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Background
Single-strand breaks (SSBs) constitute the most common form of DNA damage within 
the genome [1]. The accumulation of SSBs caused by overstimulation of endogenous 
nucleases and defects in the DNA repair system would lead to genome instability, which 
has been implicated in multiple diseases such as cancer and neurological disorders [2]. 
A number of studies [3, 4] have demonstrated that SSB sites in the genome are not ran-
domly distributed, but rather, they are enriched in regulatory elements and exon regions 
and vary among different cellular states. Endogenous SSBs occur during conventional 
activities such as DNA replication, recombination, and repair, with the primary source 
being oxidative attacks by endogenous reactive oxygen species (ROS) [5]. Furthermore, 
exogenous SSBs are the most frequent outcome of exposure to DNA-damaging agents 
such as ultraviolet (UV) and topoisomerase poison. In other words, SSBs can arise by 
the disintegration of the oxidized sugar directly or indirectly during DNA base-excision 
repair (BER) of oxidized bases, abasic sites, and damaged bases in various pathways [6].

If not promptly or adequately repaired, SSBs can influence cell fate through several 
pathways. For instance, studies have reported that SSBs can obstruct transcription and 
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trigger cell death by inhibiting the progression of RNA polymerase [7]. Tyrosyl-DNA 
phosphodiesterase 1 (TDP1) and aprataxin (APTX) are integral to the SSB repair system. 
Numerous studies [8, 9] have disclosed that the absence of these essential molecules is 
apparent in various forms of cancer and neurodegenerative diseases. Despite the well-
established significance of SSBs in cellular processes and human diseases, the specific 
cellular pathways that oversee each step of SSB restoration, including both SSB detec-
tion and repair procedures, have yet to be fully elucidated. Typically, defects in these 
pathways can lead to genotoxic stress, embryonic lethality, and various neurodegenera-
tive diseases. Therefore, mapping the SSB landscape could offer fresh insights into these 
disease mechanisms and lay the groundwork for corresponding therapeutic approaches 
[10].

A number of studies [11–13] have primarily focused on double-strand breaks (DSBs) 
to elucidate the DNA lesion repair system. Notably, the DSB-only detection approaches 
[14–16] have been developed for the genome-wide mapping of DSBs. In contrast, SSBs 
are often perceived as less hazardous to cellular survival than DSBs, particularly in pro-
liferating cells where SSBs are frequently seen as precursors to DSBs. During the replica-
tion process, if SSBs encounter replisomes, they can hinder replication forks, potentially 
leading to their transformation into DSBs. This indirect conversion into DSBs can con-
tribute to genomic toxicity and, ultimately, cell death. However, SSBs can also directly 
affect disease progression. For instance, Higo et  al. [17] discovered that SSB-induced 
DNA damage is integral to the pathogenesis of pressure overload-induced heart failure. 
The accumulation of unrepaired SSBs can trigger the DNA damage response system and 
increase the expression of inflammatory cytokines via the NF-κ B in the mouse model, 
leading to either apoptotic cell death or cellular senescence.

Mapping DNA lesions genome-wide is crucial for understanding damage signals and 
the corresponding DNA repair procedures in relation to genome context and chromatin 
status. Recently, several high-throughput technologies of SSBs detection, including S1 
END-seq [18], SSiNGLe-ILM [19], and GLOE-Seq [20], have emerged, describing the 
genome-wide landscape of SSBs. END-seq [16] was originally designed for DSBs detec-
tion. However, by incorporating the single-strand-specific S1 nuclease, SSBs can be con-
verted into DSBs. Furthermore, the use of dideoxynucleosides (ddN) can temper the SSB 
repair process. Therefore, S1 END-seq [18] can detect SSBs efficiently in a non-strand-
specific manner. SSiNGLe-ILM [19] is the first next-generation sequencing (NGS)-based 
approach developed for SSB mapping and versatile for any lesion that can be converted 
into a nick with a free 3′-OH group. Leveraging the 3′-OH lesion, SSiNGLe-ILM can 
capture SSB sites in a strand-specific manner. These methods can map the positions of 
specific types of lesions with nucleotide-level resolution and accurately quantify the SSB 
sites in genome regions with a particular status. For instance, these experimental meth-
ods can yield insightful genome-wide SSB landscapes of various fundamental biologi-
cal processes, capturing the SSB landscapes in numerous cellular states, including health 
and disease states, distinct developmental stages, and responses to typical environmen-
tal stresses. In a recent study, Wu et al. [18] used S1 END-seq to reveal that enhancer 
regions in neurons are hotspots for DNA single-strand break repair via PARP1 and 
XRCC1-dependent mechanisms. These experimental approaches can successfully depict 
the SSB genome landscape. However, these in  vivo and in  vitro detection approaches 
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are time-consuming and unfeasible for large-scale analysis. These experimental meth-
ods are based on high-throughput sequencing, indicating a high demand for advanced 
sequencing equipment and restricting their widespread usage. Generally, recent studies 
[18, 19] have released genome-wide SSB distribution maps of multiple species and cell 
lines. These high-quality, well-curated datasets enable the construction of an in silico 
framework to depict the genome-wide SSB landscape across various species, potentially 
leading to further scientific discoveries.

In this study, we proposed the first computational approach for genome-wide nucleo-
tide-resolution SSB site prediction, namely SSBlazer, which is an explainable and scala-
ble deep learning framework for genome-wide nucleotide-resolution SSB site prediction. 
We demonstrated that SSBlazer could accurately predict SSB sites. The construction of 
an imbalanced dataset simulates the realistic application scenario and sufficiently allevi-
ates false positive predictions. In addition, SSBlazer is a lightweight model with robust 
cross-species generalization ability, enabling large-scale genome-wide application in 
diverse species. The model interpretation analysis shows that SSBlazer captures the pat-
tern of individual CpG in genomic contexts, which is consistent with a previous study 
[18] and provides novel potential insights into SSB occurrence mechanisms such as the 
break site motif of GGC in the center region. The successful development of SSBlazer 
has enabled a plethora of applications related to SSBs. In a specific case study, SSBlazer 
was employed on a sample of 212 vertebrate genomes, yielding intriguing putative SSB 
genomic landscapes. These landscapes offered a captivating proposition regarding the 
potential correlation between the frequency of SSBs and the hierarchy of evolution. 
Moreover, SSBlazer represents a valuable tool for delineating disease conditions. It can 
illustrate the alterations in the SSB landscape attributed to mutational events, as well as 
characterize the properties of pathogenic single-nucleotide polymorphisms (SNPs) that 
induce SSB. The web server of SSBlazer is now available for the simplified application on 
https:// proj. cse. cuhk. edu. hk/ aihlab/ ssbla zer/ and the future version will expand the spe-
cies and integrate genomic annotation features.

Results
An overview of SSBlazer

SSBlazer is a novel computational framework for predicting SSB sites within local 
genomic windows. This method utilizes advanced deep learning techniques such as 
residual blocks and self-attention mechanisms to enhance the accuracy of predictions. 
Moreover, the model is capable of quantifying the contribution of each nucleotide to 
the final prediction, thereby aiding in the identification of SSB-associated motifs, such as 
the GGC motif and regions with a high frequency of CpG sites. As illustrated in Fig. 1a, 
the sequencing data of S1 END-seq and SSiNGLe-ILM undergo a standard pipeline 
including quality control, genome alignment, peak calling, and SSB site determination 
to reliably capture genome-wide SSB locations [16]. To construct the sequence-based 
model, we extracted the sequence context of the determined SSB sites as input. Dur-
ing model prediction (Fig. 1b), sequences are involved in two-stream feature extraction. 
The full-length sequence is processed through the residual block and the self-attention 
block for detecting interaction within the sequence, while the center 9 bp sequence is 
processed through the inception block, given the central part of sequence shares higher 

https://proj.cse.cuhk.edu.hk/aihlab/ssblazer/
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importance, and then the self-attention block, to capture useful information from the 
raw sequence. Finally, these two-stream extracted feature vectors are concatenated and 
fed into an MLP for SSB tendency prediction. In addition, there is further interest in 
identifying and quantifying genomic context of SSB sites (Fig. 1c). A previous study [21] 
attempted to extract the motif via the activation of the first layer in the deep learning 
model, but this approach overlooks the complexity of the downstream layers and strug-
gles to quantify the motif ’s contribution. To address this, an activation backpropagation 
method (DeepLIFT [22]) was employed. The prediction of a specific sequence is back-
propagated through the entire network back to the original inputs to assign contribution 
scores to the nucleotides. Importantly, this process considers the entire deep learning 
model and computes the score in a purely data-driven manner. Upon interpretation 
analysis, it was found that SSBlazer identifies the CpG pattern as the most crucial fac-
tor for making a positive prediction. Additionally, the model was interpolated on vari-
ous vertebrate genomes, depicting the genome-wide SSB site landscapes across these 
genomes. Cross-species phylogenetic analysis revealed that the abundance of SSBs is 
indicated by the evolutionary hierarchy.

Fig. 1 Overview of our work. a The experimental and bioinformatics pipeline for constructing the datasets 
from two different SSB detection methods (S1 END‑seq and SSiNGLe‑ILM). b The computational framework 
and SSBlazer. c The downstream analysis of the putative genome SSB landscape. For example, gradient‑based 
model interpretation analysis reveals that the model can capture the specific motif pattern of the putative 
SSB sites. The cross‑species analysis provided the genome‑wide SSB site landscape across various genomes. 
The mutation analysis profiled alterations in the SSB landscape, identifying SSB‑related SNPs
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SSBlazer accurately predicts SSB sites

To assess the performance of SSBlazer, a leave-one-chromosome-out testing strategy 
was employed on the S1 END-seq dataset within the human neuronal cell line. Given the 
high sensitivity and robustness of the two sequencing methods [18, 19], negative samples 
were generated by random sampling, excluding the positive positions. The dinucleotide 
sampling [21] is also tested and included in the Supplementary (Additional file 1: Fig. 
S1). When evaluating the efficacy of dinucleotide-shuffled sequences in distinguishing 
SSB sites, we found that the model trained on such a dataset fails to capture the genomic 
occurrence pattern of SSBs. SSBlazer, being the first computational approach for SSB 
site prediction, was compared with two conventional baseline models (MLP and CNN), 
SSBlazer-LM (a language model version of SSBlazer), and SSBlazer-NC (SSBlazer with-
out the center stream). These results suggest that SSBlazer can accurately predict SSB 
sites. The area under the receiver operating characteristic (AUROC) and the area under 
precision-recall curve (AUPRC) were employed to measure the prediction performance 
of the different models (refer to the “Methods” section for more details). Figure 2a shows 
that SSBlazer significantly outperforms the baseline machine learning models (CNN and 
MLP) in both AUROC (MLP = 0.7808, CNN = 0.9548, SSBlazer = 0.9626) and AUPRC 
(MLP = 0.7640, CNN = 0.9530, SSBlazer = 0.9621). This indicates that SSBlazer can 
efficiently capture the pattern of SSB sites and has a superior capacity to distinguish gen-
uine SSB sites. Furthermore, SSBlazer achieved comparable performance to the BERT-
based language model SSBlazer-LM with only 1.7% of the parameters (SSBlazer-LM: 
110M, SSBlazer: 1.9M), for both AUROC (SSBlazer = 0.9626, SSBlazer-LM = 0.9661) 
and AUPRC (SSBlazer = 0.9621, SSBlazer-LM = 0.9634), thereby laying the foundation 
for large-scale downstream applications.

An ablation study was carried out to examine the contribution of the center feature. As 
seen in Fig. 2a, omitting the center feature led to a slight decrease in model performance 
(AUROC by 0.41% and AUPRC by 0.53%), emphasizing the importance of the center 
context. In addition, the impact of various lengths of SSB site context on the model was 
investigated. For this purpose, variants of the S1 END-seq dataset were created with dif-
ferent sequence lengths ranging from 51 bp to 501 bp to determine the optimal con-
text length. Figure 2b illustrates that models with a context length over 251 bp achieved 
superior performance in both AUROC and AUPRC. This suggests that SSBlazer is 
capable of capturing long-range dependencies and utilizing dense context information 
to enhance model capacity. In this study, the model was constructed using a 251 bp 
sequence length. This length was chosen because the model with 251 bp achieves highly 
comparable performance and reduce model complexity compared to models with longer 
sequence lengths.

SSBlazer exhibits robust cross‑species generalization ability

The cross-species ability of bioinformatics tools is an indispensable component of mod-
ern biological research, offering a powerful means to study organisms that are inherently 
difficult to access or experimentally manipulate [23]. By leveraging existing genomic 
data, researchers can explore the genetic landscapes of inaccessible species and unravel 
the evolutionary forces shaping their genomes in silico. This ability holds tremendous 
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promise to unlock new biological insights and inform biomedical research across a 
broad spectrum of species. To this end, we conducted a cross-species benchmarking 
to evaluate the extensive applications of SSBlazer across diverse species. Since the S1 
END-seq dataset only covered Homo sapiens, we integrated two datasets for Homo sapi-
ens and Mus musculus, which were generated by the SSiNGLe-ILM [19] approach, for 
cross-species evaluation. Initially, the model was trained on dataset II-A (Homo sapi-
ens) and its performance was evaluated on dataset II-B (Mus musculus). We then con-
ducted a reverse experiment, training on II-B and evaluating on II-A. Figure 2c, d show 
that the model trained on the human dataset also achieved comparable performance on 
the mouse genome (AUROC: 0.8699, 0.8343; AUPRC: 0.8881, 0.7891), and the reverse 
experiment yielded a consistent conclusion (AUROC: 0.8264, 0.8417; AUPRC: 0.7794, 
0.8034). These observations suggest that SSBs in different species may share similar 

Fig. 2 Model performance evaluation and the effect of different imbalance ratios in the dataset. a The model 
performance comparison of the proposed models (in AUROC and AUPRC). SSBlazer‑NC refers to SSBlazer 
without the center feature processing module. SSBlazer‑LM refers to a language model version of SSBlazer. 
b Assessment of AUROC and AUPRC values across varying input sequence lengths, ranging from 51 bp to 
501 bp, to determine the optimal context length. c, d Cross‑species evaluation reveals that SSBlazer exhibits 
desirable cross‑species generalization ability. SSBlzer was first trained the model on dataset II‑A (Homo 
sapiens) and evaluated the model performance on dataset II‑B (Mus musculus) and then had the reverse 
experiment (II‑B for training, II‑A for evaluation). e–h Profile heatmaps on 1250 ground truth SSB sites illustrate 
the impact of introducing imbalanced datasets (Q = 1, Q = 10, Q = 100, and Q = 1000) on the 151 bp region 
around the SSB sites of the human genome (hg19) chromosome 1. These signal‑to‑noise landscapes reveal 
that the introduction of imbalances can sufficiently reduce false positives. i Prediction scores for a specific 
ground truth SSB site region (Human chr1: 871,507–871,686) of Q = 1 model (red), Q = 10 model (purple), 
Q = 100 model (orange), and Q = 1000 model (brown). The model trained on the balanced dataset shows a 
high false‑positive rate in the flanking regions. The model trained with the imbalanced dataset (Q = 100) has 
a significantly narrow peak at the ground truth SSB site and a relatively low signal in the flanking regions
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genomic patterns, and SSBlazer can capture such patterns. Thus, SSBlazer demonstrates 
a substantial cross-species generalization ability, making it feasible for further cross-spe-
cies applications.

Imbalanced dataset reduces false positive prediction

Several studies [18, 19] revealed that SSB sites are rarely distributed in the genome and 
follow a specific pattern. Therefore, constructing a dataset with an imbalanced positive-
negative distribution more accurately simulates the real-world scenario, where nega-
tive samples outnumber positive ones (refer to the “Methods” section for more details). 
To investigate the impact of the imbalance ratio Q, we trained the model with different 
datasets (Q = 1, 10, 100, and 1000). We conducted a genome-wide analysis to discern 
the model’s signal-to-noise status across different imbalance ratios. The profile heatmaps 
of 1250 ground truth SSB sites (Fig. 2e–h) illustrate the signal-to-noise landscapes with 
different imbalanced ratios. These heatmaps reveal that most of the models (Q = 1, 10, 
and 100) can successfully identify the genuine SSB sites in the center region. The model 
training on the balanced and mildly imbalanced datasets (Q = 1, 10, Fig. 2e, f ) have a rel-
atively high signals on the flanking sequences. Notably, the model with Q = 100 (Fig. 2g) 
shows a clear signal at the center region, indicating that the introduction of an imbal-
anced dataset can sufficiently reduce false positive prediction on flanking sequences. 
However, the model training on the extremely imbalanced dataset (Q = 1000) is strug-
gling to locate many of the true SSB sites. The model training on the imbalanced data-
set (Q = 100) can precisely distinguish the genuine SSB sites and efficiently alleviate 
false positive predictions. Thus, we employed this dataset for further model construc-
tion. Specifically, the predicted scores on the genomic region with a ground truth SSB 
site (chr1: 871,507–871,686) were visualized by the Integrative Genomics Viewer (IGV, 
Fig.  2i). This visualization revealed that increasing the imbalanced ratio Q can effec-
tively mitigate false positive predictions. Moreover, the model trained on the imbalanced 
dataset (Q = 100) presents a significantly narrow and pointed peak at the actual SSB 
site, leading to an accurate enrichment of the predicted SSB site into the genuine site. 
These results indicate that training SSBlazer on an imbalanced dataset can efficiently 
reduce false positives, and the predicted SSB frequency more accurately corresponds 
to the realistic genome-wide distribution. This provides a viable approach to portraying 
genome vulnerability.

SSBlazer captures the pattern of CpG dinucleotides

To understand the SSB occurrence mechanism via the explainable model, we uti-
lized the integrated gradients method by Captum [24] to determine which nucleo-
tide decides the prediction outcome. The integrated gradients method quantifies 
each nucleotide’s impact on the model’s prediction by integrating its output gradi-
ent, revealing the influence of input variations on the prediction. We visualized the 
estimated contribution scores on the individual putative sequences [22] (Fig. 3a, c), 
and the direction of the nucleotide represents the contribution to the classification. 
If the nucleotide is above the x-axis, it positively contributes to the sequence being 
classified as a single-strand break site and vice versa. Among the sequences predicted 
to be SSB sites in S1 END-seq (Fig.  3a), CpG dinucleotides are observed to receive 
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significant contribution scores. CpG dinucleotides are specific DNA sequences char-
acterized by the presence of a cytosine (C) followed by a guanine (G) nucleotide, con-
nected by a phosphate group [25]. These dinucleotides serve as pivotal elements in 
epigenetic regulation, exerting influence over the stability of the genome by modulat-
ing DNA repair processes [26]. We observed an enhanced frequency of CpG dinu-
cleotides in an SSB site context, which is consistent with the genome-wide landscape 
that SSBs are more likely to be found at or near CpG dinucleotides [18]. Interestingly, 
the CpG pattern is discontinuously distributed, and the upstream cytosine and down-
stream guanine of CpG contribute negatively to putative positive SSB site prediction 
outcome, indicating that CCG and CGG trinucleotides are disfavored in the SSB site 
sequence context. In addition, the motif of ATC AAT  also arises in the SSB site con-
text. Furthermore, we also conducted the interpretation analysis of the SSiNGLe-ILM 
dataset (Fig. 3c). An explicit motif of GGC can be found in the center region of the 
SSB site context, indicating the distinct genomic pattern of that in S1 END-seq data-
set, which can be explained by the bias from different SSB detection approaches and 
cellular states.

As mentioned above, CpG dinucleotides are an important pattern in SSB site rec-
ognition. In addition, SSBlazer exhibits robust cross-species generalization ability. 
Thus, we performed a correlation analysis to determine the association between CpG 

Fig. 3 SSBlazer captures specific motif patterns of the SSB site context and determines the crucial role of CpG 
dinucleotide. a Integrated gradients analysis in S1 END‑seq dataset reveals contribution scores of ground 
truth SSB site context. The individual CpG pattern is discontinuously distributed in the SSB site context, and 
the motifs of CCG and CGG are disfavored in SSB site context. The motif of ATC AAT  also arises in the SSB site 
context in S1 END‑seq dataset. b, d Correlation analysis demonstrated the association between CpG content 
and predicted SSB counts in 212 species using Pearson correlation test (S1 END‑seq: r = 0.86, p = 2.9× e

−64 , 
SSiNGLe‑ILM: r = 0.80, p = 2.5× e

−49 ). c Contribution scores in the SSiNGLe‑ILM dataset discover an explicit 
motif of GGC in the center region of the SSB site sequence context
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content and putative SSB numbers in different species. The average content of CpG 
dinucleotides was obtained from normalized sampling to remove the bias from the 
diverse genome sizes of different species. We randomly collected 1 million sequences 
of each species with a length of 251 bp from chromosome 1 and calculated the aver-
age CpG counts. It is worth noting that the correlation analysis in both S1 END-seq 
and SSiNGLe-ILM datasets shows a significant relationship between average CpG 
contents and SSB counts among various species. Figure 3b, d reveal that the number 
of SSB increases in the species with higher CpG content and has a strong positive cor-
relation with the CpG content (Fig. 3b, d, Pearson correlation test, S1 END-seq: r = 
0.86, p = 2.9× e−64 , SSiNGLe-ILM: r = 0.80, p = 2.5× e−49 ), indicating that SSBlazer 
can sufficiently capture the pattern of CpG. The simultaneous analysis was conducted 
on chromosomes 2 and 3 and the whole genome (Additional file 1: Fig. S2), and the 
results revealed similar trends. Besides, several studies [27, 28] have found that a pos-
sible source of DNA lesion is cytosine methylation/demethylation in the CpG region, 
which is consistent with the interpretation analysis. Thus, the explainable model of 
SSBlazer may provide novel potential insights into the SSB occurrence mechanism, 
such as the recognition motif of ATC AAT  and the break site motif of GGC.

SSBlazer enables large‑scale application with lightweight structure

The growing demand for computing resources in the field of deep learning often limits 
large-scale downstream applications. This study aims to depict the SSB genomic land-
scape of various species using a more efficient model. We demonstrate that our model, 
SSBlazer, achieves performance highly comparable to the BERT-based language model 
SSBlazer-LM but only requires 1.7% of the computing resources. Our experiment was 
conducted on 1 × NVIDIA A100 GPU with 80 GB memory using S1 END-seq dataset 
and the batch size as 2048. To qualify the occupied computing resources, MACs (mul-
tiply-accumulate operations) was utilized and obtained by thop v.0.0.31 (https:// github. 
com/ Lyken 17/ pytor ch- OpCou nter). The results indicate that SSBlazer saves 99% of the 
MACs and 98% of the parameters compared to SSBlazer-LM and maintains a compara-
ble performance (AUROC reduced by 0.0035, AUPRC reduced by 0.0013). We further 
applied SSBlazer to the S1 END-seq dataset to ascertain the training and inference time. 
For SSBlazer, the training time for a single epoch is 30 s, and the inference time is 8 s. 
This is significantly less than that of SSBlazer-LM, which takes 422 s for training and 29 
s for testing. Moreover, the usage of GPU RAM for SSBlazer is only 6,971 MB with the 
current batch size, significantly lower than that of SSBlazer-LM (46,287 MB). This sug-
gests that SSBlazer could further increase the batch size to fully utilize computational 
resources and enhance the training and inference process. In conclusion, these results 
demonstrate that SSBlazer is a lightweight model that enables large-scale parallel infer-
ence to depict SSB landscapes on diverse genomes (Table 1).

SSBlazer web server

The accumulation of SSBs has been associated with multiple diseases. However, there 
has been a lack of in silico tools for SSB site prediction. In this study, we have depicted 
vast landscapes of SSB sites for diverse species via SSB frequency using SSBlazer, but 
there are still many unexplored SSB-related applications for this tool. One intriguing 

https://github.com/Lyken17/pytorch-OpCounter
https://github.com/Lyken17/pytorch-OpCounter
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possibility is investigating how changes in the SSB landscape within a genomic region 
can provide valuable insights into the mechanisms of how the host gene or nearby SNP 
contributes to disease progression. To illustrate, we conducted a SNP comparison analy-
sis on Alzheimer’s disease (AD) patients. Emerging evidence suggests that genetic fac-
tors, including SNPs, play a critical role in AD susceptibility [29, 30]. However, specific 
mechanisms of SNPs in AD development are still being understudied. In this study, 
we collected pathogenic SNP data from ClinVar [31] and applied SSBlazer to assess 
how such genomic substitutions might influence the local SSB landscape. Our findings 
(Fig. 4c) indicate that a particular SNP (rs123456) in ClinVar alters the SSB landscape 
against the reference genome, suggesting that pathogenic SNPs may promote the occur-
rence of AD via SSB-related pathways. To facilitate usage, we have established the web 
server (Fig.  4a) for intensive downstream applications. Users only need to provide a 
query sequence, and SSBlazer will process it automatically, outputting a prediction score 
for each position in the sequence (Fig. 4b). The web server also provides the option to 
release scores for the entire sequence rather than just the putative SSB sites. Addition-
ally, the processed dataset used in SSBlazer is available for the enhancement of model 
construction. The new SSB dataset can be easily incorporated into SSBlazer to alleviate 
detection approach bias. The web server of SSBlazer is now available at https:// proj. cse. 
cuhk. edu. hk/ aihlab/ ssbla zer/. The future version will expand the species and genomic 
annotation features, providing an even more comprehensive tool for SSB analysis.

Table 1 Performance and computational complexity of SSBlazer and SSBlazer‑LM. Each model was 
trained on 1 × NVIDIA A100 GPU with 80 GB memory, and the batch size was 2048. Training time 
refers to the backpropagation time of the training set of S1 END‑seq dataset (imbalance ratio = 
1, number of samples = 231,500), and inference time is the forward propagation time during the 
testing period (number of samples = 22,044)

Model AUROC AUPRC MACs Params Training (s) Inference (s)

SSBlazer‑LM 0.9661 0.9634 43661.70G 110M 422 29

SSBlazer 0.9626 0.9621 332.77G 1.9M 30 8

Fig. 4 SSBlazer web server. a Screenshot of SSBlazer web server interface. The users can submit a single 
sequence up to 15,000 bp in fasta file or input the DNA sequence directly into the text box. b The 
visualization of input sequence SSB score for each putative SSB site position. We also provide a toggle for 
SSB scores of the whole query sequence instead of the putative SSB sites. c The mutation analysis profiled 
alterations in the SSB landscape, identifying SSB‑related SNPs

https://proj.cse.cuhk.edu.hk/aihlab/ssblazer/
https://proj.cse.cuhk.edu.hk/aihlab/ssblazer/
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SSBlazer explores SSB‑related applications: case study

The successful construction of SSBlazer has enabled a plethora of applications related 
to SSBs. SSB frequency is considered an implicit feature of genomic integrity [32], 
which could be linked to differences in the evolutionary process across diverse spe-
cies. Cross-species evaluation in human and mouse datasets indicated that SSBs 
across diverse species might share similar genomic patterns. SSBlazer accurately cap-
tures these patterns, demonstrating robust cross-species generalization ability. Thus, 
we first collected various vertebrate reference genomes (212 non-redundant species 
including Actinopteri, Mammalia, Reptilia, Lepidosauria, Chondrichthyes, Amphibia, 
Aves.) from the Genbank [33] and RefSeq [34]. Given the biases that might arise due 
to varying genome sizes, we employed normalized sampling. Specifically, we gener-
ated 1 million sample sequences, each with 251 bp, from chromosome 1 of each refer-
ence genome [35]. Finally, we applied SSBlazer to this large collection of sequences to 
identify putative SSB sites. This allowed us to estimate the SSB frequency and, conse-
quently, the genome integrity of each species. Remarkably, the predicted frequency 
of SSB is highly variable among different species, ranging from 1586 in thirteen-lined 
ground squirrel (Ictidomys tridecemlineatus) to 26,784 in Alaskan stickleback (Gas-
terosteus aculeatus), and a clear trend along the evolutionary process is observed. The 
phylogenetic diagram (Fig.  5a) and the violin plot (Fig.  5b) indicate the SSB count 
distribution at the species and class level. These results reveal that Actinopteri and 
Chondrichthyes may have relatively high levels of SSB frequency, while Reptilia, 
Mammalia, and Aves share fewer SSB frequencies. This broad analysis provides a 
comprehensive view of predicted SSB frequency across a diverse range of vertebrates, 
shedding light on its role in genomic integrity and evolutionary processes.

Fig. 5 SSB frequency corresponds to species evolutionary hierarchy. a The phylogenetic diagram on 212 
vertebrates indicates their evolutionary hierarchy, and the peripheral heatmap represents the number of 
SSBs. b Violin plots suggest order differences in SSB counts ranked by mean counts. Silhouettes of animals are 
downloaded from PhyloPic (http:// www. phylo pic. org)

http://www.phylopic.org
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Discussion
High-throughput SSB detection assays have emerged recently and provided approaches 
for describing the SSBreakome generated by the direct action of several genotoxins or 
common intermediate products of DNA transactions [4]. The landscapes of genome vul-
nerability derived from various cell lines can characterize the genome in various aspects 
such as evolutionary hierarchy, animal phenotype, and cancer development. However, 
while the NGS-based methods led to the discovery of SSBreakome, these approaches 
are costly and highly reliant on advanced sequencing equipment. This makes it difficult 
to perform large-scale applications on diverse species. Furthermore, despite sharing a 
similar SSB detection strategy, method bias exists in constructing the SSBreakome land-
scape. To alleviate this bias, a unified and comprehensive SSB detection schema should 
be proposed in the future. The current version of SSBlazer was trained on the S1 END-
seq dataset and the SSiNGLe-ILM dataset. While SSBlazer is a portable and well-organ-
ized model, which can smoothly transition to the unified dataset and other available SSB 
detection datasets (e.g., SSB-seq [36], GLOE-seq [20]). We provided a retraining tutorial 
in https:// sxu99. gitbo ok. io/ ssbla zer/ use- cases/ train-a- new- model. This adaptability can 
substantially improve SSBlazer’s generalization ability, making it a valuable tool in the 
continued exploration and understanding of the SSBreakome.

In this study, we proposed a deep learning-based framework to predict SSB sites by 
integrating the underlying genomic context. To our knowledge, SSBlazer is the first 
attempt to exploit a computational model for SSB site prediction based on genome-
wide single-strand break sequencing data and furthermore at a single-nucleotide 
resolution. We demonstrated that SSBlazer could accurately identify SSB sites and 
exhibit robust cross-species generalization ability. The introduction of the imbalanced 
dataset simulated the realistic SSB distribution in the genome and sufficiently reduced 
false positives. Notably, the interpretation analysis revealed that SSBlazer captures 
the pattern of individual CpG in the genomic context and the motif of GGC in the 
center region as critical features and also provides the hypothesis for SSB occurrence 
mechanism exploration such as the recognition motif of ATC AAT  in the SSB site 
context. Since SSBlazer is a lightweight model with robust cross-species generaliza-
tion ability in cross-species evaluation, it has been successful in various applications 
related to SSBs. In a specific case study, SSBlazer was employed on a sample of 212 
vertebrate genomes, yielding intriguing putative SSB genomic landscapes. These land-
scapes offered a captivating proposition regarding the potential correlation between 
the frequency of SSBs and the hierarchy of evolution. Moreover, SSBlazer represents 
a valuable tool for delineating disease conditions. It can illustrate the alterations in 
the SSB landscape attributed to mutational events as well as characterize the proper-
ties of pathogenic SNPs that induce SSB. A recent study [37] conducted genome-wide 
characterization of DNA microsatellite repeats in fish and found that the frequency 
of DNA microsatellite repeats plays a vital role in chromatin organization, recombi-
nation, and DNA replication. This suggests a correlation between the abundance of 
DNA microsatellite repeats and the high level of SSBs in Actinopteri and Chondrich-
thyes. Additionally, a DSB detection approach called Breaks Labelling, Enrichment 
on Streptavidin, and next-generation Sequencing (BLESS) also found the enrichment 
of DSBs located in the microsatellite repeats region [14]. These results demonstrated 

https://sxu99.gitbook.io/ssblazer/use-cases/train-a-new-model
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that such DNA lesions are non-randomly located in the genome and have specific 
distribution patterns. SSBlazer can distinguish the genomic pattern of SSB and may 
bring novel molecular insights into the physiological and pathological progress.

Despite the desirable performance of SSBlazer, further work is required to enhance 
its capabilities. Currently, SSBlazer employs only the DNA context as input informa-
tion. This means that the model cannot precisely characterize the species’ genome 
and differentiated cellular states due to the loss of genomic annotation, such as 
genomic region, structure, and epigenetic information. For example, the study [19] 
has revealed the enrichment of SSBs at the region of exons and other transcrip-
tional regulatory elements such as CTCF binding sites. In addition, a DSB prediction 
model [38] demonstrated the use of the DNA structural information such as minor 
groove width (MGW), propeller twist (ProT) at base-pair resolution, roll (Roll), and 
helix twist (HelT). This information can efficiently improve the model’s performance 
and reveal the crucial role of DNA structural information in lesion recognition. In 
CRISPR-induced DSB prediction [39, 40], the epigenetic landscapes (e.g., CTCF, 
Dnase, H3K4me3, and RRBS) are regarded as additional features of the model. The 
ablation experiment also reveals the importance of such chromatin status markers in 
the CRISPR-induced cleavage process. Therefore, future versions of SSBlazer should 
consider incorporating additional genomic information, such as genomic region, 
structure, and epigenetic information. This will allow the model to more accurately 
characterize the vast and unique SSB genomic landscape in diverse species’ genomes, 
differentiated cellular states, and distinct development stages. Our study has several 
limitations. A primary limitation is the current reliance on human data for validation, 
utilizing available ground truth datasets. While the complexity of the human genome 
provides a strong foundation for evaluating prediction performance, we recognize the 
need for broader validation across different species. Additionally, the absence of an 
outgroup control species is an important consideration. Despite these limitations, we 
believe our current findings still contribute to the understanding of SSB patterns and 
the potential applications of our tool.

The genome landscape of the SSB sites reveals the association between DNA 
lesions and various cellular conditions. Therefore, landscapes of genome vulnerabil-
ity derived from the various cell lines and phenotypes may contribute to previously 
unutilized insight for developing molecular biomarkers of disease diagnosis, aging 
identification, and gene therapy. Specifically, SSBs could lead to the accumulation of 
somatic mutations and transcription stalling in functional neuronal genes, contribut-
ing to neurological diseases. These diseases have been reported by association with 
defective SSB repair systems [41]. In addition, DNA lesions have been widely impli-
cated in human aging, and a recent study [19] emphasized the association between 
SSBreakome patterns and chronological age in humans. Understanding the landscape 
of genome vulnerability can also aid in the design of gene therapy strategies. For 
instance, knowing the target site’s vulnerability landscape can guide the design of an 
optimal gene editing approach (e.g., high-efficiency and high-fidelity sgRNA), poten-
tially improving gene therapy outcomes. This SSB landscape may also offer insights 
into the recognition and cleavage mechanism in the CRISPR/Cas9 system. SSBlazer 
has demonstrated satisfying performance and strong cross-species generalization 
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ability. The putative genomic landscape of the SSB site characterized by SSBlazer on 
diverse species may shed light on the mechanisms of aging and complex diseases in 
various animal models.

Conclusions
 

– SSBlazer is a significant advancement in the field of computational genomics. It rep-
resents the first computational approach capable of genome-wide nucleotide-reso-
lution SSB site prediction. SSBlazer can accurately identify SSB sites with only the 
context sequence as input.

– SSBlazer is an interpretable model. It reveals individual CpG dinucleotides as the 
crucial feature, consistent with a previous study. Besides, SSBlazer also captures pre-
viously undiscovered recognition motifs and break site motifs.

– SSBlazer provides an intuitive web server, poised to address a multitude of unex-
plored challenges related to single-strand breaks, such as the analysis of pathogenic 
SNP mutations.

– SSBlazer elucidates the conjectural genomic landscapes of single-strand breaks 
across all accessible vertebrate genomes in the cross-species analysis. Remarkably, 
the prospective SSB genomic landscapes derived from a study of 212 vertebrates 
demonstrate a potential hypothesis about the correlation between SSB frequency and 
the respective evolutionary hierarchy, which needs to be further experimentally vali-
dated.

Methods
Dataset construction

Data source

Dataset I The S1 END-seq data of human i 3Neurons cell line was collected from the 
study of Wu et al. [18]. This data was processed using the standard bioinformatics pipe-
line for END-seq [42]. The initial step involved downloading the original sequencing 
data from the Gene Expression Omnibus (GEO) database (GSE167259) and collecting 
the raw reads of the ddN S1 END-seq sample via the SRA Run Selector. Quality con-
trol was subsequently conducted using FastQC (v.0.11.9), and Trim Galore (v.0.6.4) was 
employed to remove adapters and low-quality reads. The clean reads of the END-seq 
were then aligned to the human genome (hg19) using bowtie (v.1.1.2), and a sorted bam 
file was created with the aid of samtools (v.1.14). After genome alignment, peak calling 
was performed with MACS2 (v.2.2.7.1), and the peak summits were gathered to gener-
ate SSB sites (positive sample). Given the summit coordinate, we extracted the 125 bp 
sequence context upstream and downstream from the human genome (hg19) to enhance 
performance, resulting in a final input sequence length of 251 bp. Furthermore, to aug-
ment the data, we introduced a reverse complementary sequence for each positive sam-
ple, as S1 END-seq is a non-strand-specific SSB detection approach. The final positive 
dataset comprised 126,772 sequences (Table 2).
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Dataset II To assess the generalization ability and cross-species performance of 
the model, we established the SSiNGLe-ILM dataset. This dataset includes data from 
the Hela cell line (Homo sapiens, II-A) and the Nero2A cell line (Mus musculus, II-B), 
as provided by Cao et  al. The integral SSB sites for Hela (GSM4126203) and Nero2A 
(GSM4126206) were extracted from the GEO database. Similar to dataset I, the 125 bp 
sequence context upstream and downstream from the SSB site coordinate was extracted 
from the respective genomes (Human genome hg19, mouse genome mm10), and the 
final length of each sequence is 251 bp. However, since SSiNGLe-ILM provides a strand-
specific insight, the sequence context of SSB sites was extracted based on the specific 
strand, without the addition of reverse complementary sequences (Table 2).

Imbalanced dataset

The construction of a negative set often determines the practicality of the model in 
scientific applications. In an attempt to realistically simulate scenarios where SSB 
sites are sparsely distributed within the genome, we opted for an imbalanced dataset 
(where negative samples outnumber positive ones) instead of the traditional balanced 
dataset. This strategy is designed to compel the model to more precisely distinguish 
genuine SSB sites. In this context, we introduce the imbalance ratio, denoted by Q. 
For a given N positive sample, the number of negative sequences is N × Q . To explore 
the impact of dataset imbalance on model performance, we constructed datasets 
with varying degrees of imbalance, using Q = 1, 10, 100 and 1000. Negative sequences 
were randomly extracted from the reference genomes (hg19 and mm10), excluding 
the positive SSB sites, and each sequence was maintained at a length of 251 bp. For 
the construction of the final dataset, we implemented a leave-one-chromosome-out 
testing strategy [21]. In this arrangement, chromosome 1 was designated for testing, 
while the remaining chromosomes were used for training.

Model framework

Data encoding

In SSBlazer, the sequence context is encoded as a 4 × L matrix using one-hot encod-
ing, where each nucleotide in the sequence is converted into a binary vector, with 
each dimension corresponding to a nucleotide channel A, C, G and T for the follow-
ing convolution operation. Formally, given a DNA sequence s = (s1, s2, s3, ..., sn) with L 
nucleotides, the one-hot encoding matrix M is:

Table 2 Datasets of single‑strand break sites. Dataset I is reconstructed by the standard 
bioinformatics pipeline of END‑seq analysis. Dataset II is provided in the original paper of SSiNGLe‑
ILM [19] and is established to evaluate generalization ability and cross‑species performance

Index Cell lines Methods Validated SSB sites Strand‑specific Assembly Reference

I i3Neurons S1 END‑seq 63,386 No hg19 [18]

II‑A HeLa SSiNGLe‑ILM 2,331,388 Yes hg19 [19]

II‑B Neuro2A SSiNGLe‑ILM 275,432 Yes mm10 [19]
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where si is the ith nucleic acid of the sequence and D = [A,C ,G,T ].
Since SSBlazer-LM is a DNABERT-based language model pre-training on the human 

genome (GRCh38.p13), SSBlazer-LM takes k-mer tokens as the inputs, where k-mers are 
substrings with defined length k of a sequence. Given a sequence of length L, the set 
of k-mer tokens is constructed by dividing the sequencing with the stride of 1, and the 
number of k-mers is L− k + 1 . In this study, we used 6-mer representations for enlarg-
ing sequence context receptive recognition to improve model classification capability.

Model construction

SSBlazer The model takes one-hot representations of the 251 bp sequence as the input 
and processes the whole sequence and the center 9 bp separately. We use a residual-
based neural network to obtain the vector representation of the input sequence for the 
feature extraction. Inspired by ResNet [43], SSBlazer (Fig. 1b) starts with a 1 × 3 convo-
lutional layer and follows by two sets of residual blocks with different convolution ker-
nels. Each residual unit in the residual block consists of a 1 × 5 convolutional layer and 
a 1 × 3 convolutional layer. For the first 15 blocks, the number of filters Nf 1 is 16, and 
Nf 2 is 32 for the last 15 blocks. To alleviate the gradient vanishing problem, we apply the 
exponential linear unit (ELU) [44] as the activation function instead of the rectified lin-
ear unit (ReLU) [45]. After a 1 × 5 average pooling, the sequence feature is then passed to 
a multi-head self-attention layer to capture long-range dependencies:

where WO
∈ R

hdv×dmodel , WQ
i ∈ R

dmodel×dk , WK
i ∈ R

dmodel×dk and WV
i ∈ R

dmodel×dv are 
learned parameter matrices for projection.

In this model, we employ 8 heads ( h = 8 ) and set dk = dv = 512 . dmodel depended on the 
input matrix ( dmodel = 64 in our cases). Nucleotides around the SSB site are considered 
an important pattern in several studies [18, 27, 28]. Thus, we collect the center sequence 
as the extra input to capture the specific pattern of the center region. Due to the concise 
DNA sequence of the center region, models with high complexity (e.g., ResNet) tend to 
be overfitting. Therefore, we introduce a single-layer inception module [46] to enrich the 
center information. The inception module contains three parallel convolutional layers, 
and the kernel dimensions are 1 × 1, 1 × 3, and 1 × 5 separately. The outputs of these lay-
ers are concatenated and combined with the original one-hot matrix of center sequence. 
Finally, the sequence context and the center feature are concatenated and fed into the 
multilayer perception with two hidden layers for classification. Each fully connected 
layer is followed by a dropout with the ratio of 0.5 and 0.3 separately to improve the gen-
eralization ability.
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1 if si = Dj

0 otherwise
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Model interpretation

To interpret the proposed model intuitively, we performed the integrated gradi-
ent analysis [24] to illustrate how the individual nucleic acid influences the predic-
tion outcome and determine potential motifs of predicted SSB sites. In contrast to 
extracting motifs from the putative SSB site context sequences, the integrated gra-
dient analysis is a comprehensive gradient-based axiomatic attribution method that 
computes a contribution score for each input feature compared to a baseline. It can 
efficiently visualize the genomic pattern that the model captures. In this study, inte-
grated gradient analysis emphasizes the contribution score of each nucleotide in the 
sequence containing an SSB site. Formally, x ∈ R

n is the input sequence, x′ ∈ R
n is the 

baseline sequence, and F : x ∈ R
n
→< spanclass =′ reftype′ > [0, 1] < /span > is the 

deep learning model; integrated gradients are calculated by accumulating the gradi-
ents ∂F(x)

∂xi
 along the path from the baseline input x′ and the positive sample input x, 

where xi refers to the ith feature:

The baseline input x′ should be a neutral input for the model, i.e., the prediction 
of it should be close to zero ( F(x) ≈ 0 ). In this research, we obtained the baseline 
sequence based on human GC content. Therefore, in the one-hot encoding matrix for 
the baseline sequence, each column is [0.3,0.2,0.2,0.3], representing the appearance 
probability of A, C, G, and T.

Evaluation metrics

In this study, we have chosen AUROC and AUPRC as our evaluation metrics due to 
their effectiveness in measuring the performance of classification models:

Both of these metrics provide an aggregate measure of performance across all pos-
sible classification thresholds. The AUROC is particularly useful as it is invariant 
to the class distribution or the threshold setting. The AUROC ranges from 0 to 1, 
with a value of 0.5 indicating a random model and a value of 1 indicating a perfect 
model. The higher the AUROC, the better the model’s performance at discriminating 
between the positive and negative classes. AUPRC is based on precision and recall. 
Precision measures the proportion of true positive predictions among all positive 
predictions, while recall measures the proportion of true positive predictions among 
all true positive instances. AUPRC is especially useful when the cost of false positives 
and false negatives is different, as it allows for the identification of the optimal clas-
sification threshold that minimizes the cost.

IntegratedGrad si(x) : :=(xi − x′i)×

∫ 1

α=0

∂F(x′ + α × (x − x′))

∂xi
dα

AUROC =

∫ 1

0

TPR(t) dFPR(t)

AUPRC =

∫ 1

0

Precision(r) dRecall(r)
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Construction of SSB site landscape in a species‑wide manner

After the construction of SSBlazer, we depicted vast landscapes of SSB sites spe-
cies-wide. We first collected all the available genomes of vertebrates (212 reference 
genomes) from the Genbank and RefSeq database using python scripts (https:// 
github. com/ kblin/ ncbi- genome- downl oad). The scripts originally obtained 220 refer-
ence genomes. After the removal of the duplicates and classes that only contain one 
or two species, there are 212 species in total, including 89 species in Actinopteri, 72 
species in Mammalia, 26 species in Aves, 8 species in Amphibia, 7 species in Reptilia, 
6 species in Lepidosauria, and 4 species in Chondrichthyes. To remove the bias of var-
ious genome sizes, we employed normalized sampling, where we randomly generated 
one million sequences with 251 bp from chromosome 1 of each reference genome. 
We applied SSBlazer on these candidates for identifying SSB sites and introduced SSB 
frequency to estimate the genome integrity. To visualize the evolutionary relation-
ship among the 212 species, we employed iTOL (https:// itol. embl. de/) to illustrate the 
evolutionary phylogenetic tree of these vertebrates based on species taxonomy ID. 
We integrated the SSB frequency heatmap into the evolutionary phylogenetic tree to 
discover the association between SSB frequency and evolutionary hierarchy.
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