2022;23(1):1–9.

 45. NVIDIA. NVIDIA A10 Tensor Core GPU. https:// www. nvidia. com/ en- us/ data- center/ produ cts/ a10- gpu/. Accessed
24 Oct 2023.

 46. Benchmarking the Oxford Nanopore Technologies basecallers on AWS. https:// aws. amazon. com/ blogs/ hpc/
bench marki ng- the- oxford- nanop ore- techn ologi es- basec allers- on- aws/. Accessed 24 Oct 2023.

 47. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics.
2016;32(14):2103–10.

 48. Ulrich JU, Lutfi A, Rutzen K, Renard BY. ReadBouncer: precise and scalable adaptive sampling for Nanopore
sequencing. Bioinformatics. 2022;38:i153–60.

 49. Kriman S, Beliaev S, Ginsburg B, Huang J, Kuchaiev O, Lavrukhin V, et al. QuartzNet: deep automatic speech
recognition with 1D time-channel separable convolutions. In: ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2020. p. 6124–6128.

 50. Majumdar S, Balam J, Hrinchuk O, Lavrukhin V, Noroozi V, Ginsburg B. Citrinet: closing the gap between non-
autoregressive and autoregressive end-to-end models for automatic speech recognition. 2021. arXiv preprint
arXiv: 2104. 01721.

 51. Gulati A, Qin J, Chiu CC, Parmar N, Zhang Y, Yu J, et al. Conformer: convolution-augmented transformer for speech
recognition. 2020. arXiv preprint arXiv: 2005. 08100.

 52. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4. Inception-ResNet and the impact of residual connections
on learning. In: Thirty-first AAAI conference on artificial intelligence, 2017.

 53. Singh G, Diamantopoulos D, Stuijk S, Hagleitner C, Corporaal H. Low precision processing for high order stencil
computations. In: International Conference on Embedded Computer Systems. Springer; 2019. p. 403–415.

 54. Singh G, Diamantopoulos D, Hagleitner C, Gómez-Luna J, Stuijk S, Mutlu O, et al. NERO: A near high-bandwidth
memory stencil accelerator for weather prediction modeling. In: 2020 30th International Conference on Field-
Programmable Logic and Applications (FPL). IEEE; 2020. p. 9–17.

 55. Singh G. Designing, modeling, and optimizing data-intensive computing systems, 2022. arXiv preprint arXiv: 2208.
08886.

 56. Zoph B, Le QV. Neural architecture search with reinforcement learning, 2016. arXiv preprint arXiv: 1611. 01578.
 57. Buciluǎ C, Caruana R, Niculescu-Mizil A. Model compression. In: Proceedings of the 12th ACM SIGKDD Conference

on Knowledge Discovery and Data Mining New York: ACM; 2006. p. 535–41.
 58. LeCun Y, Denker J, Solla S. Optimal brain damage. Adv Neural Inf Process Syst. 1989;2:598–605.
 59. Han S, Mao H, Dally WJ. Deep compression: compressing deep neural networks with pruning, trained quantization

and Huffman coding. arXiv. 2015.
 60. Han S, Pool J, Tran J, Dally W. Learning both weights and connections for efficient neural network. Adv Neural Inf

Process Syst. 2015;28:1135–43.
 61. Frankle J, Carbin M. The lottery ticket hypothesis: finding sparse, trainable neural networks. 2018. arXiv preprint

arXiv: 1803. 03635.
 62. Bonito. https:// github. com/ nanop orete ch/ bonito. Accessed 24 Oct 2023.
 63. Hinton G, Vinyals O, Dean J, et al. distilling the knowledge in a neural network. 2015;2(7). arXiv preprint arXiv: 1503.

02531.
 64. Versal ACAP AI core series product selection guide. https:// docs. xilinx. com/v/ u/ en- US/ versal- ai- core- produ ct- selec

tion- guide. Accessed 24 Oct 2023.
 65. Kruschke JK, Movellan JR. Benefits of gain: speeded learning and minimal hidden layers in back-propagation

networks. IEEE Trans Syst Man Cybern. 1991;21(1):273–80.
 66. Liu Z, Sun M, Zhou T, Huang G, Darrell T. Rethinking the value of network pruning. 2018. arXiv preprint arXiv: 1810.

05270.
 67. Gale T, Elsen E, Hooker S. The state of sparsity in deep neural networks. 2019. arXiv preprint arXiv: 1902. 09574.
 68. AMD. AMD Instinct MI210 Accelerator. https:// www. amd. com/ system/ files/ docum ents/ amd- insti nct- mi210- broch

ure. pdf. Accessed 24 Oct 2023.
 69. NVIDIA. NVIDIA A40. https:// images. nvidia. com/ conte nt/ Solut ions/ data- center/ a40/ nvidia- a40- datas heet. pdf.

Accessed 24 Oct 2023.
 70. Ferrarini M, Moretto M, Ward JA, Šurbanovski N, Stevanović V, Giongo L, et al. An evaluation of the PacBio RS

platform for sequencing and de novo assembly of a Chloroplast genome. BMC Genomics. 2013;14(1):670. https://
doi. org/ 10. 1186/ 1471- 2164- 14- 670.

 71. Chen YC, Liu T, Yu CH, Chiang TY, Hwang CC. Effects of GC Bias in next-generation-sequencing data on de novo
genome assembly. PLoS ONE. 2013;8(4):e62856. https:// doi. org/ 10. 1371/ journ al. pone. 00628 56.

 72. Zhang Z, Park CY, Theesfeld CL, Troyanskaya OG. An automated framework for efficiently designing deep convolu-
tional neural networks in genomics. Nat Mach Intell. 2021;3(5):392–400.

 73. Singh G, Gómez-Luna J, Mariani G, Oliveira GF, Corda S, Stuijk S, et al. Napel: near-memory computing application
performance prediction via ensemble learning. In: 2019 56th ACM/IEEE Design Automation Conference (DAC).
IEEE; 2019. p. 1–6.

https://www.nvidia.com/en-us/data-center/products/a10-gpu/
https://aws.amazon.com/blogs/hpc/benchmarking-the-oxford-nanopore-technologies-basecallers-on-aws/
https://aws.amazon.com/blogs/hpc/benchmarking-the-oxford-nanopore-technologies-basecallers-on-aws/
http://arxiv.org/abs/2104.01721
http://arxiv.org/abs/2005.08100
http://arxiv.org/abs/2208.08886
http://arxiv.org/abs/2208.08886
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/2015
http://arxiv.org/abs/1803.03635
https://github.com/nanoporetech/bonito
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://docs.xilinx.com/v/u/en-US/versal-ai-core-product-selection-guide
https://docs.xilinx.com/v/u/en-US/versal-ai-core-product-selection-guide
http://arxiv.org/abs/1810.05270
http://arxiv.org/abs/1810.05270
http://arxiv.org/abs/1902.09574
https://www.amd.com/system/files/documents/amd-instinct-mi210-brochure.pdf
https://www.amd.com/system/files/documents/amd-instinct-mi210-brochure.pdf
https://images.nvidia.com/content/Solutions/data-center/a40/nvidia-a40-datasheet.pdf
https://doi.org/10.1186/1471-2164-14-670
https://doi.org/10.1186/1471-2164-14-670
https://doi.org/10.1371/journal.pone.0062856

Page 28 of 29Singh et al. Genome Biology (2024) 25:49

 74. Singh G, Nadig R, Park J, Bera R, Hajinazar N, Novo D, et al. Sibyl: adaptive and extensible data placement in hybrid
storage systems using reinforcement learning. In: Proceedings of the 49th Annual International Symposium on
Computer Architecture. ISCA ’22. New York, NY, USA: Association for Computing Machinery; 2022. p. 320–336.
https:// doi. org/ 10. 1145/ 34704 96. 35274 42.

 75. Nurvitadhi E, Sim J, Sheffield D, Mishra A, Krishnan S, Marr D. Accelerating recurrent neural networks in analytics
servers: comparison of FPGA, CPU, GPU, and ASIC. In: FPL. Lausanne: IEEE; 2016.

 76. Singh G, Alser M, Senol Cali D, Diamantopoulos D, Gómez-Luna J, Corporaal H, et al. FPGA-based near-memory
acceleration of modern data-intensive applications. IEEE Micro. 2021;41(4):39–48. https:// doi. org/ 10. 1109/ MM.
2021. 30883 96.

 77. Singh G, Khodamoradi A, Denolf K, Lo J, Gomez-Luna J, Melber J, et al. SPARTA: spatial acceleration for efficient and
scalable horizontal diffusion weather stencil computation. In: Proceedings of the 37th International Conference
on Supercomputing. New York: ACM; 2023. p. 463–76.

 78. Singh G, Diamantopoulos D, Gómez-Luna J, Hagleitner C, Stuijk S, Corporaal H, et al. Accelerating weather predic-
tion using near-memory reconfigurable fabric. ACM Trans Reconfigurable Technol Syst. 2022;15(4):1–27.

 79. Senol Cali D, Kanellopoulos K, Lindegger J, Bingöl Z, Kalsi GS, Zuo Z, et al. SeGraM: a universal hardware accelera-
tor for genomic sequence-to-graph and sequence-to-sequence mapping. In: Proceedings of the 49th Annual
International Symposium on Computer Architecture. ISCA ’22. New York, NY, USA: Association for Computing
Machinery; 2022. p. 638–655. https:// doi. org/ 10. 1145/ 34704 96. 35274 36.

 80. Singh G, Chelini L, Corda S, Awan AJ, Stuijk S, Jordans R, et al. A review of near-memory computing architectures:
opportunities and challenges. In: DSD. Prague: IEEE; 2018.

 81. Singh G, Chelini L, Corda S, Awan AJ, Stuijk S, Jordans R, et al. Near-memory computing: past, present, and future.
Microprocessors and Microsystems, Elsevier. 2019;71:1–16.

 82. Gómez-Luna J, Guo Y, Brocard S, Legriel J, Cimadomo R, Oliveira GF, et al. Evaluating machine learning workloads
on memory-centric computing systems. In: 2023 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE; 2023. p. 35–49.

 83. Singh G, Diamantopolous D, Gómez-Luna J, Stuijk S, Mutlu O, Corporaal H. Modeling FPGA-based systems via few-
shot learning. In: The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. New York:
ACM; 2021. p. 146.

 84. Umuroglu Y, Fraser NJ, Gambardella G, Blott M, Leong P, Jahre M, et al. FINN: a framework for fast, scalable
binarized neural network inference. In: Proceedings of the 2017 ACM/SIGDA international symposium on field-
programmable gate arrays. New York: ACM; 2017.

 85. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA-and RNA-binding
proteins by deep learning. Nat Biotechnol. 2015;33(8):831–8.

 86. Boemo MA. DNAscent v2: detecting replication forks in Nanopore sequencing data with deep learning. BMC
Genomics. 2021;22(1):1–8.

 87. Sabba S, Smara M, Benhacine M, Hameurlaine A. Residual neural network for predicting super-enhancers on
genome scale. In: International Conference on Artificial Intelligence and its Applications. Springer; 2021. p. 32–42.

 88. Barnes GH, Brown RM, Kato M, Kuck DJ, Slotnick DL, Stokes RA. The ILLIAC IV Computer. IEEE Trans Comput.
1968;100(8):746–57.

 89. Open Neural Network Exchange (ONNX). https:// github. com/ onnx/ onnx. Accessed 18 Mar 2023.
 90. Baskin C, Liss N, Schwartz E, Zheltonozhskii E, Giryes R, Bronstein AM, et al. Uniq: uniform noise injection for non-

uniform quantization of neural networks. ACM Trans Comput Syst. 2021;37(1–4):1–15.
 91. AMD EPYC 7742. https:// www. amd. com/ en/ produ cts/ cpu/ amd- epyc- 7742. Accessed 18 Mar 2023.
 92. Tullsen DM, Eggers SJ, Levy HM. Simultaneous multithreading: maximizing on-chip parallelism. In: ISCA. New York:

ACM; 1995.
 93. RDIMM. https:// www. micron. com/ produ cts/ dram- modul es/ rdimm. Accessed 18 Mar 2023.
 94. Ubuntu 20.04.3 LTS (Focal Fossa). https:// relea ses. ubuntu. com/ 20. 04/. Accessed 18 Mar 2023.
 95. GCC, the GNU Compiler Collection. https:// gcc. gnu. org/. Accessed 18 Mar 2023.
 96. AMD. ROCm. https:// github. com/ Radeo nOpen Compu te/ ROCm. Accessed 18 Mar 2023.
 97. NVIDIA system management interface. https:// devel oper. nvidia. com/ nvidia- system- manag ement- inter face.

Accessed 24 Oct 2023.
 98. NVIDIA CUDA compiler driver NVCC. https:// docs. nvidia. com/ cuda/ cuda- compi ler- driver- nvcc/ index. html.

Accessed 24 Oct 2023.
 99. ARM Cortex-A72 MPCore processor technical reference manual r0p3. https:// devel oper. arm. com/ docum entat ion/

100095/ 0003. Accessed 24 Oct 2023.
 100. Kraken 2. https:// github. com/ Derri ckWood/ krake n2. Accessed 18 Mar 2023.
 101. Larsen ACM, Knudsen CA, Hansen MN. Palamut - an expansion of the Bonito basecaller using language models

[Master’s thesis]. 2020. https:// proje kter. aau. dk/ proje kter/ files/ 33490 4330/ MI104 F20_ Speci ale___ Paper__ 21_. pdf.
Accessed 24 Oct 2023.

 102. NNI. https:// github. com/ micro soft/ nni. Accessed 18 Mar 2023.
 103. nn Meter Team MR. Nn-meter: towards accurate latency prediction of deep-learning model inference on diverse

edge devices. 2021. https:// github. com/ micro soft/ nn- Meter. Accessed 18 Mar 2023.
 104. Pappalardo A. Xilinx/brevitas. Zenodo; 2021. Available from: https:// doi. org/ 10. 5281/ zenodo. 33335 52.
 105. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv. 2014. Accessed 18 Mar 2023.
 106. KLDivLoss. https:// pytor ch. org/ docs/ stable/ gener ated/ torch. nn. KLDiv Loss. html. Accessed 18 Mar 2023.
 107. PyTorch. https:// pytor ch. org/. Accessed 18 Mar 2023.
 108. TORCH.NN. https:// pytor ch. org/ docs/ stable/ nn. html. Accessed 18 Mar 2023.
 109. ONT. Dorado. https:// github. com/ nanop orete ch/ dorado. git. Accessed 18 Mar 2023.
 110. PyTorch C++ API. https:// pytor ch. org/ cppdo cs/. Accessed 18 Mar 2023.
 111. Silvestre-Ryan J, Holmes I. Pair consensus decoding improves accuracy of neural network basecallers for nanopore

sequencing. Genome Biol. 2021;22:1–6.

https://doi.org/10.1145/3470496.3527442
https://doi.org/10.1109/MM.2021.3088396
https://doi.org/10.1109/MM.2021.3088396
https://doi.org/10.1145/3470496.3527436
https://github.com/onnx/onnx
https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.micron.com/products/dram-modules/rdimm
https://releases.ubuntu.com/20.04/
https://gcc.gnu.org/
https://github.com/RadeonOpenCompute/ROCm
https://developer.nvidia.com/nvidia-system-management-interface
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://developer.arm.com/documentation/100095/0003
https://developer.arm.com/documentation/100095/0003
https://github.com/DerrickWood/kraken2
https://projekter.aau.dk/projekter/files/334904330/MI104F20_Speciale___Paper__21_.pdf
https://github.com/microsoft/nni
https://github.com/microsoft/nn-Meter
https://doi.org/10.5281/zenodo.3333552
http://arxiv.org/abs/2014
https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html
https://pytorch.org/
https://pytorch.org/docs/stable/nn.html
https://github.com/nanoporetech/dorado.git
https://pytorch.org/cppdocs/

Page 29 of 29Singh et al. Genome Biology (2024) 25:49

 112. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.
 113. Rebaler. https:// github. com/ rrwick/ Rebal er. Accessed 18 Mar 2023.
 114. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads.

Genome Res. 2017;27(5):737–46.
 115. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, et al. De novo assembly and analysis of RNA-seq

data. Nat Methods. 2010;7(11):909–12.
 116. Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN. RNA-Seq gene expression estimation with read mapping

uncertainty. Bioinformatics. 2010;26(4):493–500.
 117. Firtina C, Bar-Joseph Z, Alkan C, Cicek AE. Hercules: a profile HMM-based hybrid error correction algorithm for long

reads. Nucleic Acids Res. 2018;46(21):e125–e125. https:// doi. org/ 10. 1093/ nar/ gky724.
 118. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: a fast and versatile genome align-

ment system. PLoS Comput Biol. 2018;14(1):e1005944.
 119. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics.

2013;29(8):1072–5.
 120. Chen Y, Zhang Y, Wang AY, Gao M, Chong Z. Accurate long-read de novo assembly evaluation with Inspector.

Genome Biol. 2021;22(1):1–21.
 121. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map (SAM) format and

SAMtools. Bioinformatics. 2009;25(16):2078–9.
 122. AMD HPC Fund. https:// www. amd. com/ en/ corpo rate/ hpc- fund. html. Accessed 14 Mar 2023.
 123. Rhie A, Nurk S, Cechova M, Hoyt SJ, Taylor DJ, Altemose N, et al. The complete sequence of a human Y chromo-

some. Nature. 2023;621(7978):344–54.
 124. Singh G, Alser M, Denolf K, Firtina C, Khodamoradi A, Cavlak MB, et al. RUBICON: a framework for designing

efficient deep learning-based genomic basecallers. 2023. https:// github. com/ Xilinx/ neura lArch itect ureRe shapi ng.
(accessed 23 Nov 2023)

 125. Singh G, Alser M, Denolf K, Firtina C, Khodamoradi A, Cavlak MB, et al. RUBICON: a framework for designing
efficient deep learning-based genomic basecallers. 2023. https:// zenodo. org/ recor ds/ 10549 310. Accessed 22 Jan
2024.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/rrwick/Rebaler
https://doi.org/10.1093/nar/gky724
https://www.amd.com/en/corporate/hpc-fund.html
https://github.com/Xilinx/neuralArchitectureReshaping
https://zenodo.org/records/10549310

	RUBICON: a framework for designing efficient deep learning-based genomic basecallers
	Abstract
	Background
	Key results

	Results
	Analyzing the state-of-the-art basecaller
	Effect of pruning
	Effect of quantization

	RUBICALL: overall trend
	Performance comparison
	Basecalling accuracy
	Downstream analysis
	De novo assembly
	Read mapping

	SkipClip analysis
	Effect of pruning RUBICALL
	Explainability into QABAS results

	Discussion
	Importance of basecalling
	Need to improve the throughput of basecallers
	Evaluating RUBICON on other platforms
	Automating basecaller generation process
	Extending RUBICON
	Importance of RUBICALL beyond basecalling
	Separation between QABAS and SkipClip

	Conclusion
	Methods
	Evaluation setup
	QABAS setup details
	QABAS search space
	SkipClip details
	Pruning details
	Baseline basecallers
	Basecalling reads
	Basecaller evaluation metrics
	Downstream analysis
	De novo assembly
	Read mapping

	Acknowledgements
	References

