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Abstract 

Genome‑wide ensemble sequencing methods improved our understanding of chro‑
matin organization in eukaryotes but lack the ability to capture single‑cell heterogene‑
ity and spatial organization. To overcome these limitations, new imaging‑based meth‑
ods have emerged, giving rise to the field of spatial genomics. Here, we present pyHiM, 
a user‑friendly python toolbox specifically designed for the analysis of multiplexed 
DNA‑FISH data and the reconstruction of chromatin traces in individual cells. pyHiM 
employs a modular architecture, allowing independent execution of analysis steps 
and customization according to sample specificity and computing resources. pyHiM 
aims to facilitate the democratization and standardization of spatial genomics analysis.
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Background
In eukaryotes, the three-dimensional (3D) nuclear organization of chromatin is tightly 
controlled and plays an active role in gene regulation, DNA replication and DNA dam-
age repair. In the last decade, genome-wide ensemble methods, such as Hi-C and 3C 
[1], have revolutionized our understanding of genome structure at the megabase-to-
kilobase scale by revealing the complex organization of chromatin into compartments, 
topologically associating domains, and chromatin loops [2, 3]. However, these bulk 
approaches are unable to dissect single-cell heterogeneity or preserve spatial informa-
tion in tissue [4–6].

Recently, a new family of imaging-based methods was developed to trace the 3D con-
formation of chromatin in single cells, giving rise to the field of spatial genomics [7–11] 
(Fig. 1a). These techniques perform sequential imaging of genomic loci with a precision 
of a few tens of nanometers, allowing for the 3D mapping of a given region of chromatin 
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Fig. 1 a Schematic description of Hi‑M microscopy: Chromatin is imaged through multiple acquisition 
cycles, each targeting a specific genomic locus using a set of unique DNA‑FISH oligonucleotides targeted by 
a complementary, fluorescently labeled oligonucleotide. A fiducial marker is simultaneously imaged to allow 
for registration and drift correction during post‑processing. Using pyHiM, the 3D conformation of the target 
locus is reconstructed for each individual cell. b pyHiM is an open‑source project hosted on GitHub. Extensive 
documentation and Jupyter notebooks are available for users and developers. c pyHiM is developed in 
Python and runs indifferently on Linux, Windows and macOS. d Input data: 3D images are organized by 
imaging channel (DAPI, fiducial, DNA‑FISH spots, etc.) and FOV. A single json file combines all parameters 
needed to run the analysis pipeline. e 3D images are pre‑processed by calculating the maximum intensity 
projection and applying 2D registration based on the fiducial images. f Masks for nuclei, oligopaint libraries, 
and DNA‑FISH spots are computed using pre‑trained deep learning models. Individual DNA‑FISH spots are 
localized with sub‑pixel accuracy using apiFISH (fork of big‑FISH). g Individual traces are built by combining 
the localizations of all DNA‑FISH spots detected within the same mask. Results are saved in ECSV format. f 
Post‑processing analyses are performed to obtain pairwise distance and proximity frequency matrices for 
each combination of DNA loci and for different spatial regions of the sample containing different cell types
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at kilobase resolution in thousands of individual cells [8, 9, 12]. Our specific implemen-
tation, called Hi-M, couples detection of chromatin structure and transcriptional output 
[8] (Fig. 1a). Since their creation, spatial genomics methods based on sequential imaging 
were successfully used for the detection of short- and long-range chromatin interactions 
in multiple model systems, including mammalian cultured cells, fly embryos, and mouse 
tissues [7–10, 12]. Critically, imaging-based spatial genomics technologies complement 
transcriptomic surveys of single cells in their spatial context and thus have the potential 
to lead to important new discoveries in multiple fields, including 3D genomics, tran-
scriptional regulation, DNA replication, or DNA repair.

In recent years, several efforts were made to promote a wider use of these new tech-
nologies by sharing experimental and image analysis protocols [7, 13–16]. However, 
democratization of spatial genomics will require the development of open-source and 
user-friendly software packages for reconstructing chromatin traces (i.e., unique sets 
of 3D coordinates describing a locus conformation in an individual cell) from raw, 3D, 
multicolor images [17]. To this end, such software should (1) provide access to validated 
cutting-edge techniques required for the analysis of spatial genomics data, (2) use a 
license-free programming language, (3) provide extensive documentation and tutorials 
to guide new users and allow development of new functionalities, (4) adopt a modular 
architecture to facilitate adaptation to future developments in spatial genomics, and (5) 
use novel analysis methods to ensure robust, automatic analysis of large data sets (sev-
eral Tb per experiment) without user input and in reasonable times.

Results
To address these needs, we introduce pyHiM, an open-source, modular and scalable 
software toolbox specifically designed for sequential spatial genomics data analysis 
(Fig. 1a). pyHiM comes with extensive user and developer documentation, Jupyter Note-
book tutorials, and a DNA-FISH dataset to guide new users through the main steps of a 
typical analysis pipeline (Fig. 1b). PyHiM can be easily installed using standard package 
management tools (conda and PyPi, Additional file  1: Fig. S1a) and conveniently runs 
on Linux, Windows, and macOS (Fig.  1c). A single human-readable configuration file 
is used to centralize all analysis parameters and can be edited thanks to a user-friendly 
graphical user interface (GUI) (Additional file 1: Fig. S1b). In addition, a command-line 
interface enables execution on multiple hardware platforms, from laptop computers to 
high-performance computing (HPC) clusters. Functionality can be tuned according to 
local hardware specifications, acquisition conditions (e.g., number of channels, size of 
3D image stacks), and sample properties.

The analysis pipeline of pyHiM is organized in modules, each performing a specific 
analysis task. The inputs of pyHiM are 3D image stacks in the universal TIFF format 
(Fig.  1a, d). Deconvolution of images before pyHiM execution is not mandatory for 
pyHiM analysis but, in our experience, improves the quality of the results and the statis-
tics of reconstructed chromatin traces.

The pre-processing module organizes images by field of view (FOV) and by the type 
of probe imaged: DNA-FISH spots, nuclear/ oligopaint library masks, fiducial marks, or 
RNA expression. For each FOV, pyHiM first performs a projection and global registra-
tion using fiducial images acquired at each cycle as references (Fig. 1e). To improve the 
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robustness of this step, we implemented a new method whereby the image is decom-
posed in blocks that are independently co-aligned. A polling step then determines the 
most popular global registration and applies it to the whole image (Additional file  1: 
Fig. S2a). This step allows for a global correction of thermal drift and stage repeatability 
error even for cycles with fiducial images displaying local distortions. Samples such as 
embryos or tissues may often display local deformations during acquisition of different 
cycles which cannot be taken into account by global registration algorithms. Thus, we 
developed a new local registration algorithm that optimizes 3D registrations locally to 
correct for 3D sample deformations (Additional file 1: Fig. S2b, c).

The spot detection module performs segmentation and localization of DNA-FISH 
spots with sub-pixel accuracy of all sequential imaging rounds, using a combination of 
Deep Learning (DL)-powered spot segmentation followed by robust and automated 3D 
Gaussian fitting. 3D-DL segmentation is performed using a StarDist neural network [18] 
trained to robustly detect 3D-Point Spread Functions (PSF) in diverse sample types and 
illumination conditions. We obtained this network after extensive simulations of PSFs 
with different signal-to-noise ratios and inhomogeneous background levels. Next, based 
on the centroid position of each DL-mask, a robust 3D Gaussian fit of the intensity dis-
tribution is performed using apiFISH (Fig. 1f and Additional file 1: Fig. S3) [19].

The mask detection module segments nuclei in 3D using pre-trained StarDist neural 
networks models [18] (Fig. 1f ). Other custom models based on StarDist or other popu-
lar architectures (e.g., Cellpose [20]) can also be integrated via a plugin. Finally, DNA-
FISH spots localized within the same mask are combined into chromatin traces, which 
are assigned a universally unique identifier and tabulated in human-readable Enhanced 
Character-Separated Values (ECSV) format (Fig.  1g and Additional file  1: Fig. S4a, b). 
Additional labels, based on RNA expression levels or spatial cell distribution, can be 
assigned to each single trace, allowing for cell/tissue-specific post-processing analysis 
(Fig. 1h).

Thanks to pyHiM’s modular architecture, each analysis step in the pipeline (regis-
tration, detection, tracing, etc.) can be run independently. Users can tailor the analy-
sis workflow according to their sample specificity, acquisition conditions, and available 
computing resources (Fig. 2a). Intermediate results, such as unfiltered localizations or 
traces, are saved in ECSV format after each module execution, allowing the user to 
perform custom data validation or additional analysis. Finally, each module produces 
reports in human-readable markdown files with snapshot images illustrating the perfor-
mance of the analysis for each cycle and FOV. This allows the user to efficiently assess the 
quality of the analyses and eventually fine-tune parameters to improve them (Fig. 2a–c 
and Additional file  1: Figs. S2, S3). pyHiM can successfully analyze experimental data 
acquired from a variety of sample types, ranging from fly embryos to mouse and human 
tissues (Fig. 2d, e).

pyHiM also offers a number of additional features that facilitate data formatting, 
result display, and post-processing. For instance, DNA-FISH spot detection efficiency 
and maps of the pairwise distance (PWD) distributions between DNA-FISH spots 
from different cycles (Fig.  2c), or proximity frequency matrices for specific cell types 
(Fig. 2d). Another important feature of pyHiM is its ability to perform rapid analysis in 
2D (Fig. 2e). In this mode, pyHiM projects signals from DNA-FISH spots and masks in 



Page 5 of 11Devos et al. Genome Biology           (2024) 25:47  

Fig. 2 a Illustration of a typical pyHiM analysis on mouse tissues: examples of raw data are shown in the 
top row and the most relevant pyHiM outputs are shown in the bottom row. From left to right, raw DAPI 
data are segmented to compute the 3D masks of each individual nucleus. Next, 2D and 3D registration of 
the fiducial is performed for each imaging cycle, and the quality of the correction can be quickly assessed 
based on the output image. Then, the localization of individual DNA‑FISH spots is performed in two steps: 
first, a 3D mask of each DNA‑FISH spot is computed using deep learning. Then, using the mask position as 
a reference, the sub‑pixel localization of the spot is inferred using apiFISH. Scale bars = 8 μm. b Chromatin 
tracks are calculated by combining all individual DNA‑FISH spot localizations detected within the same 
mask (DAPI, or locus). Each individual trace represents a snapshot of the locus conformation within a single 
cell (see reconstruction with two different orientations). c Data quality assessment: (top) the N‑matrix 
represents the number of times that each pair of DNA loci was detected in the dataset and is indicative of 
their detection efficiency. (bottom) The distribution of pairwise distances between DNA‑FISH spots in the 
same chromatin trace is plotted to ensure that there is no major error in the analysis (detection threshold, 
etc.). d Traces computed by pyHiM were sorted based on RNA expression profiles in NC14 fly embryos and 
assigned to specific cell types (e.g., mesoderm vs. neuroectoderm). Specific long‑range interactions and 
chromatin organization are observed for each cell type. e Fast 2D analysis based only on the projected 3D 
data is used to optimize parameters and test data quality. An example from mouse tissue data shows the 
pairwise distance maps computed using 2D (top) and 3D (bottom) analysis. The 2D map captures most of the 
features that characterize the conformation of the locus. f Comparison of pyHiM execution times for different 
number of cycles and for a desktop computer (Intel(R) Core(TM) i7‑8700 CPU @ 3.20 GHz, CPUs: 12, cores: 6, 
threads per core: 2, memory: 16 Gb) or a multi‑threaded server (AMD EPYC 7702 64‑Core Processor 3.34 GHz, 
CPUs: 256, cores: 128, threads per core: 2, memory: 512 Gb). g Performance of pyHiM using single‑threaded 
or DASK‑powered multi‑threading
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2D and performs registration, segmentation, spot localization, and tracing in 2D. Con-
tact maps computed using the 2D pipeline show all the relevant features of 3D maps 
(long-range contacts, TADs, etc.) but require ~ 5 × less computation time (Fig. 2e, f ) and 
can therefore be used to quickly assess the quality of the acquired dataset before full 3D 
analysis.

Finally, a critical aspect of multiplexed DNA-FISH imaging is the amount of data gen-
erated, typically ~ 1–3 Tb per experiment depending on the number of cycles and the 
number of FOVs. To handle and analyze such large volumes of data in a reasonable time, 
we have implemented a parallelization mode based on the Dask Python package. For 
this, pyHiM analyzes data associated with different hybridization cycles in parallel, while 
keeping the technical aspects transparent to the user, leading to a drastic shortening in 
computation time (Fig. 2f, g). Conveniently, a reporting web-server based on Bokeh can 
be launched to monitor analysis status and performance in real-time (Additional file 1: 
Fig. S4c). As a result, pyHiM can run indifferently on a laptop or an HPC cluster and be 
tuned according to the technical specificities of both (e.g., number of CPUs, available 
memory, availability of GPUs, etc.).

Conclusions
In summary, we describe pyHiM, a modular, user-friendly, well-documented tool for 
chromatin tracing analysis based on sequential DNA-FISH imaging. pyHiM can be used 
to analyze data produced by Hi-M or by other spatial genomics methods. Thus, we envi-
sion that the adoption of pyHiM will enable the growth of a new user community for 
this active field of research. Indeed, as data acquisition and sample preparation become 
standard and even commercially available, a final bottleneck for widespread adoption 
will be the availability of flexible image analysis tool boxes dedicated to chromatin trac-
ing. Thus, a well-tested and user-friendly analysis pipeline such as pyHiM will be key 
to break barriers to adoption of spatial genomics by users and microscopy facilities, to 
promote transparent image analysis pipelines in the field, and to create a large user com-
munity to accelerate discoveries and new developments. The modularity, open-source 
nature, and extensive developer documentation of pyHiM were purposefully designed 
to promote collaborative developments, to standardize and benchmark image analysis 
practices, and to facilitate reuse of existing algorithms to implement analysis tools for 
novel technologies in the blooming field of spatial genomics.

Methods
Inputs

The two minimal inputs of pyHiM are as follows: a dictionary of parameters (parame-
ters.json) and a list of images to process. parameters.json contains acquisition parameters 
(e.g., pixel size), file formatting parameters (e.g., regular expression to decode filenames), 
and all the parameters that are required for the execution of each module in pyHiM. 
For detailed information on the parameters.json parameter file, please refer to our online 
resource: Input Parameters.

Input images can be of two types: DNA-FISH spots for a given cycle and masks used 
for tracing. The latter can be either nuclear masks (e.g., from DAPI labeling) or from a 
cycle where the whole oligopaint library is labeled and imaged at once. Both DNA-FISH 
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and mask images must be accompanied by a corresponding fiducial image used for 
registration (see the “Registration” section). Images are assumed to be in the universal 
and non-proprietary TIFF format. Use of deconvolved images is recommended but not 
compulsory.

Projection

We developed a tool for image reprojection (module: makeProjections). This step is nec-
essary for lateral global drift alignment (see the”Registration” section) and for the rapid 
visual inspection of input files. Sum and maximum projections are implemented and 
configured through the parameters.json parameters file. We recommend the former 
for masks and the latter for DNA-FISH images. makeProjections allows for the manual 
selection of the z-range and implements an automatic algorithm to robustly retrieve the 
in-focus plane. Briefly, this method estimates the optimal in-focus plane by calculating 
the maximum of the Laplacian of the intensity profile along the z-axis. The calculation 
is performed block-by-block to take into account local variability and sample drift. More 
details on the methods and the execution of this module can be found in the online 
description of the makeProjections module.

Registration

We implemented two registration methods to obtain automatic and robust global and 
local realignments. The alignImages module performs global realignments by register-
ing the 2D z-reprojected fiducial images using 2D cross-correlation. This method, how-
ever, can be unreliable when fiducial images contain impurities that vary between cycles. 
To solve this, we developed a second algorithm (alignByBlock) that uses block-by-block 
decomposition to determine the best registration for each block. This calculation is fol-
lowed by a polling operation that retrieves the most satisfactory global registration. This 
second method is highly robust to impurities. More details on the methods and the exe-
cution of this module can be found in our online description of the alignImages mod-
ule. Once registrations for each cycle are processed, the module appliesRegistrations 
re-interpolates 2D images of DNA-FISH spots and masks to provide a visual input of the 
performance of global registrations for each hybridization cycle.

Biological samples can display local deformations (typically in the hundreds of nm 
range) during the long-term acquisition times of a HiM dataset. These distortions 
cannot be properly corrected by global 2D realignment routines. To tackle this issue, 
we developed a new registration method that performs local 3D registration. In this 
method, images are first globally realigned in 2D. Next, fiducial images are decomposed 
in 3D blocks and each block is realigned by 3D cross-correlation and re-interpolation. 
The resulting local block corrections are stored as an ASTROPY table [21] that is used 
by the register_localizations module (see section below). More details on the methods 
and the execution of this module can be found in our online description of the alignIm-
ages3D module.

Segmentation and detection

Three different modules were built to deal with the segmentation and detection of 
DNA-FISH spots and masks. First, we developed a module for the segmentation and 
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localization of masks and sources in 2D (module: SegmentMasks). Mask and DNA-FISH 
images are segmented using startdist with pre-trained networks. Segmented objects are 
filtered by size and shape, while merged objects are split using the watershed algorithm. 
DNA-FISH spots are fitted using the highly efficient DAOStarFinder algorithm from 
photutils [22] and post-processed using filter_localizations.

Second, we developed a module specifically designed to segment masks in 3D (mod-
ule: segmentMasks3D). segmentMasks3D relies on deep-learning segmentation using a 
network that we trained specifically to robustly segment nuclei in 3D with stardist [23]. 
Other DL segmentation tools, such as cellpose [20], can be used to further increase the 
flexibility of mask segmentation for different biological samples (script: mask_cellpose.
py). segmentMasks3D then post-processes 3D masks by size and shape filtering, and 
applies a watershed algorithm to split merged masks. The output of segmentMasks3D is 
a localizations table used by the build_traces module to group localizations into single 
chromatin traces (see the “Tracing” section) (Additional file 1: Fig. S3c). More details on 
the methods and the execution of this module can be found in our online description of 
the segmentMasks3D module.

Finally, we developed a module for the segmentation and localization of DNA-FISH 
spots (module: segmentSources3D). segmentSources3D segments DNA-FISH spots by 
using a stardist DL network trained to detect PSFs in 3D. This network was optimized 
by training the DL network on simulated data displaying large variations in signal-to-
noise ratios, local background inhomogeneities, and intensity levels. After segmentation, 
segmentSources3D fits the intensity distributions within DNA-FISH spot masks with a 
3D-Gaussian model using non-linear regression with functions from apiFISH [19]. The 
output segmentSources3D is an ASTROPY table containing the xyz coordinates, iden-
tities, and properties of all the localizations. Localizations with low intensities are fil-
tered in post-processing using the module filter_localizations. A final step before tracing 
involves the application of local registrations to the localization tables obtained from 
segmentMasks or from segmentSources3D using the register_localizations module. Our 
trained stardist DL networks were packed with pyHiM and are also available from our 
pyHiM OSF repository.

Tracing

The final step involves the grouping of DNA-FISH spots belonging to the same chro-
matin fiber (module: build_traces). This can be accomplished in two manners. The 
first involves spatial clustering based on nearest-neighbor distances with the KDTree 
algorithm. This method works well for low-density samples, where nuclei are well-
separated in space. The second, instead, relies on the use of user-provided masks. In 
this case, traces are built by grouping together the spots belonging to the same mask. 
Masks can be derived either from nuclei (e.g., from DAPI staining) or from a cycle 
labeling the entire oligopaint library. The output of build_traces is a trace table in 
ASTROPY format where each trace is stamped with a universal unique identifier to 
enable the automatic merging of multiple trace tables and to ensure traceability. We 
note that no corrections for missing or redundant barcode localizations are applied 
by build_traces as such corrections are often sample dependent. In pyHiM, these 
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issues are handled by post-processing scripts (see below). More details on the meth-
ods and the execution of this module can be found in our online description of the 
build_traces module.

We developed several tools for post-processing of trace tables. Trace_assign_mask 
finds traces that match specific morphological or gene-expression patterns by match-
ing trace localization with user-provided masks. Trace_combinator and trace_merge 
fuse traces from different FOVs or different experiments. Trace_filter is a general 
tool for filtering traces that can remove specific barcodes from a trace table, remove 
duplicated localizations from single traces, and perform spatial filtering. Trace_fil-
ter_advanced, instead, removes duplicate localizations based on distance constraints. 
Finally, trace_analyzer analyzes a trace table to calculate the distribution in the num-
ber of barcodes detected per trace, the number of times each barcode appears in 
single traces, and the spatial clustering of traces. We highlight the existence of more 
sophisticated methods to improve the quality of tracing [24] that may be applied in 
combination with the post-processing scripts mentioned in this paragraph.

Finally, we developed an algorithm that builds maps from trace tables (mod-
ule: build_matrix). This tool produces conventional pair-wise median distance 
maps  by  relying on kernel-density estimators to accurately calculate the maximum 
of each distance distribution, and calculates proximity distance maps for user-spec-
ified threshold distances. Build_matrix produces N-maps which contain the number 
of localizations detected for each combination of barcodes, a diagnostic tool that is 
fundamental to determine the performance of an experiment and the robustness of 
detection for each barcode pair. More details on the methods and execution of this 
module can be found in our online description of the build_matrix module.
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